

 University of Groningen

18th SC@RUG 2020 proceedings 2020-2021
Smedinga, Rein; Biehl, Michael

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Smedinga, R., & Biehl, M. (Eds.) (2021). 18th SC@RUG 2020 proceedings 2020-2021.
Universiteitsbibliotheek Groningen.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 08-06-2022

https://research.rug.nl/en/publications/897a227d-c390-4648-9050-da0a994be1d0

faculty of science
and engineering

computing science

SC@RUG 2021 proceedings

Rein Smedinga, Michael Biehl (editors)

18th SC@RUG
2020-2021

17th S
C

@
R

U
G

 2019-2020

rug.nl/research/bernoulli

faculty of science
and engineering

computing science

R20170190_omslag_SC_RUG2018_.indd 3 01-05-18 13:11

1

SC@RUG 2021 proceedings

Rein Smedinga
Michael Biehl

editors

2021
Groningen

ISBN (e-pub): 978-94-034-2926-7
Publisher: Bibliotheek der R.U.

Title: 18th SC@RUG proceedings 2020-2021
Computing Science, University of Groningen

NUR-code: 980

SC@RUG 2021 proceedings

About SC@RUG 2021

Introduction
SC@RUG (or student colloquium in full) is a course

that master students in computing science follow in the first
year of their master study at the University of Groningen.

SC@RUG was organized as a conference for the 18th
time in the academic year 2020-2021. Students wrote a
paper, participated in the review process and gave a presen-
tation. Due to the corona virus the conference itself was
done completely online.

The organizers Rein Smedinga and Michael Biehl
would like to thank all colleagues who cooperated in this
SC@RUG by suggesting sets of papers to be used by the
students and by being expert reviewers during the review
process. They also would like to thank Dick Toering for
giving additional lectures and workshops on presentation
techniques and speech skills.

Organizational matters
SC@RUG 2021 was organized as follows:

Students were expected to work in teams of two. The stu-
dent teams could choose between different sets of papers,
that were made available through the digital learning envi-
ronment of the university, Nestor. Each set of papers con-
sisted of about three papers about the same subject (within
Computing Science). Some sets of papers contained con-
flicting opinions. Students were instructed to write a sur-
vey paper about the given subject including the different
approaches discussed in the papers. They should compare
the theory in each of the papers in the set and draw their
own conclusions, potentially based on additional research
of their own.

After submission of the papers, each student was as-
signed one paper to review using a standard review form.
The staff member who had provided the set of papers was
also asked to fill in such a form. Thus, each paper was re-
viewed three times (twice by peer reviewers and once by
the expert reviewer). Each review form was made available
to the authors through Nestor.

All papers could be rewritten and resubmitted, also tak-
ing into account the comments and suggestions from the
reviews. After resubmission each reviewer was asked to re-
review the same paper and to conclude whether the paper
had improved. Re-reviewers could accept or reject a paper.
All accepted papers1 can be found in these proceedings.

In his lecture about communication in science, Rein
Smedinga explained how researchers communicate their
findings during conferences by delivering a compelling sto-
ryline supported with cleverly designed graphics. Lectures

on how to write a paper, on scientific integrity and on the
review process were given by Michael Biehl

Dick Toering gave tutorials about presentation tech-
niques and speech skills.

Students were asked to give a short presentation
halfway through the period. The aim of this so-called two-
minute madness was to advertise the full presentation and
at the same time offer the speakers the opportunity to prac-
tice speaking in front of an audience.Dick Toering, Rein
Smedinga and Micheal Biehl were present during these pre-
sentations.

Dick Toering gave tutorials in small groups to further
practice presentation skills.

The final online conference was organized by the stu-
dents themselves (from each author-pair, one was selected
to be part of the organization and the other doing the
chairing of one of the presentations). Students organized
the conference using zoom and added online gaming and
other social events during the breaks. They also found a
keynote speaker, David Smits from IBM who spoke about
Blockchain for Enterprises. The organizing students also
created a website for this years conference, to be found on
https://www.studentcolloquium.nl/2021/

The overall coordination and administration was taken
care of by Rein Smedinga, who also served as the main
manager of Nestor.

Students were graded on the writing process, the review
process and the 2 minute madness presentation, the presen-
tation during the conference and on their contribution in the
organization of this conference.

For the grading of the 2 minute mandess presentations
we used the assessments from the audience and calculated
the average of these. For the presentations during the con-
ference we also used the assessments of the audiencee (for
50%) and the assessments of Dick Toering, Michael Biehl
and Rein Smedinga (also for 50%).

The gradings of the draft and final paper were weighted
marks of the review of the corresponding staff member
(50%) and the two students reviews (25% each).

The complete conference was also recorded and this
recording was published on Nestor for self reflection.

The best 2 miniute madness presentation, the best con-
ference proesentation and the best paper were awarded with
a voucher and mentioned in the hall of fame.

Website
Since 2013, there is a website for the conference, see

www.studentcolloquium.nl.

1this year, all papers were accepted

3

About SC@RUG 2021

Thanks
We could not have achieved the ambitious goals of this

course without the invaluable help of the following expert
reviewers:

• Lorenzo Amabili
• George Azzopardi
• Kerstin Bunte
• Majid Lotfian Delouee
• Mostafa Hadadan
• Bas van der Heuvel
• Boris Koldehofe
• Jiri Kosinka
• Michel Medema
• Fadi Mohson
• Saad Saleh
• Estefania Talavera Martinez
• Fatih Turkmen
• Maria Leyva Valina

and all other staff members who provided topics and sets of
papers.
Also, the organizers would like to thank the Graduate
school of Science and Engineering for making it possible
to publish these proceedings and sponsoring the awards for
best presentations and best paper for this conference.

Rein Smedinga
Michael Biehl

4

SC@RUG 2021 proceedings

Since the tenth SC@RUG in 2013 we added a new
element: the awards for best presentation, best paper and

best 2 minute madness.

Best 2 minute madness presentation awards

2021
Niels Bügel and Albert Dijkstra

Mining User Reviews to Determine App Security
2020

Andris Jakubovskis and Hindrik Stegenga
Comparing Reference Architectures for IoT

and
Filipe R. Capela and Antil P. Mathew

An Analysis on Code Smell Detection Tools and Technical
Debt
2019

Kareem Al-Saudi and Frank te Nijenhuis
Deep learning for fracture detection in the cervical spine

2018
Marc Babtist and Sebastian Wehkamp

Face Recognition from Low Resolution Images: A
Comparative Study

2017
Stephanie Arevalo Arboleda and Ankita Dewan

Unveiling storytelling and visualization of data
2016

Michel Medema and Thomas Hoeksema
Implementing Human-Centered Design in Resource

Management Systems
2015

Diederik Greveling and Michael LeKander
Comparing adaptive gradient descent learning rate

methods
2014

Arjen Zijlstra and Marc Holterman
Tracking communities in dynamic social networks

2013
Robert Witte and Christiaan Arnoldus

Heterogeneous CPU-GPU task scheduling

Best presentation awards

2021 Niels Bügel and Albert Dijkstra
Mining User Reviews to Determine App Security

2020
none, because of corona virus measures no

presentations were given
2019

Sjors Mallon and Niels Meima
Dynamic Updates in Distributed Data Pipelines

2018
Tinco Boekestijn and Roel Visser

A comparison of vision-based biometric analysis methods
2017

Siebert Looije and Jos van de Wolfshaar
Stochastic Gradient Optimization: Adam and Eve

2016
Sebastiaan van Loon and Jelle van Wezel

A Comparison of Two Methods for Accumulating Distance
Metrics Used in Distance Based Classifiers

and
Michel Medema and Thomas Hoeksema

Providing Guidelines for Human-Centred Design in
Resource Management Systems

2015
Diederik Greveling and Michael LeKander

Comparing adaptive gradient descent learning rate
methods

and
Johannes Kruiger and Maarten Terpstra

Hooking up forces to produce aesthetically pleasing graph
layouts
2014

Diederik Lemkes and Laurence de Jong
Pyschopathology network analysis

2013
Jelle Nauta and Sander Feringa

Image inpainting

5

About SC@RUG 2021

Best paper awards

2021
Ethan Waterink and Stefan Evanghelides
A Review of Image Vectorisation Techniques

2020
Anil P. Mathew and Filipe A.R. Capela

An Analysis on Code Smell Detection Tools
and

Thijs Havinga and Rishabh Sawhney
An Analysis of Neural Network Pruning in Relation to the

Lottery Ticket Hypothesis
2019

Wesley Seubring and Derrick Timmerman
A different approach to the selection of an optimal

hyperparameter optimisation method
2018

Erik Bijl and Emilio Oldenziel
A comparison of ensemble methods: AdaBoost and

random forests

2017
Michiel Straat and Jorrit Oosterhof

Segmentation of blood vessels in retinal fundus images
2016

Ynte Tijsma and Jeroen Brandsma
A Comparison of Context-Aware Power Management

Systems
2015

Jasper de Boer and Mathieu Kalksma
Choosing between optical flow algorithms for UAV

position change measurement
2014

Lukas de Boer and Jan Veldthuis
A review of seamless image cloning techniques

2013
Harm de Vries and Herbert Kruitbosch

Verification of SAX assumption: time series values are
distributed normally

6

Contents

1 Comparing Different Approaches to Parallelizing Constraint Satisfaction Problems
Radu Catarambol and Richard Westerhof 8

2 Comparison of Novel Software Defined Networking Approaches for Improving Data Centre Networking
Daan Raatjes and Sjouke de Vries 14

3 An Overview of Privacy-preserving Genomic Data Processing Methods
Xiya Duan and Fabian Prins 20

4 State-of-the-Art Fuzzing: Challenges, Limitations and Improvements
Nik Dijkema and Zamir Amiri 26

5 Comparing Strategies for Mining User Reviews to Determine App Security
Albert Dijkstra and Niels Bügel 32

6 An Overview of Evaluation Metrics for Video GANs
Robbin de Groot and Max Verbeek 38

7 Graph Neural Networks for Pattern Analysis from Time Series
Ayça Avcı, Jeroen de Baat 44

8 A Comparative Analysis of Swarm Intelligence-Based Clustering Algorithms
Sjoerd Bruin and Jasper van Thuijl 50

9 A Review of Image Vectorisation Techniques
Ştefan Evanghelides and Ethan Waterink 56

10 The role of inhibition in Deep Learning
Abdulla Bakija and Fatijon Huseini 62

11 Facial Expression Recognition and its Impact on Athletes’ Performance
Klaas Tilman and Robert Monden 68

12 Consistency Trade-offs in Distributed Systems
R.J.M. van Beckhoven, R.M.Sommer 74

13 A review of Distributed Machine Learning Algorithms
Bedir Chaushi 80

14 Comparison of Workflow Management Tools for Distributed Data Science Applications
Job Heersink and Sytse Oegema 86

15 Visual Object Detection
Pooja Gowda and Ajay Krishnan 92

16 Benefits of Provenance-Based Templates in Data Science and Data Visualization
Nitin Paul and Merijn Schröder 98

17 An Overview of Communication Protocol Specifications
Bauke Risselada and Floris Westerman 104

Comparing Different Approaches to Parallelizing Constraint
Satisfaction Problems

Radu Catarambol and Richard Westerhof

Abstract— Parallelization is a matter of great interest in the research area of constraint programming. This task can be addressed
by parallelizing the filtering algorithms or by parallelizing the search process. This paper aims to gather some popular approaches for
accomplishing the latter and compare them. To this end, we analyse three different parallelization approaches and their respective
research papers: the embarrassingly parallel search, the confidence-based work stealing and the mixed static and dynamic partition-
ing work stealing. We compare the approaches on performance and efficiency, based on the results presented in the aforementioned
papers, more specifically on the speedup factor of each approach, since the experiments were originally conducted on different hard-
ware and with different problem sets. Our comparison yields the embarrassingly parallel search as the best-performing approach,
offering a speedup of 21.3 and 13.8 with OR-Tools and Gecode, respectively, on a 40 core machine. We conclude with a proposition
for future research by combining the approaches presented throughout the paper, as we think their combination can lead to a new,
even better-performing method.

Index Terms—Constraint satisfaction problems, Constraint programming, Search trees, Parallelization, Work stealing.

1 INTRODUCTION

In the field of constraint programming, concerned with solving com-
binatorial optimization problems, parallelization represents a topic of
great interest. Examples of a constraint satisfaction problem could
be solving a sudoku puzzle, which has the simple constraints that
a number must be unique in the row, column, and block that it is
in, or scheduling appointments or meetings, which has the constraint
that appointments cannot overlap. From the current state of the art,
two main sub-fields for parallelizing a constraint satisfaction problem
solver emerge: parallelizing the filtering algorithms or parallelizing
the search process.

The goal of this paper is to compare the performance and the effi-
ciency of new methods of parallelizing the search process — mixing
static and dynamic partitioning and confidence-based work stealing
— with the other methods previously mentioned. Towards accom-
plishing this goal, the results and the comparison process presented by
Hamadi et al. [7] will be used. Thus, by carrying out this research, the
authors expect to contribute to the current state-of-the-art by provid-
ing an updated perspective on the performance of the currently popular
parallelization methods for constraint satisfaction problems.

In this paper, we will dive deeper into the state of the art by in-
vestigating existing methods in section 2. We will explain how we
compared these approaches and showcase the results of each approach
in section 3, after which we will discuss these results in section 4. Fi-
nally we will conclude the research and this paper in section 5, and
also propose some ideas for potential future work in section 6.

2 STATE OF THE ART

There are multiple ways in which a constraint satisfaction problem can
be parallelized. In this section we will go over some of these methods.

A general condition that every approach discussed in this paper re-
lies on is that the resolution time, the time that it takes to solve a prob-
lem, for all individual sub-problems must be equivalent to the total
resolution time for the complete problem. If this is not the case, the
speedup numbers will not be as indicative of the efficiency of the ap-
proach, and may even lead to situations where almost no speedup can
be achieved.

• Radu Catarambol is with the University of Groningen, E-mail:
r.catarambol@student.rug.nl.

• Richard Westerhof is with the University of Groningen, E-mail:
r.s.westerhof.2@student.rug.nl.

2.1 Work stealing
Distributing search trees over a set of workers for parallelization is
not a recent problem. An old but still relevant method to attempt to
distribute a tree over a set of workers is work stealing, going as far
back as a paper published by Burton et al. in 1981 [5]. In this method,
instead of trying to split the tree in an even way from the start of the
search, workers are allowed to steal work from other workers when
they have finished their own work, to prevent them from staying idle
while a few workers are left solving the remaining problems.

2.1.1 Downsides

This method remains as a simple way to distribute the work quite
evenly. However, it does have some downsides. The first downside is
the fact that the communication between workers to exchange prob-
lems between each other takes time, which could have been spent
on actually solving the problem if this communication had not been
needed. The second downside is also related to communication, be-
cause near the end of a search, a large number of workers will be-
come idle since they finished their work and there isn’t much work
left to steal either. However, this means that the communication be-
tween workers will skyrocket, as all the idle workers will try to steal
from the same few workers that are still busy. This causes a large
amount of overhead, which may actually slow down the search. Es-
pecially this last problem was already recognized and addressed by
Burton et al. [5], in their case by allowing each node in the tree to be
stolen only once.

2.2 Embarassingly parallel search
The paper by Malapert et al. [9] proposes the embarrassingly parallel
search (EPS), a new method for achieving parallelization of the search
process. According to the authors “a computation that can be divided
into completely independent parts, each of which can be executed on
a separate process(or), is called embarrassingly parallel” and “an em-
barrassingly parallel computation requires none or very little commu-
nication”. It functions by splitting the initial problem into a large num-
ber of sub-problems which will be successively and dynamically dis-
tributed among the idle workers. The main idea behind their approach
is to decompose the initial problem into a set of sub-problems, such
that their total resolution time can be shared in an equivalent manner
by the workers, rather than splitting the initial problem into a set of
equally difficult problems.

The EPS method is presented as an alternative for the work stealing
method [9], which is based on the similar idea that a large number of
small sub-problems can be distributed evenly more easily than a hand-

8

ful of larger sub-problems, though the way this distribution is achieved
differs between these two approaches. Work stealing allows the work
to be split dynamically, whereas the EPS method creates all of its sub-
problems at the start.

Malapert et al. describe three main stages in their embarrassingly
parallel search algorithm. The first stage is known as the task defini-
tion stage, in which all of the sub-problems are generated. The second
stage is known as the task assignment stage, in which the tasks are di-
vided over all of the workers. The third and final stage is known as the
task result gathering stage, in which the results from all workers are
combined into a final result, which will be the solution to the original
problem.

2.2.1 Different ways to perform task assignment

Generally, task assignment can be done either statically or dynami-
cally. Static task assignment means each worker is assigned a set of
tasks before execution, whereas dynamic task assignment means that
workers take a new task from a communal work pool. In the context of
EPS, a work pool was chosen as the way to distribute the work. This
was done in an attempt to minimize the communication that needs to
occur, since workers only need to query one source for new work in-
stead of all other workers. This should also make the approach more
scalable on a large number of workers.

According to the authors, their approach is based on the fact that
“the active time of all the workers may be well balanced even if the
resolution time of each subproblem is not well balanced”. What they
mean by this is that a problem can be split into several sub-problems
that are not equal in resolution time, but they can be grouped into
groups that have a total resolution time that is well balanced. This
grouping becomes easier when there are significantly more problems
to solve than workers, which is why the number of sub-problems is
often specified as a multiple of the number of workers.

It is important to note that the resolution time cannot be known
before the task is executed, which is why this approach uses dynamic
task assignment. This will ensure that all workers will have to wait at
most the time it takes to solve the longest sub-problem when they are
waiting for the last worker to finish, and since the sub-problems are
intentionally quite small, this should not take long.

2.2.2 Different ways to generate sub-problems

The authors present three ways to generate sub-problems, each of
which builds on the previous one. The first method is simply referred
to as a “simple method”. This method simply generates all possi-
ble combinations of values for all of the variables, and splits the set
of combinations into q subsets of combinations. The issue with this
method is that a large number of combinations may be trivially incon-
sistent.

The next method that is presented is finding “not detected incon-
sistent (NDI) subproblems”. The idea behind this strategy is to find
the first q sub-problems that are not detected as inconsistent by prop-
agation of the constraints. For example, if there is an alldiff con-
straint, meaning all variables must have different values, a large num-
ber of sub-trees that assign the same value to two or more variables are
trivially inconsistent. To obtain these NDI sub-problems, an iterative
deepening depth-first search approach is used, which is optimized in
three ways. First, instead of only incrementing the depth by one at
each step, an estimate for how many more layers of depth are needed
to reach the desired number of sub-problems is made. Second, the
layers of the search tree that have already been explored are kept in
a lookup table to avoid checking those again each time the depth is
increased. Finally, the search process itself is parallelized as well.

The final method that is presented has to do with large domains.
Whereas normally the sub-problems would be split into groups of vari-
ables, if the domain of a variable is very large, this may result in sub-
problems that are still quite large. In such a case, the domain of a
variable can be split up into multiple smaller domains and submitted
as separate jobs.

2.2.3 Final observations
The authors touch on an important observation: since there is no com-
munication between workers, information discovered by one worker
cannot be used by other workers to improve their current job. How-
ever, there is communication between the workers and the work pool,
so the work pool can store this useful information, which may for
example include a value for a variable that always violates a certain
constraint. This in combination with the fact that jobs are small and
should be quick to complete, means that not a large amount of time
gets wasted on the current job if the information is not received by the
worker, but future jobs can still be optimized when the worker does
receive the information.

