4 research outputs found

    The use of domain name system for dynamic references in an online library

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1994.Includes bibliographical references (leaf 47).by Ali Alavi.M.Eng

    A Methodology for Modelling Mobile Agent-Based Systems (Mobile agent Mobility Methodology - MaMM)

    Get PDF
    Mobile agents are a particular type of agents that have all the characteristics of an agent and also demonstrate the ability to move or migrate from one node to another in a network environment. Mobile agents have received considerable attention from industry and the research community in recent times due to the fact that their special characteristic of migration help address issues such as network overload, network latency and protocol encapsulation. Due to the current focus in exploiting agent technology mainly in a research environment, there has been an influx of software engineering methodologies for developing multi-agent systems. However, little attention has been given to modelling mobile agents. For mobile agent-based systems to become more widely accepted there is a critical need for a methodology to be developed to address various issues related to modelling mobility of agent . This research study provides an overview of the current approaches, methodologies and modelling languages that can be used for developing multi-agent systems. The overview indicates extensive research on methodologies for modelling multi-agent systems and little on mobility in mobile agent-based systems. An original contribution in this research known as Mobile agent-based Mobility Methodology (MaMM) is the methodology for modelling mobility in mobile agent-based systems using underlying principles of Genetic Algorithms (GA) with emphasis on fitness functions and genetic representation. Delphi study and case studies were employed in carrying out this research

    Routing in heterogeneous wireless ad hoc networks

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2008.Includes bibliographical references (p. 135-146).Wireless ad hoc networks are used in several applications ranging from infrastructure monitoring to providing Internet connectivity to remote locations. A common assumption about these networks is that the devices that form the network are homogeneous in their capabilities. However in reality, the networks can be heterogeneous in the capabilities of the devices. The main contribution of this thesis is the identification of issues for efficient communication in heterogeneous networks and the proposed solutions to these issues. The first part of the thesis deals with the issues of unambiguous classification of devices and device identification in ad hoc networks. A taxonomical approach is developed, which allows devices with wide range of capabilities to be classified on the basis of their functionality. Once classified, devices are characterized on the basis of different attributes. An IPv6 identification scheme and two routing services based on this scheme that allow object-object communication are developed. The identification scheme is extended to a multi-addressing scheme for wireless ad hoc networks. These two issues and the developed solutions are applicable to a broad range of heterogeneous networks. The second part of the thesis deals with heterogeneous networks consisting of omnidirectional and directional antennas. A new MAC protocol for directional antennas, request-to-pause-directional-MAC (RTP-DMAC) protocol is developed that solves the deafness issue, which is common in networks with directional antennas. Three new routing metrics, which are extensions to the expected number of transmissions (ETX) metric are developed. The first metric, ETX1, reduces the route length by increasing the transmission power. The routing and MAC layers assume the presence of bidirectional links for their proper operation. However networks with omnidirectional and directional antennas have unidirectional links. The other two metrics, unidirectional-ETX (U-ETX) and unidirectional-ETX1 (U-ETX1), increase the transmission power of the directional nodes so that the unidirectional links appear as bidirectional links at the MAC and the routing layers. The performance of these metrics in different scenarios is evaluated.by Sivaram M.S.L. Cheekiralla.Ph.D

    The Architecture of a Worldwide Distributed System

    Get PDF
    corecore