46 research outputs found

    18th SC@RUG 2020 proceedings 2020-2021

    Get PDF

    18th SC@RUG 2020 proceedings 2020-2021

    Get PDF

    18th SC@RUG 2020 proceedings 2020-2021

    Get PDF

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms

    DiverGet: A Search-Based Software Testing Approach for Deep Neural Network Quantization Assessment

    Full text link
    Quantization is one of the most applied Deep Neural Network (DNN) compression strategies, when deploying a trained DNN model on an embedded system or a cell phone. This is owing to its simplicity and adaptability to a wide range of applications and circumstances, as opposed to specific Artificial Intelligence (AI) accelerators and compilers that are often designed only for certain specific hardware (e.g., Google Coral Edge TPU). With the growing demand for quantization, ensuring the reliability of this strategy is becoming a critical challenge. Traditional testing methods, which gather more and more genuine data for better assessment, are often not practical because of the large size of the input space and the high similarity between the original DNN and its quantized counterpart. As a result, advanced assessment strategies have become of paramount importance. In this paper, we present DiverGet, a search-based testing framework for quantization assessment. DiverGet defines a space of metamorphic relations that simulate naturally-occurring distortions on the inputs. Then, it optimally explores these relations to reveal the disagreements among DNNs of different arithmetic precision. We evaluate the performance of DiverGet on state-of-the-art DNNs applied to hyperspectral remote sensing images. We chose the remote sensing DNNs as they're being increasingly deployed at the edge (e.g., high-lift drones) in critical domains like climate change research and astronomy. Our results show that DiverGet successfully challenges the robustness of established quantization techniques against naturally-occurring shifted data, and outperforms its most recent concurrent, DiffChaser, with a success rate that is (on average) four times higher.Comment: Accepted for publication in The Empirical Software Engineering Journal (EMSE
    corecore