The two methods are extensively tested and compared alongside
other similar methods in another paper by Malapert et al. [9], which
reveals that the EPS and the work stealing methods produce the best
results. They also discuss how the communication affects work steal-
ing. They mention that there are multiple ways to try to mitigate the
communication overhead as much as possible. One option is to make
sure that workers don’t ask for work too often and not too many times
in a row. Another option is, as discovered before, to have a central
work pool, also known as a queue, that all workers can take work
from. However, this may still be costly on a large cluster of machines
where the queue has to be polled over a network. In such a case,
Machado et al. [8] proposed a hybrid configuration, where there is a
small number of workers on each machine, who will first try to steal
from other workers on the same machine before going to the queue.

2.3 Confidence-based work stealing
Another approach to work stealing is presented by Chu et al. [6], which
uses a confidence function to estimate the probability of the solution
being along a certain path in the search tree, and explores the most
promising branches first. Because of this, the primary use case of this
approach is for finding the best solution, rather than all solutions, pro-
vided there are multiple solutions. This approach was quite successful,
being capable of super-linear speedup in some instances, due to the
fact that information discovered by one worker can be used by other
workers to speed up their search process as well. It is also worth not-
ing that this approach works in a sequential, or single worker, search
as well, as it focuses on optimizing the order in which work is com-
pleted, rather than the distribution of work like in the regular work
stealing approach.

2.3.1 Important observations
There are some observations that can be made about the confidence-
based work stealing approach by Chu et al. [6]. First, any estimate
of the solution density of any branch will have a high error, since it
is likely the real solution density is actually zero. Second, branches
that are close together should have roughly the same solution density,
since they are based on the same decisions up to that point. Third,
the solution density estimate of a sub-tree should decrease as more
nodes are explored. This is because the most promising sub-trees are
searched first, and if they turn out not to be fruitful, the confidence
should decrease. Another reason is similar to the second observation,
because if one part of the sub-tree was not successful, the other parts
are less likely to be successful as well since they are based on the same
decisions.

2.3.2 Explanation of the algorithm
Initially, all nodes in the tree are configured to have con f idence = 0.5,
since we have no knowledge beforehand. The workers are divided
in the same ratio as confidence at any split in the tree. For example,
when the confidence of branch 1 is 0.8 and branch 2 is 0.2, 80% of
the workers go down branch 1, while the other 20% of the workers
go down branch 2. As problems are starting to get solved, we can
update the estimated solution densities of each node. When a worker
is finished, it starts traversing the tree from the top again, going down
whichever path that has the biggest deviation in the number of workers
actually working on it compared to the number of workers that should
be working on it.

SC@RUG 2021 proceedings

9

2.3.3 Issues
There are some issue with this method, however. Currently, workers
would steal leaves of the tree, which are so quick to solve that com-
munication costs would be a large part of the total runtime. To solve
this, a minimum height for a sub-tree to be stolen is defined, which
will extend the size of the job and therefore the time it takes to solve,
meaning communication is a smaller part of the runtime. Of course,
sub-trees should not be too large either, so some balancing is required
here.

Another issue is that workers may take very long to find the solution
of a given sub-tree. This is why a restart time is defined. After a
worker has been working on the sub-tree for a certain amount of time,
it abandons its current sub-tree and starts from the root of the tree
again to steal a new sub-tree. Because the confidence values have
been updated by the non-solutions found by other workers and itself,
it is very likely it will steal a different sub-tree this time. This makes
sure that a worker does not keep spending its time in a sub-tree whose
confidence value has dropped significantly since the worker started
working on it.

2.4 Mixing static and dynamic partitioning
Another idea, proposed by Menouer et al. [10], is to combine two
methods of partitioning the search tree, namely static partitioning and
dynamic partitioning. Let us first look at what each method entails.

2.4.1 Static partitioning
Static partitioning is a partitioning strategy that occurs before the
workers start working on the problem. It splits the search tree, which
represents the entire search space, up into smaller sub-trees which rep-
resent part of the search space. It then distributes these generated sub-
trees over the workers. Because distributing sub-trees evenly across
workers is a difficult problem, as also found by Burton et al.[5] and
Malapert et al. [9], it is likely that static partitioning on its own would
lead to imbalance in the workload of the workers. However, the benefit
of static partitioning is that it is relatively simple, and, as we will see
later, can be used as a good starting point for an approach that aims for
a more even distribution of work.

2.4.2 Dynamic partitioning
Dynamic partitioning occurs during the time that the workers are
working on the problem, in contrast to static partitioning. In dynamic
partitioning, there is a global queue which contains the sub-trees to
be solved. Workers will split their current sub-tree into two smaller
sub-trees when they notice that there are idle workers. They then keep
one of the sub-trees for themselves to work on, and submit the other
sub-tree to the queue, where the idle worker can take it from. This
strategy ensures a more even distribution of work, since work is split
on demand, but it also forces the workers to spend some extra time
either splitting their current work and submitting it to the queue in
case they are busy, or waiting for new work and retrieving it from the
queue in case they are idle. This causes the efficiency of the workers to
slightly decrease, leading to a potentially slower total resolution time
even though the work was distributed more evenly.

2.4.3 Combining the two partitioning strategies
In short, both static- and dynamic partitioning have their own advan-
tages and disadvantages, and the goal of mixing these partitioning
strategies is to preserve the effect of the advantages of both, while
trying to minimize the effect of their disadvantages. In practice this is
done by applying static partitioning as a preprocessing step, since this
strategy can be performed before the workers begin working, and then
applying dynamic partitioning towards the end of the search, when
some workers are finishing their own batch of work, and receiving new
work from other workers, whose sub-trees turned out to take longer to
solve.

Using this new method, the authors were able to achieve a no-
ticeably higher speedup than using either of the methods individu-
ally. This method also led to a more equal distribution of work across

threads and a lower average idle time per core, which will be elabo-
rated on further in sections 3 and 4.

3 RESULTS

In this section we present the results of the aforementioned algorithms
as showcased in their respective papers [6, 7, 9, 10]. The results will
be further discussed in section 4.

While we would have liked to perform some experiments with these
new methods ourselves, both to see if our results would be consistent
with the original authors’ results and to test the approaches on an even
playing field, the resources that the authors used to test their methods
and the implementations of their methods themselves were not avail-
able, and therefore this was not possible. It is because of this reason
that we used the results provided by the original authors themselves to
compare the approaches instead.

3.1 Embarrassingly parallel search
Table 1 shows that the regular work stealing implemented in
Gecode [2] obtains an average speedup of 7.7 (7.8 for the satisfaction
problems and 7.6 for the optimization problems), while EPS yields an
average of 13.8 (18.0 for the satisfaction problems and 12.3 for the op-
timization problems). Furthermore, it can be seen that the EPS method
outperforms the regular work stealing on all but the last sub-problem
of the test set.

The results presented in Table 2 show that the OR-Tools [4] im-
plementation of EPS, which obtained a speedup average of 21.3 out-
performs Gecode [2], which, as previously mentioned, obtained an
average of 13.8.

Table 1. The performance of EPS and Gecode work-stealing; 40 work-
ers and 30 sub-problems per worker. As seen in Table 1 of [9].

Instance Seq Work-stealing EPS
t t s t s

Satisfaction problems:
allinterval 15 262.5 9.7 27.0 8.8 29.9
magicsequence 40000 328.2 529.6 0.6 37.3 8.8
sportsleague 10 172.4 7.6 22.5 6.8 25.4
sb sb 13 13 6 4 135.7 9.2 14.7 7.8 17.5
quasigroup7 10 292.6 14.5 20.1 10.5 27.8
non non fast 6 602.2 271.3 2.2 56.8 10.6
Optimization problems:
golombruler 13 1355.2 54.9 24.7 44.3 30.6
warehouses 148.0 25.9 5.7 21.1 7.0
setcovering 94.4 16.1 5.9 11.1 8.5
2DLevelPacking Class5 20 6 22.6 13.8 1.6 0.7 30.2
depot placement att48 5 125.2 19.1 6.6 10.2 12.3
depot placement rat99 5 21.6 6.4 3.4 2.6 8.3
fastfood ff58 23.1 4.5 5.1 3.8 6.0
open stacks 01 problem 15 15 102.8 6.1 16.9 5.8 17.8
open stacks 01 wbp 30 15 1 185.7 15.4 12.1 11.2 16.6
sugiyama2 g5 7 7 7 7 2 286.5 22.8 12.6 10.8 26.6
pattern set mining k1 german-credit 113.7 22.3 5.1 13.8 8.3
radiation 03 129.1 33.5 3.9 25.6 5.0
bacp-7 227.2 15.6 14.5 9.5 23.9
talent scheduling alt film116 254.3 13.5 18.8 35.6 7.1
total (t) or geometric mean (s) 488.2 1174.8 7.7 334.2 13.8

3.2 Confidence-based work stealing
Chu et al. [6] decided to implement the algorithm using Gecode.
The machines used for experimenting with the confidence-based work
stealing approach were a Mac with two 2.8 GHz Intel Xeon Quad
Core E5462 processors with 4 GB of RAM and a Dell PowerEdge
6850 with four 3.0 GHz Intel Xeon Dual Core Pro 7120 processors
with 32 GB of RAM. The experiments were conducted using three
optimization problems — the Traveling Salesman Problem, Golomb
Ruler and Queens-Armies — and three satisfaction problems — n-
Queens, Knights and Perfect-Square. The tests tracked the following
metrics: wall clock runtime, number of steals, total numbers of nodes
searched and number of nodes explored to find the optimal solutions.
The results of those experiments can be seen in Tables 4 and 3.

Comparing Different Approaches to Parallelizing Constraint Satisfaction . . . – Radu Catarambol and Richard Westerhof

10

Table 2. The performance of EPS implemented in OR-Tools; 40 workers
and 30 sub-problems per worker. As seen in Table 2 of [9].

Instance Seq EPS
t t s

Satisfaction problems:
allinterval 15 2169.7 67.7 32.1
magicsequence 40000 — — —
sportsleague 10 — — —
sb sb 13 13 6 4 227.6 18.1 12.5
quasigroup7 10 — — —
non non fast 6 2676.3 310.0 8.6
Optimization problems:
golombruler 13 16210.2 573.6 28.3
warehouses — — —
setcovering 501.7 33.6 14.9
2DLevelPacking Class5 20 6 56.2 3.6 15.5
depot placement att48 5 664.9 13.7 48.4
depot placement rat99 5 67.0 2.8 23.7
fastfood ff58 452.4 25.1 18.0
open stacks 01 problem 15 15 164.7 7.1 23.2
open stacks 01 wbp 30 15 1 164.9 6.3 26.0
sugiyama2 g5 7 7 7 7 2 298.8 20.5 14.6
pattern set mining k1 german-credit 270.7 12.8 21.1
radiation 03 416.6 23.5 17.7
bacp-7 759.7 23.8 32.0
talent scheduling alt film116 575.7 15.7 36.7
total (t) or geometric mean (s) 25677.2 1158.1 21.3

For the optimization problems, the results show that the runtime is
proportional to the number of nodes searched, and highly correlated
to the amount of time taken to find the optimal solution. This is only
natural, as the quicker the optimal solution is found, the fewer nodes
need to be searched, ensuing in a lower total runtime. Using a confi-
dence of 1 achieves near perfect algorithmic efficiency, for the strong
heuristic TSP, while the lower confidence values cause a decrease in
the efficiency, to 0.81 and 0.80, respectively. The algorithm efficiency
is defined by the authors as the total number of nodes searched in the
parallel algorithm compared to the sequential algorithm. It can also
be seen that the opposite is true for the weak heuristic TSP, where the
confidence of 0.5 outputs the best result.

For the Golomb Ruler, a greedy branching heuristic was used that
selects the minimum possible value for the variable at each stage. The
results in Table 3 show that for Golomb Ruler 12 and 13, the optimal

Table 3. Results of the confidence-based work stealing approach for
optimization problems. As seen in Table 1 of [6].
conf Runtime Speedup RunE Steals Nodes AlgE Onodes SFE

TSP with strong heuristic, 100 instances (Mac):
Seq 313.3 — — — 5422k — 1572k —
1 38.2 7.25 0.91 708 5357k 1.01 1589k 0.99
0.66 47.2 5.88 0.74 319 6657k 0.81 5130k 0.31
0.5 48.0 5.77 0.72 467 6747k 0.80 5275k 0.30

TSP with weak heuristic, 100 instances (Mac):
Seq 347.8 — — — 7.22M — 1.15M —
1 46.7 7.45 0.93 1044 6.96M 1.04 1.09M 1.06
0.66 45.8 7.60 0.95 379 7.02M 1.03 1.10M 1.05
0.5 41.6 8.36 1.08 259 8.42M 1.15 0.66M 1.63

Golomb Ruler, 2 instances (n = 12, 13) (Mac):
Seq 562 — — — 9.71M — 1.07M —
1 69.0 8.15 1.02 572 8.96M 1.08 0.81M 1.33
0.66 59.0 9.54 1.19 346 7.58M 1.28 0.49M 2.21
0.5 65.2 8.63 1.08 259 8.82M 1.15 0.66M 1.63

Queen Armies, 2 instances (n = 9, 10) (Mac):
Seq 602 — — — 13.6M — 845k —
1 87.1 6.91 0.86 1521 14.5M 0.94 1878k 0.45
0.66 86.3 6.98 0.87 1143 14.5M 0.96 2687k 0.31
0.5 86.0 7.00 0.87 983 14.5M 0.95 2816k 0.30

Table 4. Results of the confidence-based work-stealing approach for
constraint satisfaction problems. As seen in Table 2 of [6].

conf Solved Runtime Speedup RunE Steals Nodes AlgE
n-Queens, 100 instances (n = 1500, 1520, ..., 3480):

Seq 4 2.9 — — — 1859 —
1 4 10.4 — — 2 1845 —
0.66 29 18.0 — — 9 15108 —
0.5 100 2.9 — — 8 14484 —

Knights, 40 instances (n = 20, 22, ..., 98):
Seq 7 0.22 — — — 213k —
1 7 0.26 — — 2 1150 —
0.66 13 0.50 — — 8 8734 —
0.5 21 0.66 — — 8 8549 —

Perfect-Square, 100 instances
Seq 15 483.1 — — — 231k —
1 13 72.3 6.68 0.83 419 216k 0.99
0.66 14 71.2 6.78 0.85 397 218k 0.98
0.5 82 8.9 54.02 6.75 21 32k 6.64

solution does not lie directly in the left-most branch and that a degree
of non-greediness leads to a super-linear solution finding efficiency.

The results for Queens-Armies are very similar, regardless of the
confidence level used.

Switching to the satisfaction problem results, we can see a large
difference in the number of instances solved between the parallel al-
gorithm and the sequential one. Due to the fact that n-Queens and
Knights have very deep subtrees to search, once the sequential al-
gorithm fails to find a solution in the leftmost subtree, it will often
get stuck. Using a confidence level of 0.5 produces a super linear
speedup and enables the parallel algorithm to solve all 100 instances
of n-Queens and 21 instances of Knights. This is a large imrovement,
compared to the sequential one which solved 4 and 7 instances, re-
spectively.

A similar trend can be observed in the case of Perfect Square as
well, with the parallel algorithm obtaining a super linear speedup
again, at 0.5 confidence, managing to solve 82 instances compared
to 15 for the sequential variant.

3.3 Mixing static and dynamic partitioning
Experiments of this approach were conducted on two Linux machines,
tagged M1 and M2. The machines were both equipped with an In-
tel Xeon X5650 processor with 12 cores and 48 GB of RAM. The
algorithm itself was implemented and tested in OR-Tools [4], so the
results depend directly on this software.

Fig. 1. Computation times of three partitioning strategies for the con-
straint programming problems. As seen in Figure 7 of [10].

Figure 1 shows a comparison between the performance of the static,
dynamic and mixed partitioning strategies for solving two constraint
programming problems. The first problem is the Quasi Group prob-
lem [3], a constraint satisfaction problem labelled ”CSP” and the sec-
ond one is the Level Packing problem [3], a constraint optimization

SC@RUG 2021 proceedings

11

problem, labelled ”COP”. The results, as seen in Figure 1 show a
clear improvement in the computation times for the mixed partition-
ing strategy for both optimization problems and constraint satisfaction
problems.

The mixed partitioning approach is further compared against the
Gecode CP [2] solver for the same 6 constraint satisfaction prob-
lems. The resulting execution times can be seen in Table 5 and Table 6,
respectively.

Table 5. Execution times of the mixed partitioning strategy for 6 con-
straint satisfaction problems. As seen in Table 1 of [10].

Table 6. Execution times of the Gecode CP solver for 6 constraint satis-
faction problems. As seen in Table 2 of [10].

The aforementioned tables show the run time in seconds of both
approaches for each of the problems so we can directly compare their
speedup factors. The average speedup obtained using the mixed par-
titioning is higher than the one obtained by the Gecode CP [2] solver
for the optimization problems as well as for the satisfaction problems.

4 DISCUSSION

Each of the parallelization approaches presented so far throughout this
paper were tested on vastly different machines. Furthermore, the tests
were ran on different problem sets. Thus, unfortunately for the goal of
this paper, we cannot directly compare the performance of the three
strategies — EPS, confidence-based work stealing and work steal-
ing with mixed partitioning. As a result, we will be focusing on the
speedup factor of each approach in trying to determine which one per-
forms the best and under what circumstances.

Based on the results presented in the reference papers, the EPS
method for solving constraint programming problems in parallel
seems to perform the best, as it frequently gives linear speedups and
outperforms the rest of the approaches. More specifically, the results
show that splitting the initial constraint programming problem into
30 sub-problems per thread yields speedup factors of 21.3 and 13.8
with OR-Tools [4] and Gecode [2], respectively, on a machine with 40
cores, as shown in Tables 2 and 1.

The confidence-based work stealing approach comes next, yielding
an approximate speedup of 7 for 8 threads, as the results presented in

Tables 3 and 4 show, for optimization problems as well as satisfaction
problems. Using confidence values that have only a small bias towards
the real value is enough to produce super linear speedup. Naturally,
moving away from the real value results in a substantial decrease in
performance.

The mixed partitioning strategy shows promising results as well for
the speedup factor, but falls short in the runtime compared to the regu-
lar work stealing approach for certain test cases. Tables 5 and 6 show
that the mixed partitioning obtains speedup factors higher than the av-
erage speedup factors of the Gecode [2] solver. The mixing strategy
gains a speedup of 7.02 for 12 cores, while the Gecode [2] solver gains
only a 4.3 speedup. Furthermore, Figure 1 shows that the mixing par-
titioning method has a lower computation time than the other two vari-
ants — static and dynamic — for constraint satisfaction problems as
well as for constraint satisfaction problems. The mixing partitioning
strategy benefits from the fact that, as an external parallelization, it
is possible to combine it with the portofolio parallelization. More-
over, it is designed for shared and distributed memory architectures
alike, while the other parallel constraint programming solvers are de-
signed for only one of those memory types. However, probably the
biggest benefit of this strategy is that it does not change the original
OR-Tools [4] code, so it can be used directly with other versions of
the code. On the other hand the mixing partitioning approach also has
some drawbacks, namely: it’s not deterministic, so the resolution of
the problems depends on the threshold of static and dynamic partition-
ing and the fact that it can only attempt to solve problems modelled
using the FlatZinc [1] format.

