34,153 research outputs found

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Flight crew aiding for recovery from subsystem failures

    Get PDF
    Some of the conceptual issues associated with pilot aiding systems are discussed and an implementation of one component of such an aiding system is described. It is essential that the format and content of the information the aiding system presents to the crew be compatible with the crew's mental models of the task. It is proposed that in order to cooperate effectively, both the aiding system and the flight crew should have consistent information processing models, especially at the point of interface. A general information processing strategy, developed by Rasmussen, was selected to serve as the bridge between the human and aiding system's information processes. The development and implementation of a model-based situation assessment and response generation system for commercial transport aircraft are described. The current implementation is a prototype which concentrates on engine and control surface failure situations and consequent flight emergencies. The aiding system, termed Recovery Recommendation System (RECORS), uses a causal model of the relevant subset of the flight domain to simulate the effects of these failures and to generate appropriate responses, given the current aircraft state and the constraints of the current flight phase. Since detailed information about the aircraft state may not always be available, the model represents the domain at varying levels of abstraction and uses the less detailed abstraction levels to make inferences when exact information is not available. The structure of this model is described in detail

    Synthesis and Optimization of Reversible Circuits - A Survey

    Full text link
    Reversible logic circuits have been historically motivated by theoretical research in low-power electronics as well as practical improvement of bit-manipulation transforms in cryptography and computer graphics. Recently, reversible circuits have attracted interest as components of quantum algorithms, as well as in photonic and nano-computing technologies where some switching devices offer no signal gain. Research in generating reversible logic distinguishes between circuit synthesis, post-synthesis optimization, and technology mapping. In this survey, we review algorithmic paradigms --- search-based, cycle-based, transformation-based, and BDD-based --- as well as specific algorithms for reversible synthesis, both exact and heuristic. We conclude the survey by outlining key open challenges in synthesis of reversible and quantum logic, as well as most common misconceptions.Comment: 34 pages, 15 figures, 2 table

    Using genetic algorithms to generate test sequences for complex timed systems

    Get PDF
    The generation of test data for state based specifications is a computationally expensive process. This problem is magnified if we consider that time con- straints have to be taken into account to govern the transitions of the studied system. The main goal of this paper is to introduce a complete methodology, sup- ported by tools, that addresses this issue by represent- ing the test data generation problem as an optimisa- tion problem. We use heuristics to generate test cases. In order to assess the suitability of our approach we consider two different case studies: a communication protocol and the scientific application BIPS3D. We give details concerning how the test case generation problem can be presented as a search problem and automated. Genetic algorithms (GAs) and random search are used to generate test data and evaluate the approach. GAs outperform random search and seem to scale well as the problem size increases. It is worth to mention that we use a very simple fitness function that can be eas- ily adapted to be used with other evolutionary search techniques

    An overview of decision table literature 1982-1995.

    Get PDF
    This report gives an overview of the literature on decision tables over the past 15 years. As much as possible, for each reference, an author supplied abstract, a number of keywords and a classification are provided. In some cases own comments are added. The purpose of these comments is to show where, how and why decision tables are used. The literature is classified according to application area, theoretical versus practical character, year of publication, country or origin (not necessarily country of publication) and the language of the document. After a description of the scope of the interview, classification results and the classification by topic are presented. The main body of the paper is the ordered list of publications with abstract, classification and comments.

    Using SAT for Combinational Implementation Checking

    Get PDF
    The problem of checking whether a system of incompletely specified Boolean functions is implemented by the given combinational circuit is considered. The task is reduced to testing out if two given logical descriptions are equivalent on the domain of one of them having functional indeterminacy. We present a novel SAT-based verification method that is used for testing whether the given circuit satisfies all the conditions represented by the system of incompletely specified Boolean functions

    Generic Pipelined Processor Modeling and High Performance Cycle-Accurate Simulator Generation

    Full text link
    Detailed modeling of processors and high performance cycle-accurate simulators are essential for today's hardware and software design. These problems are challenging enough by themselves and have seen many previous research efforts. Addressing both simultaneously is even more challenging, with many existing approaches focusing on one over another. In this paper, we propose the Reduced Colored Petri Net (RCPN) model that has two advantages: first, it offers a very simple and intuitive way of modeling pipelined processors; second, it can generate high performance cycle-accurate simulators. RCPN benefits from all the useful features of Colored Petri Nets without suffering from their exponential growth in complexity. RCPN processor models are very intuitive since they are a mirror image of the processor pipeline block diagram. Furthermore, in our experiments on the generated cycle-accurate simulators for XScale and StrongArm processor models, we achieved an order of magnitude (~15 times) speedup over the popular SimpleScalar ARM simulator.Comment: Submitted on behalf of EDAA (http://www.edaa.com/

    New developments in the theory of Groebner bases and applications to formal verification

    Get PDF
    We present foundational work on standard bases over rings and on Boolean Groebner bases in the framework of Boolean functions. The research was motivated by our collaboration with electrical engineers and computer scientists on problems arising from formal verification of digital circuits. In fact, algebraic modelling of formal verification problems is developed on the word-level as well as on the bit-level. The word-level model leads to Groebner basis in the polynomial ring over Z/2n while the bit-level model leads to Boolean Groebner bases. In addition to the theoretical foundations of both approaches, the algorithms have been implemented. Using these implementations we show that special data structures and the exploitation of symmetries make Groebner bases competitive to state-of-the-art tools from formal verification but having the advantage of being systematic and more flexible.Comment: 44 pages, 8 figures, submitted to the Special Issue of the Journal of Pure and Applied Algebr
    corecore