3 research outputs found

    Coarse-grain time sharing with advantageous overhead minimization for parallel job scheduling

    Get PDF
    Parallel job scheduling on cluster computers involves the usage of several strategies to maximize both the utilization of the hardware as well as the throughput at which jobs are processed. Another consideration is the response times, or how quickly a job finishes after submission. One possible solution toward achieving these goals is the use of preemption. Preemptive scheduling techniques involve an overhead cost typically associated with swapping jobs in and out of memory. As memory and data sets increase in size, overhead costs increase. Here is presented a technique for reducing the overhead incurred by swapping jobs in and out of memory as a result of preemption. This is done in the context of the Scojo-PECT preemptive scheduler. Additionally a design for expanding the existing Cluster Simulator to support analysis of scheduling overhead in preemptive scheduling techniques is presented. A reduction in the overhead incurred through preemptive scheduling by the application of standard fitting algorithms in a multi-state job allocation heuristic is shown

    A technique to reduce preemption overhead in real-time multiprocessor task scheduling

    No full text
    Partitioning and global scheduling are two approaches for scheduling real-time tasks in multiprocessor environments. Partitioning is the more favored approach, although it is sub-optimal. This is mainly due to the fact that popular uniprocessor real-time scheduling algorithms, such as EDF and RM, can be applied to the partitioning approach with low scheduling overhead. In recent years, much research has been done on global real-time multiprocessor scheduling algorithms based on the concept of "proportionate fairness". Proportionate fair (Pfair) scheduling [5][6] is the only known optimal algorithm for scheduling real-time tasks on multiprocessor. However, frequent preemptions caused by the small quantum length for providing optimal scheduling in the Pfair scheduling make it impractical. Deadline Fair Scheduling (DFS) [1] based on Pfair scheduling tried to reduce preempt ion-related overhead by means of extending quantum length and sharing a quantum among tasks. But extending quantum length causes a mis-estimation problem for eligibility of tasks and a non-work-conserving problem. In this paper, we propose the Enhanced Deadline Fair Scheduling (EDFS) algorithm to reduce preemption-related overhead. We show that E-DFS allows us to decrease quantum length by reducing overhead and save wasted CPU time that is caused by preemption-related overhead and miss-estimation of eligibility.X11sciescopu

    A Technique to Reduce Preemption Overhead in Real-Time Multiprocessor Task Scheduling

    No full text
    Maste
    corecore