5 CONCLUSION

The main goal of this paper was to contribute to the current state-of-the
art of the constraint programming research field by offering a broader
comparison between the currently popular approaches and to further
determine the method which performs the best and under what cir-
cumstances. Thus, we compared the EPS method, presented as an al-
ternative to the work stealing approach and two methods that augment
the work stealing — confidence-based work stealing and mixing dy-
namic and static partitioning. Comparing the aforementioned methods
was not easy, since they were tested on different hardware and problem
sets and there was no possibility of making our own experiments, since
source code is not publicly available for every approach. However, as
presented in section 4, we mainly relied on the speedup factor and tried
accounting for the performance difference of the machines the tests
were ran on. Based on the results gathered, we concluded that the em-
barrassingly parallel search represents the most performant option for
parallelizing constraint programming problems. The two other meth-
ods performed admirably as well and, as they tackle different parts
of the process of solving constraint programming problems, we think
they can be combined. For example, using the high speedup factor of
EPS and its constant number of subproblems per worker together with
the low communication overhead and the external parallelization na-
ture of the mixed-partitioning approach. Thus, we conclude with the
idea that combining the three aforementioned approaches would form
something greater than the sum of their separate parts and thus may be
a topic worth researching.

6 FUTURE WORK

As mentioned in section 5, the information gathered suggests the
possibility of combining the three approaches mentioned throughout
the paper. We think that this might be a way to overcome some of
their drawbacks and obtain a new approach, with increased perfor-
mance. The three approaches offer many combination possibilities, as
they tackle different parts of the constraint programming solving pro-
cess. For example, the threshold of static and dynamic partitioning
that the mixed partitioning approach depends on can benefit from the
confidence-based strategy that was introduces in the confidence-based
work stealing approach.

Another topic suitable for future work would be attempting a direct
comparison between the three parallelization methods. They were all
tested on different hardware and with mostly different problem sets.

Comparing Different Approaches to Parallelizing Constraint Satisfaction . . . – Radu Catarambol and Richard Westerhof

12

Thus, in this paper, we only managed to compare them based on their
speedup factor. A more direct comparison would yield a clearer per-
spective on the benefits and drawbacks of each approach and where
they perform best.

REFERENCES

[1] FlatZinc. https://www.gecode.org/flatzinc.html. Accessed: 15-03-2021.
[2] Gecode. https://www.gecode.org/. Accessed: 15-03-2021.
[3] MiniZinc Challenge 2012. https://www.minizinc.org/challenge2012/

challenge.html. Accessed: 15-03-2021.
[4] OR-Tools. https://developers.google.com/optimization. Accessed: 15-

03-2021.
[5] F. W. Burton and M. R. Sleep. Executing functional programs on a virtual

tree of processors. In Proceedings of the 1981 Conference on Functional
Programming Languages and Computer Architecture, FPCA ’81, page
187–194, New York, NY, USA, 1981. Association for Computing Ma-
chinery.

[6] G. Chu, C. Schulte, and P. J. Stuckey. Confidence-based work stealing in
parallel constraint programming. Principles and Practice of Constraint
Programming, 15:226–241, Sept. 2009.

[7] Y. Hamadi and L. Sais, editors. Handbook of Parallel Constraint Reason-
ing. Springer International Publishing, Cham, 2018.

[8] R. Machado, V. Pedro, and S. Abreu. On the scalability of constraint pro-
gramming on hierarchical multiprocessor systems. ICPP, pages 530—-
535, 2013.

[9] A. Malapert, J.-C. Régin, and M. Rezgui. Embarrassingly Parallel Search
in Constraint Programming. Journal of Artificial Intelligence Research,
57:421–464, Nov. 2016.

[10] T. Menouer, M. Rezgui, B. Le Cun, and J.-C. Régin. Mixing Static and
Dynamic Partitioning to Parallelize a Constraint Programming Solver. In-
ternational Journal of Parallel Programming, 44(3):486–505, June 2016.

SC@RUG 2021 proceedings

13

Comparison of Novel Software Defined Networking Approaches for
Improving Data Centre Networking

Daan Raatjes and Sjouke de Vries

Abstract— Modern data centres must scale to a large number of servers, while offering flexible placement and migration of virtual
machines. Traditional approaches suffer from shortcomings that may impair both their scalability and flexibility. Several novel
approaches to the design of large scale data centres are discussed and evaluated. An overview of newly developed methods with
their advantages and disadvantages is provided. Subsequently, each of the methods are compared to each other for their feasibility,
flexibility and scalability.

Index Terms—— Software Defined Networking, PARIS, Iris, OpenFlow, RSDN, data centre interconnect

1 INTRODUCTION

Recently, the Covid-19 pandemic has led to unprecedented changes in
the way people interact with each other. Consequently, this shift has
increased the overall pressure on the internet. For Facebook, the pan-
demic caused a spike in traffic and significant change in behaviour [1].
The latter point shows the rising demand of flexibility, requiring In-
ternet Service Providers (ISPs) to configure their networks such that
they can adopt to sudden traffic spikes. Typically, internet traffic in-
creases at a rate of 30% annually [2]. Feldmann et al. [3] show that
an increase in traffic in the order of 15-20% was reported within days
after the lockdown started, again stating the need for highly flexible
and scalable networks.

With the recent surge in demand for cloud computing, the efficient
design and implementation of data centres becomes increasingly im-
portant. Nowadays networks are part of the most critical infrastructure
of our businesses, homes and schools. As the infrastructure has be-
come increasingly critical, the barrier for testing new ideas also raised
alongside with it.

Virtualized programmable networks could lower the barrier to entry
for new ideas, increasing the rate of innovation in the network infras-
tructure [4]. The networking community is hard at work developing
programmable networks, such as GENI [5], a proposed nationwide re-
search facility for experimenting with new network architectures and
distributed systems. However, the current state of network architec-
tures can not keep up with the current growth rate.

Several software defined networking (SDN) approaches have re-
cently been proposed that may be able to deal with this upsurge of net-
work traffic. In this paper, a dynamic network scheduler, Iris, PARIS
and a recursive SDN (RSDN) framework are discussed. These meth-
ods are analysed and compared for their feasibility, flexibility and scal-
ability. The discussed approaches are found to be highly scalable in
the initial analysis. However, the flexibility and feasibility differ per
method. The recursive SDN and the dynamic network scheduler will
be shown to lack in feasibility. In addition, our analysis suggests that
PARIS outperforms Iris in terms of flexibility.

The rest of the article is organized as follows. Firstly, software de-
fined networking is introduced along with the necessary background
information. Subsequently, the novel approaches for network routing
in cloud data centres are presented. After introducing these methods, a
comparison is given that highlights their pros and cons. Furthermore,
several general problems and shortcomings surrounding software de-

• Daan Raatjes (s2953854) is with University of Groningen,
E-mail:d.h.a.raatjes@student.rug.nl.

• Sjouke de Vries (s3186520) is with University of Groningen,
E-mail:s.de.vries.44@student.rug.nl.

fined networks are discussed. Finally, the paper is concluded with a
summary of our findings.

2 BACKGROUND

Before examining possible solutions, it important to examine the dif-
ferent components that make up this new type of networking. In this
paper, the focus lies not only on networking inside a single Data Cen-
tre (DC), but also into inter-DC network connectivity.

2.1 Traditional Hierarchical Network Structure
In traditional large data centers, the network structure is typically di-
vided into three tiers; access layer (switches on top of a rack that are
physically connected to servers), aggregation layer (connects access
layers and provides service such as firewall) and core layer (provides
high-speed forwarding for packets that enter and leave the data centre).

The collection of devices and underlying infrastructure that is used
to transmit data is sold as a commodity to the end user is called a
(telecommunications) carrier network. Traditionally, data centre con-
nectivity is also less geographical disperse in comparison to the data
centres that are being managed by carriers [6]. Since traditional hier-
archical networking is not sufficient to match the increasing network
traffic, there is a need for software defined networking.

2.2 Software Defined Networking
Software defined networking is a new approach to networking that
attempts to solve the shortcomings of traditional networking where
network hardware is manufactured to support a fixed set of protocols.
Whenever it is desirable to extend this set of supported features, it is
necessary to replace existing hardware with new hardware. Not only
will this be less cost-efficient it also takes a lot of time as physical
operations are required. In short, the aim is to separate the control
plane (protocols) from the data plane (the actual switch hardware).

OpenFlow is a network protocol consisting of one or more flow ta-
bles and a group table, which perform packet lookups and forwarding,
and one or more OpenFlow channels to an external controller as shown
in Fig. 1 [7]. With the OpenFlow switch protocol, the controller can
add, update and delete flow entries in flow tables, both reactively (in
response to packets) and proactively (predefined routes). Each flow ta-
ble in the switch contains a set of flow entries; each flow entry consists
of match fields, counters, and a set of instructions to apply to matching
packets. Matching starts at the first flow table and may proceed with
additional tables in a pipelined fashion as shown in Fig. 2.

Most studies concerning SDN lack multiple orders of magnitude
from today’s carrier networks. Therefore, McCauley et al. [6] present
a recursive SDN framework that combines the programmability of
SDNs with the scalability of a hierarchical network structure. Each
level of the route computation acts on a set of aggregates (called logi-
cal cross-bars, or LXBs) and they communicate a summary of the re-

14

Fig. 1. Main components of an OpenFlow switch. [7]

Fig. 2. Packet flow through the processing pipeline. [7]

sults to their parent and child LXBs. Effectively, this approach limits
the number of route computations a single node has to handle as it can
re-use summaries from its children and/or parents. The framework not
only facilitates route computation but also incorporates a mechanism
for rapid and localized recovery from failures.

Several manufacturers also offer software for extensive monitoring
of network traffic to enhance security. HPE VAN SDN controller soft-
ware [9] can monitor ARP, DHCP, and IP packets from edge ports.
This provides a cache of MAC and IP addresses for each end point,
which provides identification of devices or users attached to a network.
In general the impact on security is positive. Nevertheless, with the in-
troduction of new technology, a new attack surface can be introduced
as one is now able to experiment with self made protocols that might
not behave as intended. The challenge remains in enforcing security
correctly in software.

3 METHODOLOGY

Several methods to improve the scalability and flexibility have recently
been proposed. In this section we discuss four of these methods and
highlight their technical aspects.

3.1 Iris
Iris is an optical-circuit-switched architecture that lowers infrastruc-
ture cost and complexity barriers, making a richer topology design
space more accessible to operators of regional (data centre) net-
works [8]. Using optical ports is the biggest contributor of costs. Re-
ducing the costs of these ports makes distributed topologies more ac-

cessible as their cost becomes comparable to centralized topologies. In
addition, by reducing network ports, the complexity in network man-
agement and configuration is reduced. Iris essentially optimises the
network design between data centres in a region, known as a regional
Data Centre Interconnect (DCI).

Fig. 3 shows some of the specifications when designing a DCI.
Given the data centre sites, the topology, capacity and switching im-
plementation must be determined.

3.2 Recursive SDN

A recursive routing computation framework is presented that balances
the programmability of software defined networks with the scalability
of traditional hierarchical structure by using a combination of both
Course Grained Routing (CGR) and Fined Grained Routing (FGR) [6].
It mainly exploits the fact that in almost all networks parts can be
aggregated into so called logical cross-bars (LXBs). They intuitively
behave the same as switches. This process of aggregation will form a
tree-like hierarchical structures where each LXB is connected with the
LXB of the same depth (see Fig. 4).

Its recovery approach offers 99.999% of network repair under heavy
link failure scenario. Common practice for network availability is to
implement alternative paths that are computed beforehand. This will
work perfectly fine for majority of cases, except when the alternative
route(s) also becomes unavailable. Key difference with the RSDN
algorithm is that it can recover from an arbitrary amount of failures
as long as a path exists. Every node will start with an internal ta-
ble of where to route each packet. After applying the algorithm every
node will have a set of internal tables to virtually route packets through
that node. Consider for example when node A wants to send packets
through node B to node C. When node B becomes unavailable node
A will virtualize the routing of node B itself, by including B’s routing
table into A, so that node C can still be reached. One can see that this
process can be applied recursively covering any amounts of failures as
long as a path from source to destination remains.

3.3 Dynamic Network Scheduler

A dynamic network scheduler technique has been examined that max-
imises fairness in resource sharing while minimising unutilized re-
sources.

Bandwidth can be allocated naively by dividing the total amount
available by the number of consumers. Consequently, an idle in-
stance will have unutilized bandwidth which leads to suboptimal per-
formance. It is increasingly common to over allocate resources in or-
der to not only increase profit, but also energy efficiency. Another
problem arises whenever all instances would require maximum band-
width at the same time. A dynamic scheduler [10] can be used in this
case to not only help tackle this problem, but it will also optimize the
overall bandwidth utilization. For example, say we have a theoreti-
cal network uplink of 1 Gbit/s and two Virtual Machines (VMs). The
naive approach would allocate both VMs an equal amount of band-
width. In order for this allocation to be fair, the bandwidth usage of
both VMs should be similar, but in practice this is rarely the case.

The dynamic network scheduler constructs a graph from data col-
lected from software switches on machines, top-of-rack switches and
routers (depicted in Fig. 5) by means of using software like open
vSwitch [11].

SC@RUG 2021 proceedings

15

Fig. 3. DCI design example: (a) The fiber map, which contains all available fiber ducts and huts. (b) The region has 4 DCs for which DCI connectivity
is to be determined. (c) The centralized approach uses a hub to which all DCs connect; in practice 2 hubs are used for resilience, but for clarity only
one is shown. (d) An extreme version of the distributed approach, with all pairs of DCs connected directly to each other. (e) A sparser distributed
approach, with two pairs of DCs – each pair connects to a hub, and the two hubs connect to each other. [8]

Fig. 4. Software structure in a normal (non-leaf) LXB. [6]

Fig. 5. Dynamic Network Schedule in a cloud data centre. [10]

A Directed Graph of the entire Data Centre network is constructed
and fed to the algorithm. Fig. 6 shows the three different parts of
the dynamic network scheduler: the device manager, the throughput
estimator and the scheduler.

In order to evaluate the Dynamic Scheduler, Hauser et al. [10] con-
ducted an experimented with two physical machines (HP Proliant Mi-
croserver Gen8) with Linux and KVM as a hypervisor. On each ma-
chine they hosted two virtual machines and an additional machine was
used to host the switch controller that controls the Open vSwitch which
in turn connects both machines physically. The iPerf3 [12] tool was
used to produce and measure the throughput of the machines. Impor-
tant to note is that the TCP protocol has a built in congestion control,
compromising the results of the experiment [13]. Therefore, the num-
ber UDP packets are used as measure of throughput.

Fig. 7 and Fig. 8 show that with the dynamic scheduler the band-

Fig. 6. The components and tasks of the Dynamic Network Sched-
uler. [10]

Fig. 7. Network Fairness for two VMs without Dynamic Network Sched-
uler. [10]

width is shared more fair, efficient and with a better behaviour pat-
tern, in the way it gives back bandwidth immediately to a donor when
needed.

3.4 PARIS
Finally, we examine PARIS [14]; an SDN architecture that preposi-
tions IP forwarding entries in the switches of a network. Switches
within a network pod are entirely aware of the virtual machines that
reside underneath them. Every core switch in the network maintains a
forwarding state. PARIS has the advantage that it allows for complete
flexibility of choosing a topology that satisfies latency and bandwidth
requirements during the design of the network. The controller in the
PARIS architecture has complete transparency over the topology of
the network and is aware of all the virtual machines their addresses
and locations. This knowledge is subsequently used to achieve three
goals. Firstly, it allows for ideal placement of forwarding information

Comparison of Novel Software Defined Networking Approaches for Improving . . . – Daan Raatjes and Sjouke de Vries

16

Fig. 8. Network Fairness for two VMs with Dynamic Network Sched-
uler. [10]

in switches after initialisation. Secondly, the controller keeps track of
switch-level topology and the location of the host. Finally, the con-
troller monitors the network traffic such that traffic engineering can be
enabled.

The switches in the architecture must support neighbor discovery
via LLDP protocols and inform the controller to learn about topology
changes. The switches should at least be able to transform an IP prefix
to an outgoing link. This approach allows us to use SRAM/DRAM-
based switches which are significantly less expensive to the more com-
mon TCAMS switches that some other architectures require [15].

The hosts in the PARIS architecture are placed in their individual
subnet with a route to its edge switch by default. This architecture
has the advantage that it does not need to perform unnecessary look-
ups of directory servers nor does it need to spend additional time on
dealing with host ARP broadcasts. Host DHCP messages can directly
be forwarded to the controller. Subsequently, the controller can assign
any free IP address to any host.

4 ANALYSIS

The previously mentioned methods are compared and evaluated for
their feasibility, flexibility and scalability. Although the analysis is
limited because quantitative data is lacking, we attempt to provide a
qualitative and objective analysis. The analysis is summarised in Ta-
ble 1. In the next sections, each property is discussed in-depth for
every SDN method.

Approach Scalability Flexibility Feasibility
Iris ++++ +++ ++++
Recursive SDN +++++ ++++ +
Dynamic Network Scheduler ++ +++ ++
PARIS +++ +++++ ++++

Table 1. Comparison of SDN methods

4.1 Feasibility
Feasibility is an important aspect when considering viable networking
solutions in data centres. Although some methods may theoretically
achieve promising results, if their implementation in practice is too
challenging, then the method should not be considered to be a viable
option. The design of the recursive SDN seems to be difficult to be
deployed in the current state of carrier networks because of their scale.
For this approach to be feasible, software defined networking will have
to be used more in carrier networks. Conceptually, the dynamic net-
work scheduler shows promising results. However, to reliably deter-
mine the scheduler’s feasibility, the prototype would first have to be
expanded and tested in an actual data centre. Both Iris and PARIS
seem to be feasible options. Iris’s ease of implementation combined
with the fact that it can be implemented using off-the-shelf hardware

makes it a compelling improvement. The proactive routing approach
introduced by PARIS also seems to be a very feasible solution in prac-
tice.

4.2 Flexibility
The dependencies of a solution on existing systems should also be
taken into account when reasoning about the flexibility of proposed
solutions. The Recursive SDN allows for a flexible way to imple-
ment numerous designs over existing hierarchical structures. Being
able to decorate existing structures rather than having to replace them
entirely, makes the Recursive SDN very flexible. The Dynamic Net-
work Scheduler approach is also flexible in the way it is placed at data
centres sites. Moreover, tweaks regarding the algorithm for schedul-
ing are easy to make as they do not affect the metrics collection. The
constraints of Iris are less rigid when compared to a distributed design
in order to maximize deployment flexibility. PARIS has a dynamic
switch, link and host configuration that allow for a lot of flexibility in
the aforementioned sections of the network.

4.3 Scalability
Based on the presented experiments, the evaluated methods all seem
to scale well in their own way. The dynamic network scheduler has
sub-optimal bandwidth performance due to its distance from the vir-
tual machines but performs excellent in ensuring a fair allocation of
resources. The PARIS architecture shows promising results in terms
of the bandwidth scalability as depicted in Fig. 9. However, its scal-
ability can be limited by the OpenFlow controller because it handles
numerous tasks. Preliminary research has shown that by distributing
the OpenFlow controller it can scale to 2M virtual machines and 100k
servers [16]. Simulations of the recursive SDN framework show that
the network can easily deal with 10K nodes. Furthermore, the re-
cursive SDN makes it trivial to implement scalable versions of other
routing designs. Finally, we find that Iris is an excellent solution to
scalability problems for the inter-connectivity of regional data centres.

5 DISCUSSION

In the following sections, the results of the analysis will be discussed
and put into context. The dilemmas a network designer faces, will
be discussed as well as some additional considerations that should be
taken into account when designing the network of a data centre.

5.1 Flexibility versus Complexity
One of the characteristics of cloud computing according to the NIST
definition [17] is resource pooling that allows for dynamically allocat-
ing of virtual resources. SDN contributes to this characteristic of cloud
computing. Nevertheless, this separation in layers adds more complex-
ity as defining very large infrastructures in software is not trivial. All
the previously introduced systems have this trade-off between flexibil-
ity and complexity to some extent. Arguably, solutions that build on
top of traditional systems tend to tackle the complexity better as solu-
tions already exist and can be re-used or consulted when writing new
variations.

5.2 Cost versus Speed
In general, the perception about programmable switches is that they
are 10-100 times slower fixed-function switches and they cost more
and consume more power. With a high throughput switch like the In-
tel Tofino 2 the programmability of the switch is preserved while the
disadvantages are mitigated [18]. One could argue that a data cen-
tre consisting of programmable switches is significantly faster as the
overall congestion can be handled a lot better.

5.3 Repair capabilities
Traditional systems often do not guarantee more than 99,99% up-time
as there is a limited amount of physical back-up links that can be es-
tablished. Physical connections remain tedious to repair as they re-
quire human interaction. Besides failure in hardware, we should also
take into account software failures. Wrongly forcing routes for pack-
ets can have terrible outcomes and quickly cause congestion in a data

SC@RUG 2021 proceedings

17

Fig. 9. (a) Number of table entries at the core switches. (b) CDF of sender bandwidth for No-Stretch and High-Bandwidth PARIS. (c) CCDF of
sender bandwidth for No-Stretch and High-Bandwidth PARIS. [14]

Fig. 10. Iris is substantially cheaper: (a) Relative cost of Iris, EPS, and hybrid networks across all 240 scenarios. (b) Same as (a) but with DCI
transceiver cost assumed (unrealistically optimistically) equal to SR transceivers. (c) EPS uses many more in-network ports, as shown by the ratio
of in-network to DC ports across designs. (d) Relative cost of an EPS supporting no failures vs. Iris, which handles up to 2 failures. [8]

centre network. Basically, nullifying all the benefits of using a net-
work completely defined in software. Extra physical hardware links
are relatively costly compared to the extra memory needed to store
more routes in software. Moreover, methods such as recursion can be
exploited in software to ensure infinite fail-over scenarios as long as a
path exists.

5.4 Network Statistics
Throughput Iris shows for shorter intervals a maximum slow-

down of 2% across all flows at the 99th percentile when compared
to the Evolved Packet System (EPS). This result is as expected, since
the probability of a short flow (< 50KB) being affected is small given
that the interval of reconfiguration is much larger than short flow com-
pletion times. Nevertheless, large flows see only a short and negligible
drop in throughput. All test cases executed for the Dynamic Network
scheduler which were measured throughput using iPerf3, the results
of test cases with and without the dynamic network scheduler can be
used to show its success in guaranteeing better throughput. In PARIS,
a packet may travel four hops instead of two in the core layer. Hence,
there is a trade-off between stretch for throughput. This is a reasonable
trade-off in data centres, since they have very low network latency.

Latency Iris is capable of achieving a 6× latency reduction and in
more than 20% of the cases the reduction is more than 2×. The dy-
namic network scheduler attempts to manage the resources either by
dropping the packets that arrive beyond the buffer limits or by reorder-
ing the packets that are already present in the buffer for reducing the
latency for Quality of Service (QoS) measures. In the RSDN experi-
ments, approximately fewer than 5% of the pairs have a stretch over
10% for latency. PARIS installs forwarding-table entries before the
traffic arrives which reduces packet latency and avoids the overhead of
learning the information reactively.

5.5 Implications of network functions
Load balancing Iris’ internal routing to tier-2 switches can be

achieved using standard mechanisms like ECMP or anycast, such that

traffic for each (external) destination arrives at the right tier-2 switches
in a load balanced fashion. If a corelayer switch fails in PARIS, the
virtual prefix can be sub-divided into smaller sub-prefixes and stored
on other core-layer switches until a new core-layer switch is available.
This provides load balancing properties to the architecture.

Congestion control The dynamic network scheduler control net-
work congestion with the build-in congestion control of the TCP pro-
tocol. There are many traffic engineering designs for carrier networks,
but the one concerning congestion control is used in conjunction with
multipath routing. A feedback system relays congestion information
about a path to its source, and the source relays traffic over paths with
less load.

5.6 Security
Regarding security rapid control loops for the detection and mitigation
of cyber-attacks, schemas for e.g., DDOS detection have been shown
in [19]. Traditional devices require exchanging a lot of information
and waiting for a certain time in order to partially infer the state of the
remaining parts, and where only a few devices are logging statistics (if
any) [20]. The global network view of SDN allows for network-wide
intrusion detection that analyzes traffic from all switches in order to
detect malicious network. SDN also comes with conditional rules that
are an example of a self-healing mechanism.

One of the main drawbacks of using SDN is the limited memory ca-
pacity which can lead to Denial-of-Service (DoS) attacks. Moreover,
it is (yet) undefined how a software defined network switch should
deal with encrypted packets as the headers (and payload) it acts on
become inaccessible. As a final remark, access control of the control
plane needs to be properly handled as an attacker could decide to drop
all incoming traffic to certain hosts or use the switches to perform a
DDoS attack elsewhere.

6 CONCLUSION

The efficient design of data centres has become paramount to ensure
scalability in the cloud computing domain. Four methods for improv-

Comparison of Novel Software Defined Networking Approaches for Improving . . . – Daan Raatjes and Sjouke de Vries

18

ing the design of data centres have been examined: recursive SDN,
PARIS, Iris and the Dynamic Network Scheduler. Each of these meth-
ods have been assessed for their feasibility, flexibility and scalability.
Furthermore, several dilemmas that a designer has to consider when
constructing a data centre have been discussed. All of the mentioned
approaches show promising results but they each have their own draw-
backs. Both the recursive SDN and the dynamic network scheduler
seem too difficult to deploy and lack feasibility. Iris and PARIS ap-
pear to be realistic options, where PARIS has superior flexibility and
Iris scales better. More research has to be done to reliably determine
whether the theoretical scalability and feasibility uphold their expec-
tations in real-life scenarios.

7 FUTURE WORK

Future work that should be done is integrating the dynamic network
scheduler into an OpenStack cluster such that it has integration with
a stable component of a Cloud data centre. This research would in-
crease the feasibility of this method. Further planned extensions are
continuous monitoring and profiling of the network traces for VMs in
a cluster. This could lead to a better understanding of network usage
patterns such that it can include predictions and give feedback to the
Cloud middleware.

Without a doubt, SDN will keep evolving and become more and
more the industry standard in the (near) future. As an example, we
can take the P4 programming language [21]; the first version of P414
was released in March 2015 and it successor P416 had its first re-
lease in May 2017 introducing a number of significant, backwards-
incompatible changes to the language in a time span of roughly two
years.

Therefore, additional future work can be done in this field to fur-
ther enhance the capabilities, improve performance and mitigate any
existing issues of solutions that use software defined networks.

REFERENCES

[1] T. Böttger, G. Ibrahim, and B. Vallis, “How the internet reacted to covid-
19: A perspective from facebook’s edge network,” in Proceedings of
the ACM Internet Measurement Conference, IMC ’20, (New York, NY,
USA), p. 34–41, Association for Computing Machinery, 2020.

[2] “Cisco annual internet report (2018–2023) white paper.”
https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html.
Last accessed on 15-03-2021.

[3] A. Feldmann, O. Gasser, F. Lichtblau, E. Pujol, I. Poese, C. Diet-
zel, D. Wagner, M. Wichtlhuber, J. Tapiador, N. Vallina-Rodriguez,
O. Hohlfeld, and G. Smaragdakis, “The lockdown effect: Implications
of the covid-19 pandemic on internet traffic,” in Proceedings of the ACM
Internet Measurement Conference, IMC ’20, (New York, NY, USA),
p. 1–18, Association for Computing Machinery, 2020.

[4] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling innova-
tion in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38,
p. 69–74, Mar. 2008.

[5] “GENI exploring networks of the future.” https://www.geni.net/. Last
accessed on 02-03-2021.

[6] J. McCauley, Z. Liu, A. Panda, T. Koponen, B. Raghavan, J. Rexford, and
S. Shenker, “Recursive sdn for carrier networks,” SIGCOMM Comput.
Commun. Rev., vol. 46, p. 1–7, Dec. 2016.

[7] The Open Networking Foundation, “OpenFlow Switch Specification,”
Jun. 2012.

[8] V. Dukic, G. Khanna, C. Gkantsidis, T. Karagiannis, F. Parmigiani,
A. Singla, M. Filer, J. L. Cox, A. Ptasznik, N. Harland, W. Saunders, and
C. Belady, “Beyond the mega-data center: Networking multi-data center
regions,” in Proceedings of the Annual Conference of the ACM Special In-
terest Group on Data Communication on the Applications, Technologies,
Architectures, and Protocols for Computer Communication, SIGCOMM
’20, (New York, NY, USA), p. 765–781, Association for Computing Ma-
chinery, 2020.

[9] “HPE VAN SDN controller software.”
https://support.hpe.com/hpesc/public/docDisplay?docId=emr na-
c03967699. Last accessed on 02-03-2021.

[10] C. B. Hauser and S. R. Palanivel, “Dynamic network scheduler for cloud
data centres with sdn,” in Proceedings of The10th International Confer-
ence on Utility and Cloud Computing, UCC ’17, (New York, NY, USA),
p. 29–38, Association for Computing Machinery, 2017.

[11] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado, “The
design and implementation of open vswitch,” in Proceedings of the 12th
USENIX Conference on Networked Systems Design and Implementation,
NSDI’15, (USA), p. 117–130, USENIX Association, 2015.

[12] “iperf - the ultimate speed test tool for tcp, udp and sctp.” https://iperf.fr/.
Last accessed on 11-03-2021.

[13] J. Wang, Y. Jiang, Y. Ouyang, C. Li, Z. Xiong, and J. Cai, “Tcp conges-
tion control for wireless datacenters,” IEICE Electronics Express, vol. 10,
no. 12, pp. 20130349–20130349, 2013.

[14] D. Arora, T. Benson, and J. Rexford, “Proactive routing in scalable data
centers with paris,” DCC 2014 - Proceedings of the ACM SIGCOMM
2014 Workshop on Distributed Cloud Computing, 08 2014.

[15] T. Mizrahi, O. Rottenstreich, and Y. Moses, “Timeflip: Scheduling net-
work updates with timestamp-based tcam ranges,” in 2015 IEEE Confer-
ence on Computer Communications (INFOCOM), pp. 2551–2559, IEEE,
2015.

[16] A. Tavakoli, M. Casado, T. Koponen, and S. Shenker, “Applying nox to
the datacenter,” in HotNets, 2009.

[17] P. Mell and T. Grance, “The nist definition of cloud computing,” Tech.
Rep. 800-145, National Institute of Standards and Technology (NIST),
Gaithersburg, MD, September 2011.

[18] A. Agrawal and C. Kim, “Intel tofino2 – a 12.9tbps p4-programmable
ethernet switch,” in 2020 IEEE Hot Chips 32 Symposium (HCS), pp. 1–
32, 2020.

[19] M. Dimolianis, A. Pavlidis, and V. Maglaris, “A multi-feature ddos detec-
tion schema on p4 network hardware,” in 2020 23rd Conference on Inno-
vation in Clouds, Internet and Networks and Workshops (ICIN), pp. 1–6,
2020.

[20] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Software-defined
networking security: pros and cons,” IEEE Communications Magazine,
vol. 53, no. 6, pp. 73–79, 2015.

[21] “P4 language consortium.” https://p4.org/. Last accessed on 15-03-2021.

SC@RUG 2021 proceedings

19

An Overview of Privacy-preserving Genomic Data Processing
Methods

Xiya Duan (s3700283) Fabian Prins (s3460509)

Abstract—The development of genetic analysis allows people to better predict or diagnose diseases through genetic testing. How-
ever, there might be privacy leakage on processing genomics data, exposing a person and their relatives, which may also cause a
series of social problems such as genetic discrimination. Therefore, a privacy-preserving method is necessary for testing, storing and
sharing genomics data. This is referred to as GWAS (genome-wide association studies).
We take a look at state-of-the-art cryptographic methods that allow computations on genetic data, without exposing the genetic
contents of the original data. One possible method for this is homomorphic encryption (HE). HE allows a secure transformation from
the original data to encrypted data, while still allowing for computations to be made without decrypting it [3].
Various protocols have been introduced that aim to make this possible: Private, Authorized, and Fast Personal Genomic Testing
(PAPEETE) [12], HEAAN (an approximate homomorphic encryption scheme) [10], and Bonte et al.’s HE and secure multiparty com-
putation (MPC) implementations [5]. These methods among others aim to make privacy-preserving GWASs possible with sufficient
precision and speed. In this paper, we review Perillo et al.’s PAPEETE protocol and Kim et al.’s HEAAN implementation of semi-
parallel GWAS. We discuss their strengths and weaknesses, which provide an idea of the present and future state of homomorphic
encryption for GWAS.

Index Terms—Homomorphic encryption, genome-wide association studies.

1 INTRODUCTION

With the rapid development of computing and communication tech-
nology in recent years, cheap and fast gene sequencing has become
possible. The required time for whole-genome sequencing has been
reduced from the original 13 years to only one day now, and its cost
has also been reduced from 3 billion US dollars to less than 1 thou-
sand [17]. As a result of the reduced cost of genome sequencing, it
is possible to use genome data in other domains, including personal-
ized healthcare, clinical prediction, Direct-To-Customer, and allergen
testing [4, 18]. A typical application scenario is the analysis, detec-
tion, and vaccine research of COVID-19, a coronavirus which started
a global pandemic. In China, through rapid batch nucleic acid test-
ing of millions of people, the Chinese Centers for Disease Control and
Prevention (CCDC) can rapidly determine the scope of COVID-19 in-
fection and cut the chain of transmission [2, 13].

However, the widespread usage of genomic data also raises the con-
cern of privacy issues. An example of genomic data in GENOME-
WIDE ASSOCIATION STUDIES (GWAS) are SINGLE-NUCLEOTIDE
POLYMORPHISMS (SNPs). An SNP represents a genome variation at a
particular position in DNA sequence(as shown in Figure 1) and shared
by at least 1% of a population [14]. In GWAS algorithms, a SNP is a
value indicating whether a certain variation is present (1 for presence
in one chromosome, 2 for both chromosomes) or not (0) [15]. Conse-
quently, an SNP vector represents a list of genome variations and their
presences. An individual’s genome, e.g. represented by SNPs, pro-
vides information about what genetic diseases they are carrying, their
susceptible diseases, and personality traits amongst other information.
Additionally, because genomic data is unique, it can be used to identify
individuals in forensic science [11]. However, this means that leakage
of genomic information may lead to employment or social discrim-
ination. Moreover, a data leak affects the victim’s relatives as well,
because of the similarity in genomic data [11]. It is important to note
that a genomic data leak has permanent consequences, since people’s
genomic data does not change. This is different from other sensitive
information such as usernames and passwords. Consequently, as sci-

• Xiya Duan is a MSc Computing Science student at the University of
Groningen, E-mail: x.duan.1@student.rug.nl.

• Fabian Prins is a MSc Computing Science student at the University of
Groningen, E-mail: f.l.prins@student.rug.nl.

Fig. 1. SNP with alleles C and T [1].

ence learns more about genomes and what information they have on an
individual, attackers can extract this new information as well from al-
ready leaked genomic data. In the U.S., health records are considered
to be privacy protected when there is no information about identify-
ing attributes such as name and date of birth [11]. However, due to
the identifying nature of genomic data and the progress in genomic
research, this is clearly not enough. In the future, genomic data might
even be used to reconstruct an individual’s face with high accuracy.
Hence, it is problematic if the genomic data is not used securely.

In this paper, we aim to bring more awareness to privacy preserva-
tion of genomic data and compare different processing methods. Fol-
lowing this introduction, this paper is constructed as follows:

• Section 2: background. Here we provide context about cur-
rent privacy-preserving methods for genomic data computations,
their advantages and disadvantages. We further explain the con-
cept of HOMOMORPHIC ENCRYPTION (HE) as we will be look-
ing at state-of-the-art HE solutions in the following section.

• Section 3 is a case study of two novel HE works in the field of
privacy-preserving genomic data processing.

• Section 4: discussion. In this section we discuss the strengths
and weaknesses of these methods.

20

• Section 5: conclusion. We conclude our case study with a few
words about the present state and the future of HE for GWAS.

2 BACKGROUND

Berger et al. discuss the current state of privacy-preserving genomic
computing in their 2019 editorial paper [3]. They mention three dif-
ferent frameworks that are currently used for the securely sharing of
biomedical data, namely secure multiparty computation (MPC), ho-
momorphic encryption (HE) and hardware-based approaches.

2.1 MPC
Secure multiparty computation (MPC) allows multiple entities to co-
operatively perform computations on genomic data without exposing
the original input data [3]. Each entity receives a securely shared part
of the input data, it performs the requested computations and securely
returns the result to another entity. During this process none of the
computation entities are in possession of the complete data, hence
they can not reconstruct it and therefore the data remains secure. The
problem with these systems is the complexity of organizing a secure
multiparty system [3], as well as the reliability on these parties.

2.2 Homomorphic encryption
The second framework, homomorphic encryption (HE), is an encryp-
tion form which allows computation on encrypted data without having
access to the private key, while the computed result remains encrypted.
Compared to MPC, HE is a lot easier to set up, as all encrypted data
can be send to a single computation entity. However, encrypted data
introduces significant computational overhead [3].

According to the allowed types and numbers of operations, homo-
morphic encryption schemes are classified to three main types [6]:

• Partially Homomorphic Encryption, which supports only one
type of operation, either addition or multiplication, to be per-
formed on encrypted data for unlimited times. One of the Par-
tially Homomorphic Encryption schemes is known as the ElGa-
mal cryptosystem, which is proposed by ElGamal in 1985 [8].

• Somewhat Homomorphic Encryption, which allows both addi-
tion and multiplication on encrypted data within limited times
before the result becomes inaccurate by the noise produced dur-
ing each operation. One of the Somewhat Homomorphic En-
cryption schemes is HEAAN (Homomorphic Encryption for
Arithmetic of Approximate Numbers) proposed by Cheon, Kim,
Kim and Song (CKKS) which implements an approximate
HE [7].

• Fully Homomorphic Encryption, which supports diverse opera-
tions to be performed on encrypted data for unlimited times. It
was first proposed by Craig Gentry in 2009, but it is still in the
development stage [9].

2.3 Hardware-based approaches
Lastly, there is the concept of hardware-based approaches. Here, data
is isolated into a protective enclave. They have the advantage over
MPC and HE in terms of speed, as it uses unencrypted data during the
computations. Nevertheless, it is not completely secure, as demon-
strated by successful security attacks on these systems [3].

3 PRIVACY-PRESERVING GENOMIC DATA PROCESSING METH-
ODS

In this section, we will elaborate two state-of-the-art homomorphic
encryption protocols or algorithms that can be used for privacy-
preserving genomic data processing. These methods aim to provide
faster and/or more secure methods than conventional methods. PA-
PEETE is a secure and efficient protocol for personal genomic tests.
Modified semi-parallel GWAS for HEAAN is a protocol used to find
which Single Nucleotide Polymorphisms survive testing corrections,
i.e. which SNPs give information about an individual’s phenotypes,
such as drug response.

Fig. 2. Comparison between PAPEETE and other protocols[12]

Fig. 3. PAPEETE architecture [12]. The test is authorized by Certifica-
tion Authority (CA) and performed by User locally. The result is returned
to CA for decoding and finally decrypted by the Test Facility.

3.1 Private, Authorized, and Fast Personal Genomic Test-
ing (PAPEETE)

Based on additively Homomorphic Encryption, Angelo Massimo Per-
illo and Emiliano De Cristofaro proposed the PAPEETE (Private, Au-
thorized, fast PErsonal gEnomic TEsting) protocol applied for per-
sonal genomic tests. PAPEETE aims to establish a personal genome
test mode, performed as weighted average computing on target SNPs,
that can simultaneously achieve privacy, authenticity, and efficiency.
As shown in Figure 2, compared with other protocols, PAPEETE is
the first protocol which achieves all these requirements[12].

• Privacy. The privacy of both the user and the test facility should
be protected concurrently. On the one hand, the test should be
performed only on the objective genomic data instead of the en-
tire genome. Additionally, only the test result instead of the raw
genomic information should be exposed to the testing facility.
On the other hand, the test specifics should also be kept secret as
they might be relevant to intellectual property [12].

• Authenticity. Due to the sensitivity of genomic information, the
objective weight and positions of a test should be authorized by
a trusted third party in order to ensure that the user’s genomic
information is treated appropriately.

• Efficiency. As the number of genes on chromosomes might reach
a number of hundreds of thousands or even millions, the test
mode should be able to process such a large size dataset.

3.1.1 PAPEETE Architecture

The high level architecture of the PAPEETE protocol is illustrated in
Figure 3. There are three entities involved in PAPEETE:

• a User, who takes the authorized test from the testing facility
without exposing their genomic information.

• a Testing facility, which wants to perform genomic tests without
exposing the target testing position and the relevant weights.

• a Certification Authority, which is trusted to verify the test from
a testing facility and process the user’s testing result.

SC@RUG 2021 proceedings

21

3.1.2 AH-ECC cryptosystem

Since the PAPEETE protocol is based on Additively Homomorphic El-
liptic Curve based ElGamal Cryptosystem (AH-ECC), it is necessary
to introduce the AH-ECC before presenting the PAPEETE protocol.
The original ElGamal encryption scheme, proposed by ElGamal[8],
is multiplicative homomorphic and therefore implemented in elliptic
curves to obtain the additively homomorphic property[16]. Generally,
the AH-ECC consists of three parts, which are explained as follows:

• KeyGen. At first, a proper elliptic curve E of the order q is
selected and the point generator G is determined accordingly.
Then, randomly pick a value x from the original order q as the
private key. The public key Pk can be generated by Pk = xG.

• Encryption. Given a plaintext m and a random k ∈ [1, n − 1]
where n is the order ofE, the corresponding ciphertext C can be
obtained by C = (R,S) = (kG,mG+ kPk).

• Decryption. Firstly, we can obtain the mapped value of m by
mG = −xR+S. Then, a reverse mapping function can be used
to extract m from mG.

3.1.3 PAPEETE protocol

In this section, we will present the workflow of PAPEETE protocol,
which consists of two main parts: authorization and test.

First of all, we assume the tests can be expressed as a weighted aver-
age of the SNPs (Single Nucleotide Polymorphisms), which is formed
as:

R(X) =

∑
i wi ∗ P [X|SNP i]∑

i wi
(1)

where R(X) represents the result of test X , wi represents the weight
and P [X|SNP i] represents the appearance of the SNP in chromo-
somes [12].

Authorization Before starting a test, the testing facility is obli-
gated to acquire authorization from the certification authority (CA)
which not only verifies whether the test is credible, but also encrypts
the weight, ensuring that the test facility can only get an extracted
result from certification authority instead of the user. The detailed
process is explained step by step as follows:

1. Given an order q, the certification authority needs to choose a
pair of parameters (e, d) subject to e = 1/d(mod q) and keeps
them confidential.

2. The testing facility sends all weights wi at position i to CA for
authorization.

3. The authorized weights are transformed by an exponentiation de-
fined by Wi = Gi·e · Gwi·e · Ge, where G is the generator in
public parameters.

4. The authorized weights are sent back to the testing facility.

5. The testing facility performs the encryption of AH-ECC to the
authorized weights and outputs the encryption cti.

Test After the authorization, the test facility is allowed to run the
test on the user’s genomic data. We assume the user already has the
sequenced genomic data SNP1,SNP2, . . . ,SNPn, while the testing
facility holds the encrypted and authorized weights ct1, ct2, . . . , ctn
corresponding to each SNP. The test is performed in the following
steps:

• At the beginning, the user initializes the output variables: the
encrypted genomic data ctres , the sum of the positions of the
SNPs pres , and the sum of all the SNPs sres to 0.

• The testing facility then computes the ctres , pres , and sres over
all SNPs as:

ctres =
n∑

i=0

cti · SNP i (2)

pres =
n∑

i=0

i · SNP i (3)

sres =
n∑

i=0

SNP i. (4)

• The user sends the obtained result to the certification authority.

• The certification authority decodes the test result with the secrete
key d and sends the decoded information to the testing facility.

• The testing facility decrypts the decoded result and gets the final
result.

3.1.4 Experiment and results
Angelo Massimo Perillo and Emiliano De Cristofaro made an exper-
iment where they evaluated the perfomance of the PAPEETE proto-
col and compared it with Fast and Private Genomic Testing for Dis-
ease Susceptibility (FPGTDS), which is proposed by Danezis and De
Cristofaro in 2014. Since the FPGTDS also has a weights encryption
step, the comparison is divided into two parts: offline operations and
online steps. The offline operations part represents the weights en-
cryption or authorization, and the online steps part represents the test
and decryption. Perillo et al. compared their PAPEETE protocol with
FPGTDS, looking at time and bandwidth consumption for both offline
and online parts. The result is shown in Table 1.

As can be observed from the Table 1, although added the autho-
rization step, the PAPEETE achieves almost the same efficiency as
FPGTDS and is feasible to be used in real world. Considering the
time consumption for PAPEETE and FPGTDS are linearly related to
the amount of SNPs, we conjecture that the measured time cost of of-
fline operation in FPGTDS(3.85ms) might have a mistake on the units
of measurement.

3.2 Privacy-preserving Approximate GWAS computation
based on Homomorphic Encryption

Kim et al. (2020) developed a novel privacy-preserving GWAS algo-
rithm which makes use of HEAAN (Homomorphic Encryption for
Arithmetic of Approximate Numbers) as proposed by Cheon et al.
(2017) and a modified version of the semi-parallel GWAS algorithm
originally developed by Sikorska et al. (2013) [10, 7, 15]. The GWAS
algorithm calculates the p-value for each single-nucleotide polymor-
phism (SNP) data, while correcting for covariates such as height,
weight and age. That is, if a p-value for some SNP is very small
(less than some threshold θ), then that SNP influences some tar-
get phenotype (e.g. physical trait or carried disease) with high con-
fidence. Kim et al. use binary SNP instead of the 2-bit representation:
SNP ∈ (0, 1, 2). Hence, SNP i = 1 indicates that genomic variation
i is present in one or both chromosomes, while SNP i = 0 indicates
that the genomic variation is not present.

The dataset consists of an n×m input matrix consisting of
n = 245 vectors (samples) with m = 25,484 binary SNP data each,
and a binary vector y of length n = 245 where each column indicates
whether a sampled individual has the phenotype of interest or not. This
dataset is provided by the 2018 secure genome analysis competition
hosted by Integrating Data for Analysis, Anonymization and SHaring
(IDASH).

In practice, a data holder encrypts their data and sends it to a com-
putation server. The server then does all but the last few steps in the
algorithm, at which point it returns encrypted output data to the data
holder, which decrypts it and performs the last few steps to compute
the p-values with the output data. The algorithm proved to be scalable,
fast, secure and accurate [10].

An Overview of Privacy-preserving Genomic Data Processing Methods – Xiya Duan and Fabian Prins

22

SNPs Offline Online BandwidthPAPEETE FPGTDS PAPEETE FPGTDS
1× 103 3.88s 3.85ms 0.83s 0.82s 64.51KB
1× 104 37.77s 37.40s 7.04s 7.03s 645.12KB
1× 105 6.27m 6.22m 1.31m 1.31m 6.3MB
1× 106 62.77m 62.21m 18.89m 18.88m 63MB

Table 1. Execution times and bandwidth consumption of PAPEETE and FPGTDS [12].

3.2.1 HEAAN encryption
Kim et al. encrypt the input data, a matrix of n samples (the rows) by
m binary SNPs (the columns), column-wise with HEAAN encryption.
HEAAN is a scheme developed by Cheon et al. [7] that uses a polyno-
mial representation of vector data to do homomorphic computations. It
consists of five functions: KeyGen(1λ), Encryptpk(m), Decryptsk(c),
Add(c1, c2) and Multiply(c1, c2).

• KeyGen. KeyGen(1λ) takes as input the security parameter λ. It
generates secret key sk, public key pk and evaluation key evk
such that security attacks should take Ω(2λ) bit operations [7].

• Encryption. Encryptpk(m) takes as input a polynomial m ∈ R
and outputs ciphertext c, which introduces small error e.

• Decryption. Decryptsk(c) takes as input the ciphertext c and
outputs an approximation of original polynomial m, due to the
error introduced during encryption.

To be able to use the HEAAN scheme for integer-valued SNP vectors,
Kim et al. use canonical embedding to transform these vectors into an
integer-rounded polynomial m for encryption to ciphertext c. Round-
ing the polynomial to an integer representation introduces a large er-
ror, therefore Kim et al. first scale the real-valued polynomial by p
bits to control the error [10]. Decryption is done with the inverse of
the canonical embedding and scaling to get back an integer array from
the polynomial m. In the case of GWAS with HEAAN, decryption
is done at the end of the algorithm when the p-values are calculated.
This means that the last steps are performed on the data holder’s end
instead of the computation server.

3.2.2 Modification of Sikorska et al.’s semi-parallel GWAS
Kim et al. made use of the semi-parallel GWAS algorithm by Sikorska
et al. with modifications that reduce the amount of expensive matrix
computations, while allowing for homomorphic encrypted input data.
This has the effect of speeding up the process while maintaining suffi-
cient accuracy. Kim et al. modified the Fisher Scoring algorithm and
the parts of the algorithm where a large, computationally expensive
matrix S∗ is used. These steps are outlined in Figure 4. The algorithm
is called ‘semi-parallel’ as it is not the same as parallel computation
on multiple processors. Instead, it does calculations on the full input
SNP matrix, which is faster than doing these calculations for each SNP
individually [15].

Fisher Scoring First we consider the modification of Fisher Scor-
ing in the original semi-parallel GWAS algorithm; step 1 in Figure 4.
The original Fisher Scoring algorithm can be seen in Figure 5, where
the steps that Kim et al. will modify are outlined in red. Fisher Scor-
ing is an algorithm to solve maximum likelihood equations. It takes
as input a covariate matrix X , phenotype vector y, and total iterations
constant iter. As can be seen in step 4 of the Fisher Scoring algorithm,
the matrix inverse (XTW (t)X)−1 is computed. Note that the inverse
of a matrixA is calculated with 1

det(A)
·adj(A), where det(A) is the

determinant of A, and adj(A) is the adjugate of A. This is an expen-
sive operation when done in HE, as it is non-polynomial [10]. Instead,
Kim et al. make an approximation using just the adjugate of the orig-
inal matrix XTW (t)X multiplied by a constant α > 0 instead of the
inverse of the matrix’ determinant. This works because the term with
the inverse matrix approaches zero during the iterative process of the

Fig. 4. The original semi-parallel GWAS [10], developed by Sikorska et
al. [15].

Fisher Scoring algorithm, and can therefore have a slightly different
value. However, this comes at the cost of a few additional iterations
for convergence. As the modified Fisher Scoring introduces this new
constant α, it is added as additional input parameter.
Kim et al. replace step 3 and rewrite step 4 of Fisher Scoring before
applying their α replacement of 1

det(XTW (t)X)
[10].

Firstly, Kim et al. use step 3 to store matrix XTW (t)X as U (t):

3: U (t) ← XTW (t)X. (5)

Secondly, v(t) is reformulated as:

v(t) = log
(

p(t)

1 − p(t)

)
+
y − p(t)

diag(W (t))
= Xβ(t)+

y − p(t)

diag(W (t))
. (6)

The rewritten v(t) replaces the old v(t) in step 4 of the Fisher Scoring
algorithm to get:

β(t+1) = (U (t))−1XTW (t)

(
Xβ(t) +

y − p(t)

diag(W (t))

)
(7)

= β(t) + (U (t))−1XT (y − p(t)) (8)

= β(t) +
1

det(U (t))
· adj(U (t))XT (y − p(t)). (9)

Lastly, α replaces the inverse determinant such that step 4 becomes:

4: β(t+1) ← β(t) + α · adj(U (t))XT (y − p(t)). (10)

This concludes the modifications made to the Fisher Scoring algo-
rithm.

Removal of large matrix S∗ The second optimisation Kim et
al. make is a modification in steps 2—10 of the original semi-parallel
GWAS algorithm, as seen in Figure 4. The problem with the original
algorithm is the computations involving the large matrix S∗. Because
of its size, it takes a lot of computations to perform any operation,
which slows down the algorithm. The objective is to calculate c from
step 5 and d from step 6 without using S∗.

5 : c← S∗TWv∗ ∈ Qm (11)

6 : d← diag(S∗TWS∗) ∈ Qm. (12)

SC@RUG 2021 proceedings

23

Fig. 5. The original Fisher Scoring [10] with steps that Kim et al. modify
outlined in red.

Fig. 6. Kim et al.’s modified semi-parallel GWAS [10].

Kim et al. first show that it is possible to calculate diag(S∗TWS∗)
without using S∗. They start by rewriting how S∗ is declared in step
3 of the original algorithm. They introduce two new matrices:
U = XTWX and V = XTWS. Hence, S∗ = S −XU−1V .
With this in mind, they rewrite S∗TWS∗ as:

S∗TWS∗ = (S −XU−1V)TW (S −XU−1V) (13)

= STWS − V TU−1V. (14)

Kim et al. use the determinant and adjugate matrices of matrix U with-
out having to inverse any term. Step 6: d ← diag(S∗TWS∗) from
the original algorithm is then calculated as follows:

d← det(U) · diag(STWS)− diag(V T adj(U)V). (15)

Kim et al. continue by showing that it is possible to approximate
S∗TWv∗, which is used to calculate c in step 5. Their first observa-
tion is the fact that S∗TWv∗ is equal to STWv∗ due to the definitions
of S∗ and v∗. With this rewrite they are able to derive the following
step:

c← ST (y − p)− STWXU−1XT (y − p). (16)

Kim et al. note that the long term on the right is very small, since
XT (y − p) is close to zero due to Fisher Scoring. Therefore, they
omit this term to speed up the algorithm, which is especially helpful
due to the computationally expensive inverse matrix U−1 in that term.
The finalised modified semi-parallel GWAS algorithm can be seen in
Figure 6.

3.2.3 Homomorphic evaluation
In the evaluation section, Kim et al. show how their modification of
the semi-parallel GWAS algorithm works for HEAAN encrypted SNP
data. The original GWAS algorithm uses non-polynomial functions
such as matrix operations and the use of a sigmoid (σ) function. How-
ever, they are able to replace these with polynomial based operations,
or find a close approximation [10].

3.2.4 Experiments
Kim et al. already give the suggestion of a protocol for their secure
GWAS algorithm in their experiments. The ‘data holder’ sends the

Fig. 7. Results of experiments I and II [10].

encrypted data to a ‘server’ which performs the semi-parallel GWAS
algorithm until either step 5 or 7, as can be seen in Figure 6. This
choice depends on the need for more speed, or accuracy and security
respectively [10]. If the server stops at step 5, the encrypted numer-
ator c and denominator d are returned as output. Kim et al. mention
these variables contain more information than just p-values, however,
it is considered “very hard to extract any important information” out
of them [10]. On the other hand, if the algorithm stops at step 7, the
server outputs the encrypted squared z-scores, which have the same in-
formation as the p-values [10]. The data holder receives these outputs
and decrypts it with its private key and does the final steps to calculate
the p-values.

Kim et al. perform two different experiments:

• Exp I: The server returns output after step 5.

• Exp II: The algorithm returns output after step 7.

Both experiments are performed on two different subsets from the
IDASH dataset: iDash Test, which has a reduced number of SNPs
(namely 10,643), and iDash Eval, which is used to evaluate the algo-
rithm in the IDASH competition [10]. Both subsets have 245 sam-
ples and 3 covariates. The results are show in Figure 7. iter denotes
the number of iterations in Fisher Scoring, Comp. time denotes the
running time of the algorithm in encrypted state, and TH denotes the
threshold of p-values for classification [10]. As can be seen, Exp I is
around 20 minutes faster than Exp I, but it is slightly less accurate.
It is therefore up to the user to decide what they consider to be most
important: speed, or accuracy and security.

4 DISCUSSION

Perillo and Cristofaro have provided a protocol for calculating SNP
weighted averages. Since the calculation is performed by the user with
encrypted weights, the increasing number of samples would not affect
the time cost of the test, which increase the scalability of the protocol.
Due to the additively homomorphic property of the AH-ECC cryp-
tosystem, the obtained weighted average stays confidential. Therefore,
the test can be performed without exposing the raw genomic data.

Compared with FPGTDS, PAPEETE introduces the certification
authority, which guarantees the test can only be performed on allowed
SNPs and protects the privacy of test facilities. Furthermore, the test
step in FPGTDS can only be done on trusted hardware such as smart
card, while PAPEETE allows users to take tests on their smartphone.
We think it makes PAPEETE more convenient and more likely to be-
come popular. However, although the test is performed by users lo-
cally, all test results need to be decoded by authority which is not scal-
able with the increasing amount of test. Thus, the efficiency of the
decoding process may become the main factor limiting the efficiency
of the test.

In a similar vein, Kim et al. are the first to provide a secure HEAAN
implementation of the semi-parallel GWAS algorithm from Sikorska
et al. [10]. Kim et al. have shown that the HEAAN scheme still pro-
duces highly accurate results, even with its error introducing nature.

An Overview of Privacy-preserving Genomic Data Processing Methods – Xiya Duan and Fabian Prins

24

The HEAAN implementation has the same scalability benefit as Siko-
rska et al.’s original semi-parallel GWAS algorithm, due to its use of
the complete SNP matrix.

Kim et al. note that their approximation of α ≈ 1/det(U (t)) in
their modification of Fisher Scoring requires further research to speed
up the convergence rate as much as possible [10]. They have pointed
out that α merely depends on the size of covariate matrix X , however,
they do not go into detail about how they derived their value of α. All
that is mentioned is that it was derived through experimenting, which
presumably implies trial and error. Moreover, it is not clear how much
of an impact α has on both the accuracy and speed of the algorithm.

5 CONCLUSION

In this paper we discussed why privacy-preserving is important in
genomic research and how it can be achieved. We investigated sev-
eral privacy-preserving genomic data processing methods like secure
multiparty computation (MPC), homomorphic encryption (HE) and
hardware based approaches. We also elaborate two HE implementa-
tions, PAPEETE and privacy-preserving GWAS algorithm based on
HEAAN.

PAPEETE is the first personal genome test protocol which simul-
taneous achieves efficiency, authenticity and privacy. However, the
efficiency of decoding test result limits the performance of the whole
system with the increasing amount of test. As future work, the decod-
ing step can be improved by supporting parallel computing or other
possible ways to increase the scalability of the protocol.

Kim et al. have shown that it is possible to apply HEAAN to modern
algorithms such as Sikorska et al.’s semi-parallel GWAS. The result-
ing, scalable and secure algorithm gives the user freedom to choose
between optimal security and speed. However, the algorithm can be
further improved by optimizing approximations such as α in Fisher
Scoring.

Nevertheless, both works have given a positive outlook for the use
of homomorphic encryption, particularly in the field of genomic stud-
ies.

REFERENCES

[1] E. Ayday, J. L. Raisaro, J.-P. Hubaux, and J. Rougemont. Protecting and
evaluating genomic privacy in medical tests and personalized medicine.
In Proceedings of the 12th ACM Workshop on Workshop on Privacy in
the Electronic Society, WPES ’13, page 95–106, New York, NY, USA,
2013. Association for Computing Machinery.

[2] BBC News. Coronavirus: Wuhan draws up plans to test all 11 million
residents. https://www.bbc.com/news/world-asia-china-52629213, May
2020.

[3] B. Berger and H. Cho. Emerging technologies towards enhancing privacy
in genomic data sharing. Genome Biology, 20(1):128, Jul 2019.

[4] S. J. Bielinski, J. E. Olson, J. Pathak, R. M. Weinshilboum, L. Wang, K. J.
Lyke, E. Ryu, P. V. Targonski, M. D. Van Norstrand, M. A. Hathcock,
et al. Preemptive genotyping for personalized medicine: design of the
right drug, right dose, right time—using genomic data to individualize
treatment protocol. In Mayo Clinic Proceedings, volume 89, pages 25–
33. Elsevier, 2014.

[5] C. Bonte, E. Makri, A. Ardeshirdavani, J. Simm, Y. Moreau, and F. Ver-
cauteren. Towards practical privacy-preserving genome-wide association
study. BMC Bioinformatics, 19(1):537, Dec 2018.

[6] P. Chaudhary, R. Gupta, A. Singh, and P. Majumder. Analysis and com-
parison of various fully homomorphic encryption techniques. In 2019 In-
ternational Conference on Computing, Power and Communication Tech-
nologies (GUCON), pages 58–62, 2019.

[7] J. H. Cheon, A. Kim, M. Kim, and Y. Song. Homomorphic encryption
for arithmetic of approximate numbers. In T. Takagi and T. Peyrin, edi-
tors, Advances in Cryptology – ASIACRYPT 2017, pages 409–437, Cham,
2017. Springer International Publishing.

[8] T. ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. In G. R. Blakley and D. Chaum, editors, Advances
in Cryptology, pages 10–18, Berlin, Heidelberg, 1985. Springer Berlin
Heidelberg.

[9] C. Gentry et al. A fully homomorphic encryption scheme, volume 20.
Stanford university Stanford, 2009.

[10] D. Kim, Y. Son, D. Kim, A. Kim, S. Hong, and J. Cheon. Privacy-
preserving approximate gwas computation based on homomorphic en-
cryption. BMC Medical Genomics, 13, 07 2020.

[11] M. Naveed, E. Ayday, E. W. Clayton, J. Fellay, C. A. Gunter, J.-P.
Hubaux, B. A. Malin, and X. Wang. Privacy in the genomic era. ACM
Computing Surveys (CSUR), 48(1):1–44, 2015.

[12] A. M. Perillo and E. De Cristofaro. Papeete: Private, authorized, and fast
personal genomic testing. pages 650–655, 07 2018.

[13] Reuters Staff. China’s qingdao orders city-wide testing after new covid-
19 infections. https://www.reuters.com/article/health-coronavirus-china-
cases-idUSKBN26X042, Oct 2020.

[14] Scitable by nature education. single nucleotide polymorphism (snp).
[15] K. Sikorska, E. Lesaffre, P. F. Groenen, and P. H. Eilers. Gwas on your

notebook: fast semi-parallel linear and logistic regression for genome-
wide association studies. BMC Bioinformatics, 14(1):166, May 2013.

[16] O. Ugus, A. Hessler, and D. Westhoff. Performance of additive homo-
morphic ec-elgamal encryption for tinypeds. 6. Fachgespräch Sensornet-
zwerke, page 55, 2007.

[17] K. A. Wetterstrand. The cost of sequencing a human genome.
https://www.genome.gov/about-genomics/fact-sheets/Sequencing-
Human-Genome-cost. Last updated: 2020-12-07.

[18] M. S. Williams, C. O. Taylor, N. A. Walton, S. R. Goehringer, S. Aron-
son, R. R. Freimuth, L. V. Rasmussen, E. S. Hall, C. A. Prows, W. K.
Chung, et al. Genomic information for clinicians in the electronic health
record: Lessons learned from the clinical genome resource project and
the electronic medical records and genomics network. Frontiers in genet-
ics, 10:1059, 2019.

SC@RUG 2021 proceedings

25

State-of-the-Art Fuzzing: Challenges, Limitations and
Improvements

Nik Dijkema, s3230007 and Zamir Amiri, s2780542

Abstract—Over the last decade, fuzzing has become a widely-used and very effective method for vulnerability detection in the field of
cybersecurity. Fuzzing is the intuitive process of repeatedly executing a program with potentially malformed input to detect undesired
program behaviour.
In this paper, we present a review of the background of fuzzing and some of the recent advances in the fuzzing domain, such as
transformational and compositional fuzzing. We discuss different fuzzing approaches, focus on their strengths, limitations and the
current challenges in the fuzzing domain. We found that the body of research on fuzzing has become so large, that it has become
difficult to obtain a broad, coherent view. We argue that, from a broad perspective, the domain of fuzzing has become too vast to
be able to propose concrete solutions for the existing challenges, and that these challenges have become research topics in and of
themselves. Furthermore, when looking at the topic from an accessibility point of view, we argue that there is significant room for
improvement. We suggest that a more user-friendly approach to documentation for fuzzers should be introduced, such that this field
of research may blossom.

Index Terms—Fuzzing, cybersecurity, vulnerability detection.

1 INTRODUCTION

With the ever-continuing rise of digitization, the importance of
information security increases as well. While anti-virus software has
long fought a battle against malware, there are still no viable defence
programs against cyber attacks. An example of an attack strategy
used by cyber criminals is to scan for software bugs, such as buffer-
overflows, and exploit them. Therefore, locating and fixing bugs in
software, before attackers discover them, is crucial. In recent years,
vulnerability detection through fuzzing has gained a large foothold in
the field of cybersecurity. Fuzzing is a technique in which programs
are tested by repeated execution with generated inputs. These inputs
may be malformed syntactically or semantically, and might induce
incorrect program behaviour, crashes or other correctness policy
violations [16]. Over the years, the primary application of fuzz testing
has been finding security-related bugs, however, nowadays fuzzing
has also found its way into other fields, such as finding performance
issues in programs [13].

The domain of fuzzing has become very large, and many dif-
ferent strategies and applications exist. Through our research, we
strive to answer the following research questions:

RQ1 What are the ’hard’ fuzzing challenges for which new solutions
are needed?

RQ2 Can we propose innovative solutions to address these hard chal-
lenges?

We present a review of four different fuzzing paradigms; (1) muta-
tional fuzzing, (2) generational fuzzing, (3) transformational fuzzing
and (4) compositional fuzzing. We review different approaches of
fuzzing algorithms within each paradigm, the strengths and weak-
nesses of different techniques and we discuss the challenges that arise.
The contribution of this paper is, after establishing the state-of-the-art,
to propose improvements to the field of fuzzing, for future work to
build upon.

• Nik Dijkema, MSc Student Computing Science at University of Groningen,
E-mail: n.p.dijkema@student.rug.nl.

• Zamir Amiri, MSc Student Computing Science at University of Groningen,
E-mail: a.z.amiri@student.rug.nl.

1.1 Terminology and definitions
Throughout the rest of this paper, we will use the terminology and
definitions as established and described by Manès et al. in their 2019
fuzzing survey [16].

We define fuzzing as follows; an instance of fuzzing is performed on
a Program Under Test (PUT). Fuzzing is the execution of the PUT
with inputs generated from the fuzz input space. Fuzz testing is the
testing of a PUT through fuzzing. A fuzzer is a program that performs
fuzz testing on a PUT. We refer to a single instance of fuzz testing
as a fuzz campaign. The parameter value(s) of a fuzzer that control
the fuzzer’s algorithm in a fuzz campaign is a fuzz configuration. The
program that decides whether a fuzzing execution of the PUT violates
correctness policies is called the bug oracle, and may be part of the
fuzzer itself. Code coverage refers to the percentage of the PUT’s
code that has been activated over the course of a fuzz campaign.

1.2 Paper structure
In the next section (Section 2) we provide relevant background knowl-
edge regarding fuzzing. After that, in Section 3, we provide an
overview of the different fuzzing paradigms, we lay out current chal-
lenges in fuzzing, and discuss potential solutions to these challenges.
The discussion is covered in Section 6, and finally, we present our
conclusions in Section 7.

2 BACKGROUND

Before we proceed to our detailed review of fuzzing techniques from
the different fuzzing paradigms, we first provide some background in-
formation about fuzzing. Fuzzing was first proposed in the early 1990s
by Miller et al. [17] and has been increasingly used since then.

2.1 Fuzzer Taxonomy
Fuzzing techniques have been categorised in three classes, namely
black- [28], grey- [21] and white-box fuzzers [6]. The performance
of fuzzers from each class can differ vastly, therefore it is important to
mention their differences.

White-Box The term white-box denotes techniques in which a
user or program has full knowledge of the inner workings of a target,
the PUT in the case of fuzzing. The fuzzer is able to perform program
analysis and instrumentation (see Section 2.3), and is therefore better
capable of fine-tuning the fuzzing process. An important thing to note
is that white-box approaches almost always have a larger overhead and
are slower than other fuzzer types.

26

Black-Box On the other end of the spectrum, black-box fuzzers
are fuzzers that have no knowledge of the internals of the PUT. In gen-
eral, these types of fuzzers only look at the input and output behaviour
of the PUT. Black-box techniques are much more inline with real-
world attacks, as most cyber-attacks are executed by attackers with no
internal knowledge of the target. Therefore, a vulnerability found by
a black-box fuzzer should always be given a higher severity level then
an equal vulnerability found by a white-box fuzzer.

Grey-Box Some fuzzers take a middle-ground approach by tak-
ing some limited degree of internal information about the PUT into
account. These fuzzers are faster in execution than white-box fuzzers,
as they have less fine-grained control over the fuzzing process, but
instead approximate the internals of the PUT and tune the test cases
accordingly.

2.2 General Fuzzing Model

The fuzzing process can be split into several components, as described
in more detail in [16]. These components are; Preprocess,
Schedule, InputGet, InputEval, ConfUpdate and
Continue. An illustration of the general fuzzing process is shown
in Figure 1. A short explanation of each component follows.

Fuzz
Configurations

PUT

Preprocess

Fuzz
Configurations

Schedule

InputGen

Fuzz
Configuration

Test
Cases

ConfUpdate

Execution
Information

InputEvalPreprocessed
PUT

Bug
Oracle

Execution
Information

Bug Reports

Fuzzer

Fig. 1. The general fuzzing process.

Preprocess In the Preprocess stage, a fuzzer may perform
various preprocessing actions, depending on the class of the fuzzer
(see Section 2.1). In this step, the user supplies the fuzzer with a set
of fuzz configurations as input. These configurations usually consist
of (a) valid input(s) for the PUT, called seed(s), and a set of fuzzer
parameters. The fuzzer can perform different operations such as seed
selection and seed trimming, in order to optimize the seeds for the
next step. Other operations include instrumentation of the PUT (see
Section 2.3), generating driver programs or constructing a model for
the InputGen phase [23]. In some cases, the fuzzer may measure
the execution time of the PUT when executing seeds. With this infor-
mation, the fuzzer can perform numerous other preprocessing actions,
such as calculating the time needed to execute the request and a time
limit, telapsed and tlimit , respectively. The preprocessing step returns a
potentially modified set of fuzz configurations C.

Schedule Given the set of fuzz configurations C (and potentially
telapsed and tlimit), the fuzzer can select a fuzz configuration to be used
in the current fuzzing iteration. In many fuzzers, the Schedule step
is a lot more sophisticated, such that the fuzzer is better able to steer the
fuzzing campaign by cleverly prioritizing certain fuzz configurations,
for example by using code coverage information (see Section 3.1.1).

InputGen InputGen takes the selected fuzz configuration and
returns a set of new test cases that are based on the configuration. The
exact input generation strategy depends on the class of the fuzzer and
the technique it uses.

InputEval InputEval executes the test cases on the PUT, and
evaluates the output and program behaviour. This could mean that it
catches crashes, measures the execution time, measures code cover-
age, and checks if a bug was found using the bug oracle.

ConfUpdate ConfUpdate takes the current fuzz configura-
tion(s) C and the execution information gathered from InputEval,
and then decides whether C has to be updated. Not all fuzzers update
their fuzz configuration(s) during the fuzzing process.

Continue Continue determines whether another iteration of
the fuzz program should be performed.

2.3 PUT Instrumentation
As described by Huang et al. in [10], the essence of program in-
strumentation is the insertion of statements into a program, such that
execution information is gathered. In the case of PUT instrumen-
tation in fuzzing, the purpose is to enable the collection of much
more detailed execution information, rather than simple output and/or
crash behaviour. Detailed execution information includes, for ex-
ample, stack- or call-traces, code coverage measurements, profiling
or other event logging. PUT instrumentation is performed in the
Preprocess step, and the resulting execution information is then
used in the InputEval and/or ConfUpdate step. The collected
execution information allows the fuzzer perform more complex anal-
ysis and fuzz more effectively. However, it is important to note that
program instrumentation often adds (significant) execution overhead,
depending on the instrumentation.

2.4 Symbolic and Concolic Execution
Symbolic [12] and/or concolic execution [25] are strategies that are
nowadays commonly used in fuzzing methods. In the context of
fuzzing, symbolic execution is the white-box process of executing the
PUT with symbolic rather than concrete input values. Starting out,
these symbolic inputs symbolize all possible input values. During the
evaluation, the possible values are reduced based on the constraints in
the PUT. The resulting path predicates can be used to generate con-
crete test-cases, for example through an SMT solver [5]. In fuzzing,
dynamic symbolic execution is used, which is a combination of sym-
bolic and concrete execution, hence the term concolic execution. In
concolic execution, concrete execution states are used to reduce the
complexity of the symbolic constraints, because symbolic execution is
expensive [1]. Most symbolic execution engines prioritize path explo-
ration such that unexplored paths have a higher priority [18]. However,
symbolic execution faces a challenge known as the path explosion
problem (see Section 4.2), where the number of paths or execution
states increases drastically as the program scale gets larger [4, 14].
One of the ways in which symbolic execution engines address this
problem, is through targeted symbolic execution [15], where symbolic
execution is focused on paths that lead to interesting areas of code,
which are usually specified by the user.

3 FUZZING PARADIGMS

Now that we have established the relevant background knowledge re-
garding fuzzing, we will discuss different fuzzing approaches and al-
gorithms.

3.1 Mutational Fuzzing
The first technique we discuss, is mutational fuzzing. Mutational
fuzzers may belong to any of the black-, grey- or white-box classes. In
mutational fuzzing, the test cases are generated from provided seeds,
which are usually a correctly formed input, by partially mutating the
seed. The input may be mutated by flipping bit values. The number
of bits that are mutated is called the mutation ratio r. The bits can be
flipped at random, or a more sophisticated method might be used. The
performance of mutational fuzzers is highly dependent on the quality
of the provided seed(s). Furthermore, as mentioned in [2], the classic
random mutation testing does not perform well. The challenge here is
that mutational fuzzers are often capable of obtaining only a low code

SC@RUG 2021 proceedings

27

coverage [23]. Therefore, modern mutational fuzzers use an evolu-
tionary algorithm to steer the mutation process [30, 22], which allows
them to have better performance.

3.1.1 Instrumentation/Coverage Guided Fuzzing
In order for evolutionary mutation algorithms to be effective, a met-
ric for ’seed fitness’ is needed, this is where coverage-guided fuzzing
comes in. Coverage-guided fuzzing was developed for white- and
grey-box fuzzers, in order to increase code coverage by prioritizing
seeds that explore new execution paths in the PUT. In coverage-guided
fuzzing, test cases are generated by analysing the previously executed
test case(s). The test cases that are identified to increase coverage,
i.e. cover an unexplored execution path, are called interesting seeds
(i.e. fitness). If a test-case is not marked as interesting, then it might
be ignored or be given a lower priority in the next execution itera-
tion. This feedback mechanism allows the fuzzer to effectively and
autonomously exclude test-cases that cover previously explored paths,
which leads to a more efficient use of time in a fuzzing campaign. An
example of such a fuzzer, is the American Fuzzy Lop (AFL) fuzzer,
which is one of the leading fuzzers in the field today [30, 9].

3.2 Generational Fuzzing
After mutational fuzzing, we discuss another fuzzing technique that
focuses on input generation, generational fuzzing. Generation-based
fuzzers create test cases that are based on a model that is provided
by the user or inferred from the PUT [16]. The provided model usu-
ally contains some information about the structure of input that is ac-
cepted by the PUT. Therefore, generation-based fuzzers are almost
never back-box methods. One example of a generation-based fuzzer is
T-Fuzz [11], which takes in a protocol specification from the user. In
short, one could say that generation-based fuzzing is like mutational
fuzzing with constraints. This partially solves the problem of large
numbers of possible mutations. However generation-based fuzzing
also has its limitations. The model provided to the fuzzer might, for
example, constraint the fuzzer by partially blocking paths that the mu-
tational fuzzer would have been able to explore. The fuzzer may also
require manual effort in order to define the model on which the test
cases are built, which reduces automation.

3.3 Transformational Fuzzing
The next type of fuzzing algorithms we discuss are transformational
fuzzers, sometimes called patch(-based) fuzzers. Transformational
fuzzers belong to the white-box fuzzer category, and were introduced
to overcome a significant drawback in the previously discussed tradi-
tional fuzzing; if inputs are rejected by the PUT at an early execution
stage, for example in a parsing step, then the fuzzer is ineffective at
reaching deeper program parts [26]. Figure 2 illustrates such a situ-
ation. This problem, for example, arises in mutational fuzzers when
the PUT verifies input integrity using a checksum mechanism. If the
fuzzer mutates parts of the included checksum value, or the rest of the
input, the input will not pass such a checksum step early in the ex-
ecution of the PUT. The main idea behind transformational fuzzing,
is to attain better code coverage of deeper program execution paths,
by mutating both the input and the PUT. Figure 3 provides an illus-
tration of the model of a transformational fuzzer, T-Fuzz. These PUT
transformations do not only apply to (early) checksum mechanisms,
but also to hard-to-reach code deeper in the PUT. Such hard-to-reach
code is often protected by difficult conditional checks, such as magic
bytes, for which fuzzers have difficulty generating valid inputs that
pass them [24, 26]. Transformational fuzzers solve this challenge by
locating such checks, and transforming the program such that a given
check is easily bypassed, allowing the fuzzer to fuzz the underlying
deeper code paths. Transformational fuzzers use different strategies to
discover these difficult checks and bypass or disable them. We will
now discuss some transformational fuzzers in more detail.

TaintScope [26] The idea of bypassing checksum integrity tests
was introduced by Wang et al. in 2010. Their checksum-aware fuzzer
TaintScope locates bytes in well-formed inputs that are associated with
security checks. When these checks are discovered in the PUT through

Fig. 2. An illustration of hard-to-reach code protected by difficult checks.

taint analysis, it patches the PUT to bypass the check. If, after patching
and proceeding, a bug is found, the correct passing checksum value is
calculated and corrected in the input, such that the crashing input is
able to pass the check in the unmodified PUT, to verify the bug [16].
A clear limitation of TaintScope, is the fact that it is limited to only
bypassing checksum mechanisms.

Fig. 3. An example of the workflow of a transformational fuzzer (T-Fuzz).
Figure adapted from [19].

T-Fuzz [19] Next, we consider T-Fuzz. Unlike TaintScope, T-
Fuzz does not limit its bypassing to checksum mechanisms, instead it
extends this idea to bypassing a broader class of difficult-to-pass con-
ditional checks [20]. T-Fuzz determines which checks do not affect the
program logic of the PUT, which the authors call Non-Critical Checks
(NCCs). These NCCs may then be bypassed when a fuzz campaign
gets stuck and is unable to further increase coverage by discovering
new paths. A challenge here is NCC selection, to determine which
NCC(s) should be prioritized to be transformed, otherwise transfor-
mation explosion, as Peng et al. call it [19], may occur. We further dis-
cuss transformation explosion in Section 4.3. T-Fuzz disables NCCs
by flipping the checks through fast static binary patching. T-Fuzz uses
the formal method of constraint solving in its bug validation process.
It keeps track of the path constraints that lead to discovered bugs. Af-
ter a bug is found, T-Fuzz solves this constraint trace to determine
whether it is satisfiable or not. If the constraints are not satisfiable, the
reported bug is a false positive. The fact that T-Fuzz only has to solve
constraints when a bug is found, instead of when generating input, is
one of its optimizations when compared to other methods (e.g. con-
colic execution). However, constraint solving is still expensive and not
always possible in reasonable time, especially when traces get longer
and/or contain more constraints.

State-of-the-Art Fuzzing: Challenges, Limitations and Improvements – Nik Dijkema and Zamir Amiri

28

DeepDiver [24] The last transformational fuzzer we discuss is
DeepDiver, a hybrid fuzzing approach that combines patching with
concolic execution to overcome the limitations of T-Fuzz. DeepDiver
refers to the complex checks that it negates as Roadblock Checks
(RCs), examples of RCs are the previously described checksums,
magic bytes, and, especially, nested complex sanity checks. Deep-
Diver locates RCs using coverage information and trace analysis.
DeepDiver uses concolic execution to generate relevant concrete in-
puts based on the negated RCs, which are then fed back to the fuzzer,
such that the fuzzer is able to explore deeper parts of the binary. Simi-
lar to T-Fuzz, DeepDiver also needs to validate found bugs to eliminate
false positives. It does this using a similar strategy as T-Fuzz.

3.4 Compositional Fuzzing
Now, we move on to the last fuzzing paradigm we discuss; compo-
sitional fuzzing. The main idea behind compositional fuzzing is to
fuzz program components (e.g. functions) individually. When a bug
is found in one of the components, the fuzzer traces the program to
determine whether or not the bug can be triggered from a program
entry-point, such as the main function [18].

Wildfire [18] The compositional fuzzing algorithm we discuss, is
Wildfire. Wildfire is claimed to be the first hybrid fuzzer that combines
fuzzing with compositional analysis. Wildfire fuzzes C programs’ in-
dividual (parameterized) functions to find bugs. It then uses targeted
symbolic execution to determine if bugs can be triggered from a top-
level function. Figure 4 depicts the general workflow of Wildfire. It
works as follows [18]; after instrumenting and compiling the source
code, it generates function drivers and respective seed inputs for all
parameterized functions. These drivers are simple wrappers around
the respective function, which are then fuzzed to generate test-cases.
Since, during the fuzzing of individual functions, the calling context is
ignored, the fuzzing of individual functions can be performed in par-
allel. Having obtained test-cases for the individual functions, Wildfire
minimizes the sets of test-cases by removing those that execute redun-
dant paths, and also removes any leading and trailing null bytes that
do not affect the execution path. The minimized test-case inputs are
then replayed to an instrumented version of the compiled object, to
obtain crash reports and determine vulnerable functions. It then pro-
ceeds to use stack-trace matching and targeted symbolic execution to
determine whether vulnerabilities can be triggered from an entry-point
function and generate a concrete crashing test-case. In order to address
the path-explosion problem (see Section 4.2), Wildfire first replaces
vulnerable functions by summaries of their crash reports (value asser-
tions that would trigger the vulnerability). This step restricts the paths
of vulnerable functions to only those that lead to the vulnerability.

Like any fuzzer, Wildfire also has some limitations. Firstly, it only
supports the analysis of functions that strictly have non-pointer and/or
single-pointer type arguments. It is unable to fuzz functions that have
double- or more pointer type arguments. Secondly, even though Wild-
fire cleverly reduces the chance of path-explosion by replacing vul-
nerable functions with value assertion summaries, path-explosion may
still occur in higher-level functions, which could lead to exploitable
vulnerabilities not being traced back to an entry-point, and therefore
not being reported as exploitable (i.e. false negatives).

4 FUZZING CHALLENGES

Various challenges exist in the domain of fuzzing and many solutions
for them have been proposed. Fuzzers from different paradigms have
different strengths, but also have different limitations, as we have seen
in the previous section(s). In most cases, new fuzzers are designed in
an attempt to solve some of these challenges, but these solutions often
incur new challenges and limitations. In this section, we discuss the
current challenges that occur in the fuzzing sub-domains.

4.1 Code Coverage
The primary limitation for fuzzers in general, lies in the fact that their
effectiveness is inherently constrained by the execution path coverage
they achieve. It is well-known that attaining good code coverage be-
comes significantly more difficult in deeper parts of programs.

Fig. 4. A high-level illustration of the workflow of Wildfire. Figure
adapted from [18].

Hard-To-Reach Code As discussed in Section 3.3, some code
is often protected by hard sanity checks such as input file checksum
mechanisms (Figure 2). It is difficult for fuzzers to generate input that
passes such tests, which may block the fuzzer from fuzzing underlying
program code.

4.2 Constraint Solving

As we have seen in the (white-box) fuzzing approaches we discussed
in Section 3, modern fuzzers often require constraint (satisfiability)
solving in some part of their process. This can either be to generate
concrete inputs that execute certain program paths, or to verify bug
candidates by determining whether they can be triggered in the PUT
with appropriate input.

Path-explosion The challenge regarding constraint solving, is
that it becomes extremely expensive (time consuming), if not impos-
sible, when the set of constraints becomes large, which is likely to
occur in large-scale programs. As program scale increases, the num-
ber of execution states grows explosively and is likely to exceed the
capabilities of constraint solvers [4, 14].

4.3 Transformation Explosion

Transformation explosion is a problem that arises in transformational
fuzzing. Transformation explosion refers to a rapid increase in the
number of transformed PUT versions. It can limit the efficiency with
which different program paths are explored and can also deplete hard-
disk memory resources [24].

4.4 Automation

Another challenge in the field of fuzzing, is the reduction of manual
effort in order to make fuzzers more accessible and user-friendly. Gen-
erally, this means that the fuzzers have to become more autonomous,
such that they can function without manual input from a user with
great expertise. One of the challenges with regards to automation is in-
put generation. These days, most software make use of more complex
structured input, such as Data Transfer Objects (DTO) in programs
written in an object oriented language [3], for which input generation
is more complex to effectively automate.

4.5 Scalability

Even though fuzzing, in many cases, is an embarrassingly parallel
workload, the scalability of state-of-the-art fuzzers, such as AFL [30],
on larger numbers of cores, has been shown to be surprisingly poor
[29]. In the case of AFL, Xu et al. determined that this to be due to file
system contention and the scalability of system calls such as fork().

5 POTENTIAL SOLUTIONS AND IMPROVEMENTS

Now that we have established the major challenges in the domain of
fuzzing, we will discuss how these have been addressed in the past, and
how further improvements to the field of fuzzing may be achieved.

SC@RUG 2021 proceedings

29

5.1 Code coverage
Improving code coverage is one of the main focuses of fuzzing re-
search and new fuzzing methods, because fuzzers are only as effec-
tive as the code coverage they achieve. Due to the volume of research,
many approaches to increase code coverage have already been studied.
Interesting approaches such as combining grammar- or model-based
generational fuzzing with machine learning techniques, like neural
networks to learn the input model, are being explored in recent years
[7].

5.2 Constraint Solving
Many fuzzers use constraint-solving in one way or another. Therefore,
in order to increase fuzzer performance, methods to solve constraint
satisfaction problems more effieciently are required. However, this is
an NP-complete [27] problem, and while research into better methods
continues, this topic is beyond the scope of this paper.

5.3 Automation
The need for further development towards automation is clear. One
interesting research area to help achieve this, may also be machine
learning. Machine learning has been used in fuzzing in the past, with
promising results [7]. There are existing fuzzers that are already de-
cent with regard to automation [30], however, these fuzzers can still
be further improved. Proper development of (fuzzing) software re-
quires widespread use, so the fuzzers should be accessible to less-
experienced developers. One of the ways in which the widespread
use of fuzzers may be increased, is by extending these often complex
software packages with a user-friendly UI, and distributing them as
plugins for projects. This will make fuzzers more accessible to the
less-experienced developer, which will likely result in more issue re-
ports, feature requests, and ideally, further improvements.

5.4 Scalability
Reducing the time needed by fuzzers to obtain good code coverage and
discover bugs, allows fuzzers to cover more code in the same amount
of time and likely find more bugs. Increasing the speed of fuzzers
is also important when we consider the increasing scale of programs
and code-bases [29]. Scaling fuzzers to multiple processing cores or
even distributed systems is a very promising way to achieve such per-
formance increases. An example of scalability efforts in fuzzing is
Google’s ClusterFuzz [8]. ClusterFuzz is Google’s scalable fuzzing
infrastructure, which they also use to fuzz all their own products. Due
to the nature of fuzzing, scalability is a very viable and important way
to improve fuzzer performance.

6 DISCUSSION & FUTURE WORK

During our research, we found that, due to the momentum that fuzzing
has gained over the past years, the body of research on fuzzing has
become very vast and diverse. Many different fuzzers exist and more
are still being developed. Even though determining the current general
challenges in the fuzzing domain was doable in the broad scope of this
paper, proposing worthwhile approaches to potentially address these
challenges proved to be more difficult than we anticipated. The active
research on fuzzing is a sign of a lively scientific field, with much
potential for progress, but it also makes it difficult to obtain a coherent
view of the field and the research that has already been done. Knowing
this, we now believe that, due to the abundance of different approaches
in fuzzing, the research field would stand to benefit from review papers
with a smaller scope, allowing for a more detailed compilation of the
current knowledge and progress in the world of fuzzing.

During our research on this topic, it also became apparent to us that
finding appropriate fuzzer tools for specific applications was rather dif-
ficult. Even though abundant information is available, we often found
that, instead of finding answers to our questions, we ended up with
more questions raised. When looking at this experience, we can only
imagine how lost the average developer must feel when they attempt
to explore the world of fuzzing and try to find a fuzzer that is suit-
able for their specific purposes. Therefore, we propose that a more
user friendly approach to documentation of available fuzzer software

be introduced, such that the usage of fuzzers increases rather than de-
creases.

7 CONCLUSION

Over the past years, fuzzing has become one of the main tools used
for vulnerability detection in the field of cybersecurity. Many different
fuzzing approaches have been proposed and developed, with a vast
body of scientific literature. The purpose of our research was to answer
RQ1 and RQ2 (see Section 1).

To answer the first research question, the current ’hard’ challenges
in fuzzing include increasing code coverage, path- and transformation
explosion, fuzz campaign guiding, constraint solving, automation, and
scalability. Different fuzzers are strong with respect to some of these
challenges, but are lacking with regard to others.

Unfortunately, we found that the scope of our research was too
broad for our goals. Therefore, we were unable to propose novel, in-
novative solutions to existing challenges within the time-frame of our
research. Most of the challenges in fuzzing require a deep, detailed
dive into existing literature and research, and should be considered to
be research topics in and of themselves.

ACKNOWLEDGEMENTS

The authors wish to thank TNO for proposing this research subject.
The authors also wish to thank Dr. Fatih Turkmen for taking the role
of expect reviewer. Finally, the authors wish to thank the organization
of the SC@RUG2021 symposium.

REFERENCES

[1] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp,
M. Harman, M. J. Harrold, and P. Mcminn. An orchestrated survey
of methodologies for automated software test case generation. J. Syst.
Softw., 86(8):1978–2001, Aug. 2013.

[2] A. Arcuri, M. Z. Iqbal, and L. Briand. Random testing: Theoretical re-
sults and practical implications. IEEE Transactions on Software Engi-
neering, 38(2):258–277, 2012.

[3] M. Boehme, C. Cadar, and A. ROYCHOUDHURY. Fuzzing: Challenges
and reflections. IEEE Software, pages 0–0, 2020.

[4] C. Cadar and K. Sen. Symbolic execution for software testing: Three
decades later. Commun. ACM, 56(2):82–90, Feb. 2013.

[5] L. De Moura and N. Bjørner. Satisfiability modulo theories: Introduction
and applications. Commun. ACM, 54(9):69–77, Sept. 2011.

[6] P. Godefroid, M. Levin, and D. Molnar. Automated whitebox fuzz testing.
01 2008.

[7] P. Godefroid, H. Peleg, and R. Singh. Learn & fuzz: Machine learning
for input fuzzing. In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 50–59, 2017.

[8] Google. Clusterfuzz. https://google.github.io/
clusterfuzz/.

[9] C.-C. Hsu, C.-Y. Wu, H.-C. Hsiao, and S.-K. Huang. Instrim:
Lightweight instrumentation for coverage-guided fuzzing. 01 2018.

[10] J. Huang. Program instrumentation and software testing. Computer,
11:25–32, 1978.

[11] W. Johansson, M. Svensson, U. E. Larson, M. Almgren, and V. Gulisano.
T-fuzz: Model-based fuzzing for robustness testing of telecommunication
protocols. In 2014 IEEE Seventh International Conference on Software
Testing, Verification and Validation, pages 323–332, 2014.

[12] J. C. King. Symbolic execution and program testing. Commun. ACM,
19(7):385–394, July 1976.

[13] C. Lemieux, R. Padhye, K. Sen, and D. Song. Perffuzz: Automatically
generating pathological inputs. ISSTA 2018, page 254–265, New York,
NY, USA, 2018. Association for Computing Machinery.

[14] J. Li, B. Zhao, and C. Zhang. Fuzzing: a survey. Cybersecurity, 1(1):6,
Jun 2018.

[15] K.-K. Ma, K. Yit Phang, J. S. Foster, and M. Hicks. Directed symbolic
execution. In E. Yahav, editor, Static Analysis, pages 95–111, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

[16] V. J. M. Manès, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz, and
M. Woo. The art, science, and engineering of fuzzing: A survey. IEEE
Transactions on Software Engineering, pages 1–1, 2019.

[17] B. P. Miller, L. Fredriksen, and B. So. An empirical study of the reliability
of unix utilities. Commun. ACM, 33(12):32–44, Dec. 1990.

State-of-the-Art Fuzzing: Challenges, Limitations and Improvements – Nik Dijkema and Zamir Amiri

30

[18] S. Ognawala, F. Kilger, and A. Pretschner. Compositional fuzzing aided
by targeted symbolic execution, 2019.

[19] H. Peng, Y. Shoshitaishvili, and M. Payer. T-fuzz: Fuzzing by program
transformation. In 2018 IEEE Symposium on Security and Privacy (SP),
pages 697–710, 2018.

[20] H. Peng, Y. Shoshitaishvili, and M. Payer. T-fuzz: Fuzzing by program
transformation. In 2018 IEEE Symposium on Security and Privacy (SP),
pages 697–710, 2018.

[21] V.-T. Pham, M. Böhme, A. E. Santosa, A. R. Căciulescu, and A. Roy-
choudhury. Smart greybox fuzzing. 2018.

[22] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos. Vuzzer
: Application - aware evolutionary fuzzing. In NDSS’17, NDSS’17, 2017.

[23] A. Rebert, S. K. Cha, T. Avgerinos, J. Foote, D. Warren, G. Grieco, and
D. Brumley. Optimizing seed selection for fuzzing. In 23rd USENIX
Security Symposium (USENIX Security 14), pages 861–875, San Diego,
CA, Aug. 2014. USENIX Association.

[24] F. Rustamov, J. Kim, and J. Yun. Deepdiver: Diving into abysmal depth
of the binary for hunting deeply hidden software vulnerabilities. Future
Internet, 12(4), 2020.

[25] K. Sen, D. Marinov, and G. Agha. Cute: A concolic unit testing engine
for c. 30(5):263–272, Sept. 2005.

[26] T. Wang, T. Wei, G. Gu, and W. Zou. Taintscope: A checksum-aware
directed fuzzing tool for automatic software vulnerability detection. In
2010 IEEE Symposium on Security and Privacy, pages 497–512, 2010.

[27] Wikipedia contributors. Np-completeness — Wikipedia, the free ency-
clopedia, 2021. [Online; accessed 17-March-2021].

[28] M. Woo, S. Cha, S. Gottlieb, and D. Brumley. Scheduling black-box
mutational fuzzing. pages 511–522, 11 2013.

[29] W. Xu, S. Kashyap, C. Min, and T. Kim. Designing new operating prim-
itives to improve fuzzing performance. CCS ’17, page 2313–2328, New
York, NY, USA, 2017. Association for Computing Machinery.

[30] M. Zalewski. American fuzzy lop. https://lcamtuf.coredump.
cx/afl/.

SC@RUG 2021 proceedings

31

Comparing Strategies for Mining User Reviews to Determine App
Security

Albert Dijkstra and Niels Bügel

Abstract—In the past few years there has been an increase in apps published to app stores. The combination of this increase in
apps, low entry barriers for publishing to app stores and pressure on developers to rapidly develop apps, results in an increase of
security risks for the users. While code analysis and behaviour testing have been used to identify security risks in the past, a different
approach has emerged that analyses user reviews. User reviews can be used to identify possible security risks. However, with this,
three challenges emerge: the issue of semantics, extracting only security relevant reviews and the issue of user credibility. In this
paper we analyze four different algorithms that can be used to assess app security risks based on user reviews. The algorithms in
question are: AUTOREB, MARS, SRR-Miner and the method proposed by T. Hadad et al. The goal is to provide an overview of how
the different algorithms perform and what their advantages and disadvantages are. While all algorithms are useful in their own right,
we found that MARS provides the most reliable results for assessing security risks of apps.

Index Terms—App, Risk, Security and Privacy, User Review, Mining

1 INTRODUCTION

In recent years, the number of applications on app stores such as
Google Play have shown strong growth. The growth can be attributed
to the increasing popularity of software engineering studies [1] and
low entry barriers. Due to these low entry barriers and the fact that
there is high pressure on the developers to quickly develop apps [2],
the security and privacy risks increase for the end user [3]. Numer-
ous different methods have been proposed for analysing the security
impact of applications. These methods include code analysis [3, 4],
testing the behaviour of an app [5] or a combination of both [2]. An-
other, more recent, approach is to study the user reviews of apps in
these app stores and infer useful information about security and pri-
vacy aspects of the corresponding app from this. User reviews provide
a unique point of view on these aspects and, as a result, can provide
useful information.

From the state-of-the-art [6, 7, 8, 9] we see that there are a num-
ber of challenges to overcome when mining user reviews. The first
challenge concerns the semantics. Since most reviews are typed on
smartphones, the reviews tend to be short and they can contain mis-
spelled words [8]. In addition to this, different words can be used to
express the same meaning [6]. The second challenge is finding all the
reviews that are relevant for assessing security risks. App reviews are
diverse and not all reviews are security related [8]. The third challenge
concerns user credibility. Paying attention to user credibility can pre-
vent the reviews of experts from being overshadowed by those of less
trustworthy reviewers [6]. In general, the methods used for mining
these user reviews make use of either supervised learning or unsuper-
vised learning. However, not all of the approaches tackle the afore-
mentioned challenges in the same way and there are multiple ways of
dealing with these problems.

In this paper, we aim to analyse how four different methods of
analysing user reviews perform in determining the privacy and security
risks of an app. The goal is to highlight the different advantages and
disadvantages and provide a meaningful discussion about this. We ex-
pect that each approach has their specific use case and our paper aims
to provide an overview of this.

In section 2 we discuss the different algorithms and how they work.
In section 3 we go through the different challenges and see how
each algorithm deals with them. In section 4 we provide an analysis

• Albert Dijkstra of the Faculty of Science and Engineering, University of
Groningen, E-mail: a.dijkstra.38@student.rug.nl.

• Niels Bügel of the Faculty of Science and Engineering, University of
Groningen, E-mail: n.a.bugel@student.rug.nl.

Fig. 1. Inferring app-level labels via crowdsourcing [6].

and overview of the various aspects of the aforementioned methods.
Lastly, concluding remarks and future work are discussed in section 5.

2 BACKGROUND

Before a comparison analysis can be done on the different methods,
we first provide a basic overview of them. The four methods that are
discussed in this paper are AUTOREB [6], MARS [7], SRR-Miner [8]
and the method proposed by T. Hadad et al. [9] which we refer to
as UFA from this point on. These particular methods were chosen
due to the variety of techniques they employ. While the intend of
these methods is to perform security risk assessment, the manifestation
of this measure differs significantly between them. To illustrate the
techniques and measurements these methods use, we discuss each of
them in more detail next.

2.1 AUTOREB
The goal of AUTOREB is to infer security behaviour from reviews
using machine learning. Each review is given one or more of the
following security behaviours: Spamming, Financial Issue,
Over-privileged Permission and Data Leakage. The
method distinguishes two stages. The first stage is the review-level
security behavior inference (RLI) stage. This stage is concerned with
assigning the correct labels to each review using a machine learning
algorithm. The second stage is the app-level security behaviour infer-
ence (ALI) stage. This stage uses crowdsourcing to combine the re-
views from the RLI stage to obtain the security labels associated with
the application. The two stages of AUTOREB can be seen in Figure 1.

The RLI stage consists of a training phase during which the classi-
fier is trained and a testing phase during which new user reviews are
automatically labeled by feeding them into the classifier. The train-
ing phase itself is composed of three steps. During the first step, the
security-related features are extracted by determining those features

32

Fig. 2. An overview of the framework used by SRR-Miner [8].

that have a close relation to one of the aforementioned security be-
haviours. This is done using a keyword-based approach.

The next step is referred to as semantic expansion and attempts to
deal with reviews that have similar meaning, but are described dif-
ferently. It does this using a technique called feature augmentation,
during which additional relevant words or phrases are added. At the
end of this step, each user review is represented as a feature vector
called a bag of words (BOW). In the last step of the training phase this
bag of words is used for the actual training of a sparse Support Vector
Machine (SVM). To classify a user review during the testing phase of
the RLI stage, a BOW is first generated similar to the testing phase.
Once this BOW has been obtained, the sparse machine learning clas-
sifier can determine the corresponding security behaviour category.

After the RLI stage has finished, the results are combined to obtain
the security labels associated with the app itself. This is the ALI stage.
It is done using crowdsourcing; a technique that aims to to combine
the labels of multiple works to find the ground truth, i.e. the true la-
bels of the item. Crowdsourcing assumes the labels to be noisy, of
low quality and possibly contradictory. In contrast to majority voting,
the two-coin model [10] used by AUTOREB does not treat each user
equally and tends to weigh the opinions of more trustable users higher.
This attempts to reduce the issue of the crowd’s less valuable opinions
potentially overshadowing the contributions of the experts. The two-
coin model is explained further in subsection 3.3.

The result of AUTOREB is a collection of app-level security label
indicators. These indicators are not to be interpreted as the probabil-
ity of the application having a particular security issue, but rather as a
security-risk ranking score that can be used for comparing the security
risk against other applications. Through manual annotation, a thresh-
old can be set on these indicators to determine if an application has a
particular security behaviour or not [6].

2.2 MARS
MARS stands for Mobile App Reviews Summarisation. It makes use
of natural language processing, sentiment analysis and machine learn-
ing to summarise user reviews. The goal of MARS is to provide in-
sights in the relation between the real behaviour of an app and the
privacy and security-related reviews.

At the start of the process, a filtering and pre-processing step is
performed that tokenises the review, removes stop words and applies
stemming to reduce the number of words. Similar to SRR-Miner, it
uses Vader SentimentAnalyser [11] to discriminate between positive
and negative reviews. The automatic classification of the user reviews
makes use of supervised learning. The feature extraction makes use of
a Term Frequency-Inverse Document Frequency (TF-IDF) feature for

the representation of each user review. For the classification algorithm,
logistic regression was selected due to its simplicity and the fact that
it is less prone to over-fitting. In the end, MARS assigns a number of
labels to each user review. For the end-user of MARS, it presents a
web interface that provides an overview of the security risks and most
relevant reviews of the application in question [7].

2.3 SRR-Miner
In contrast to AUTOREB, SRR-Miner does not make use of machine
learning. Instead, it uses a keyword-based approach. In contrast with
MARS and AUTOREB, the goal is not to classify reviews or the ap-
plication itself, but rather to provide a summary of the user reviews.
It does this by extracting <misbehaviour, aspect, opinion>
triples from the user reviews. For example, a user review sentence
such as “This app is leaking GPS location, it is very annoying.” cor-
responds to the triple <leaking, GPS location, annoying>.
The entire process consists of five steps: pre-processing, sentiment
analysis, sentence extraction of security-related reviews, triple extrac-
tion and lastly a visualisation of the summarisation. An overview of
the framework as a whole can be seen in Figure 2.

The first step in this technique is the pre-processing of the user
reviews. This step consists of removing emojis, discarding non-
English reviews, correcting abbreviations, expanding contractions and
attempting to correct typos. The second step is the sentiment analy-
sis, where the negative reviews are extracted for further analysis using
Vader SentimentAnalyser similar to MARS. The next step is extracting
the security-related reviews by constructing a list of security-related
keywords that allow the system to extract reviews based on those key-
words. The fourth step is extracting the <misbehaviour, aspect,
opinion> triples from the security-related reviews with the use of a
semantic dependency graph. The final step is the visualisation of the
summarisation using a radar chart [8].

2.4 UFA
The goal of the method proposed by T. Hadad et al. is to explicitly
detect malicious applications and label them as such. The system con-
sists of four main steps. The first step is generating a domain spe-
cific lexicon using a domain-specific corpus. Both the domain-specific
corpus and the user reviews are examples of textual corpora. These
are represented in natural language form and require pre-processing.
The domain-specific corpus can be used to generate a Domain Lexi-
con (DL). The specific pre-processing steps for these textual corpora
used in this method are further discussed in subsection 3.1.

The second step is using this DL in combination with the user re-
views to extract application features. The third step is referred to as

SC@RUG 2021 proceedings

33

Fig. 3. A flowchart of the malware detection system proposed by T. Hadad et al. [9].

feature engineering; in this step, two features are generated for each
application. The last step is generating a classification model using
supervised learning. The features generated in the previous step are
used here as the training dataset. A flowchart of the full process can
be seen in Figure 3.

All the different supervised learning classifiers mentioned in their
paper need labelled data for the testing, training and validation sets.
As such, T. Hadad et al. use several virus scanners and combined their
outputs to obtain this labelled data. They tested three different classi-
fiers: C4.5 decision tree learner [12], random forest [13] and logistic
regression [14]. Among these three classifiers, logistic regression per-
formed the best [9].

3 ANALYSIS

To determine the app security from reviews there are a number of chal-
lenges to overcome. In this particular paper, we discuss three of these
challenges in more detail: semantics, relevance and user credibility.
Not all of these challenges are addressed by each method in the same
way; this may include ignoring it all together. Nevertheless, we dis-
cuss each of these challenges in more detail next and how the methods
approach them. In addition to this, we also discuss how the different
methods obtained their data sets.

3.1 Semantics
Instead of the often-used static code analysis or behaviour testing, the
methods discussed in this paper make use of user reviews. The chal-
lenge here is that the reviews are written in a natural language. This
presents issues such as the fact that users may use emojis, abbrevia-
tions or non-existing words[6, 8]. This means that there are a number
of challenges to overcome here. For the four different algorithm, deal-
ing with the semantics is generally done in a pre-processing step. In
this step, a number of these issues are addressed. The different prob-
lems and their possible solutions within this pre-processing step are
discussed next.

Noise removal. Noise removal concerns itself with removing irrel-
evant data from the user reviews. Different algorithms classify differ-
ent things as noise. For noise removal, MARS and AUTOREB remove
stop words [7, 6]. UFA removes, in addition to stop words, numbers
and punctuation [9]. SRR-Miner only removes Emojis and instead of
removing punctuation, SRR-Miner uses it to split it into subgroups in

order to process these as independent clauses. It should be noted that
SRR-Miner explicitly filters out non-English reviews in this step [8].
The other methods make no mention of the language assumptions.

Character replacement. There are a number of things that can be
addressed using character replacement. The first is removing charac-
ter continuity. If a character repeats itself for more than two times,
the extend of characters are removed, e.g. “sleeeep” becomes “sleep”.
SRR-Miner also ensures that text and slang language - including ab-
breviations and contractions - are replaced by the corresponding word.
For example, “fav” will become “favourite” [8].

Since most of these reviews are written on mobile, spelling mis-
takes and expressions occur relatively often. As such, both UFA and
SRR-Miner replace expressions and frequent spelling mistakes which
are known beforehand [8, 9]. In addition to this, missing apostro-
phes are added; e.g. “dont” is replaced by “don’t”. Afterwards, pre-
determined words with apostrophes are expanded, which means that
“don’t” would be expanded to “do not”. It is important to note that,
while AUTOREB does not fix spelling mistakes in the pre-processing
step, it indirectly circumvents this issue in the feature augmentation
step by using a search engine that still works with misspelled queries.

Stemming. MARS, UFA and AUTOREB stem all words to their
roots. After stemming, words such as “walk”, “walking” and “walked”
all match the common root “walk” [6, 7, 9]. Each of the previously
mentioned steps aim to normalise the words so that the next step in the
main process becomes easier.

3.2 Relevance
In contrast to the pre-processing step, where only individual words
were addressed, the relevance step concerns itself with the meaning
behind the reviews. This can be done with a variety of different meth-
ods.

For AUTOREB, the relevance stage is equivalent to the RLI stage.
AUTOREB uses a keyword-based approach to select from a review the
security relevant words or phrases. AUTOREB find words or phrases
of similar meaning by submitting a query to a search engine. The ad-
vantage of this approach is that the query can be misspelled, short or
varied in the choice of words. The relevant reviews are then extracted
from the top documents that were obtained by submitting the query.
The resulting reviews are then added to the original feature vector:
this is called feature augmentation. This feature vector describing the

Comparing Strategies for Mining User Reviews to Determine App Security – Albert Dijkstra and Niels Bügel

34

review is referred to as a Bag-of-Words (BOW). Specifying how ap-
plicable the predetermined labels are to a specific review is then done
using a sparse machine learning classifier [6].

MARS uses supervised learning to determine the threat described
in the user review. In order to compare a user review with the different
threats it uses word vectors. For each threat there is a set of words that
are expanded with additional words related to the security threat. This
is done by text expansion. MARS searches in the GloVe [15] vocabu-
lary for the N most similar words and returns those words along with
their corresponding match percentage. This is then used in combina-
tion with a supervised classification algorithm to obtain the privacy
and security relevant reviews [7].

UFA creates a domain specific corpus by first extracting data from
computer and network security books. It then transforms it to canon-
ical form, which corresponds to the normalized form as described in
subsection 3.1. Afterwards, it extracts unigrams and bigrams of the
phrases along with the frequencies from the corpus so that the fre-
quently used phrases can be selected. As a result, only the security
relevant phrases are left [9].

SRR-Miner uses three steps to extract security threats mentioned in
user reviews. It first extracts key words in the user reviews. For this
it uses Natural Language Processing in order to discover verbs and
nouns and lemmenises them. In the next step an iterative process is
used to find keywords related to security. First a number of keywords
are manually selected, which are then expanded using a co-occurrence
matrix. If there are enough user reviews that use a particular word,
said word is added as keyword. Last, three sub-steps are used to make
sure that non-security related keywords are not added. In the first sub-
step, words such as app, phone etc. are removed. In the second sub-
step, words are removed in which the verb is the user itself, such as
uninstall etc. In the last sub-step, all the non-security related words are
removed. The final step of the relevance step is to use these keywords
to extract security relevant reviews [8].

In addition to the steps mentioned above, SRR-Miner and MARS
add another pre-processing step by looking at the sentiment of the user
review [7, 8]. A review can be positive, negative or neutral. However,
negative, and sometimes neutral reviews tend to reflect security issues
more compared to positive reviews [8, 9]. SRR-Miner and MARS use
Vader SentimentAnalyser to give a normalised probability a review
is positive or negative. A threshold can be selected to determine the
useful reviews. In contrast with this, UFA does not use a sentiment
analyser. Instead, it uses the fact that negative reviews often have a
one star rating and only uses those reviews [9].

3.3 User Credibility

An extensive study towards detecting fake reviews [16] indicates the
difficulty to differentiate between fake and authentic reviews. Fake
reviews are defined as non-spontaneous reviews by people who get
paid by the developer or are otherwise related, such as friends. They
showed an initial result that over a third of reviews are fake. This
means that user credibility is something that should be taken into con-
sideration.

Determining the results on app-level is typically done by combining
the results on review-level to an app-level classification. It should be
noted that SRR-Miner returns a report with possible threats and lets
the user infer conclusions on it [8]. This means that, in contrast to
AUTOREB, MARS and UFA, SRR-Miner focuses on providing re-
sults on review-level. Therefore, user credibility is not relevant for
SRR-Miner.

The most straightforward way of combining results on review-level
to app-level is to use majority voting. This means that, for example,
an application will receive the “spamming” label if most users mention
“spamming”. A label d is defined as follows:

dl
u,i =

{
1 if user u labels app i as label l
0 otherwise (1)

Where u is the user, i is the app and l is the label. Given that there are

m users, majority voting can be calculated as defined in Equation 2.

yl
i =

1
m

m

∑
j=1

d j,i (2)

The issue with this approach is that the contribution of every user
weighs equally heavy. This means that the contribution of experts
would be under appreciated. To rephrase this issue: some users can
be trusted more than other users. Of the four algorithms discussed in
this paper, AUTOREB is the only one that explicitly addresses this
issue of user credibility [6].

To combat this issue, AUTOREB uses a two-coin system [6]. This
system gives more credit to trustworthy users compared to more un-
trustworthy users. The two-coin system assumes that the chance a
user classifies the label of the app correctly follows the Bernoulli dis-
tribution. For this we denote two cases: α l

u for sensitivity and β l
u for

specificity. Sensitivity is the chance that the worker would correctly
label the app with security threat l, under the condition that the se-
curity threat l exists. Specificity is the chance that the worker would
correctly label the app without security threat l, under the condition
that the security threat l does not exists. Formally this is defined as
follows:

α l
u = Pr(dl

u,i = 1 | yl
i = 1) (3)

β l
u = Pr(dl

u,i = 0 | yl
i = 0) (4)

Here i refers to a particular app, u to a user and l to a specific label.
The parameters α l

u and β l
u can be computed according to the Maxi-

mum Likelihood Estimation (MLE). With this information, yl
i can be

computed with use of the Bayesian Rules.
In contrast to majority voting, D. Kong et al. derive yl

i using Equa-
tion 3 and Equation 4 to obtain the formula seen in Equation 5.

yl
i =

al
i ·Pr(yl

i = 1 | θ)
al

i ·Pr(yl
i = 1 | θ)+bl

i ·Pr(yl
i = 0 | θ)

(5)

Where θ = {α,β}, al
i is the likelihood that app i is getting label

l and bl
i is the likelihood that app i is not getting label l. Moreover,

Pr(yl
i = 0|θ) = 1−Pr(yl

i = 1 | θ) and Pr(yl
i = 1 | θ) is the prior prob-

ability. It should be noted that yl
i cannot be used directly as a classifier.

This is because the annotations that are used are not given by the users,
but rather by the algorithm. Thus the prior probability of finding such
an annotation for the security risk are low. Moreover, some users may
not encounter the issue, or not give a review after encountering the is-
sue. Additionally, the algorithm may not derive the correct semantic
meaning. This all means that yl

i should not be considered as a prob-
ability in itself, but as a ranking score. However, a threshold can be
used for each different label to assign the security labels. With this
threshold there are two different categories. Which then can deter-
mine how much weight you assign to this label, before aggregating all
user-reviews together for labels on app-level.

All in all, the two-coin model ensures that experts are given more
credibility. By extensions, users that untrustworthy are given less cred-
ibility. The combination of this aims to more truthfully represent the
potential security risks of an application.

3.4 Data sets & Ground truth
The four methods use data sets obtained from different sources and
of different sizes. Additionally, the way each method determines its
ground truth also varies between them. To provide an overview of
this, we briefly describe how each algorithm obtained their data sets
and how they define their ground truth.

AUTOREB randomly selects apps from Google play. In total they
use 194,13 reviews of 3,174 apps. The obtained dataset is annotated
manually by three experts and this is used by AUTOREB as their
ground truth [6].

UFA uses 2,506 different apps and 128,863 user reviews on the
Amazon application store. These were obtained throughout a 2-month

SC@RUG 2021 proceedings

35

Noise removal Character replacement Stemming Spelling correction
AUTOREB X - X -

MARS X - X -
SRR-Miner X X - X

UFA X X X X

Table 1. Overview of the actions within the pre-processing steps for each of the four algorithms. Her ’X’ denotes that it is addressed in some extent
and ’-’ that it is not addressed.

period. The apps are a random subset of all the reviewed apps in this
period. In order to determine the ground truth, a tool called VirusTotal
is used. It uses a collection of different virus scanners to determine if
an app is malicious or not. The labels assigned to the app by VirusTo-
tal are used as the ground truth [9]. This is also the only algorithm that
does not have a manual inspection of the assigned labels.

MARS uses 812,899 reviews of 200 different apps, with up to 4,500
reviews per app. These apps are chosen in two steps. First 981,075
apps are obtained and their corresponding permissions are extracted.
This results in 142 unique permissions. The authors focused on appli-
cations that had both internet connection access and requested at least
2 security sensitive permissions. From these apps, the 10 categories
with the most apps associated with them are chosen. Of these 10 cat-
egories the 20 top apps are chosen based on search results from the
Google Play Store. The ground truth is then determined in two steps.
First the GloVe algorithm is used to find reviews which are possibly
privacy relevant. Then three security experts manually check the 2,896
reviews found by GloVe. Of these 2,896 reviews, 2,412 were labeled
correctly. These were given to the classifier [7].

The data set that SRR-Miner used consists of 17 apps. In order to
create some variety in the apps, the apps were chosen from 15 different
categories. Of these 17 apps, 12 were popular apps and had a rating
of more than 3.5 stars. The rest were less popular apps with a rating
of 3.5 stars or lower. For the ground truth they decided to label 1,500
negative and neutral review sentences of the popular apps. Similarly,
all negative and neutral reviews of the less popular apps were also
labeled. In total 18,668 of the 44,859 reviews were manually labeled
and used as the ground-truth [8].

4 DISCUSSION

In the following section we give a comparison of the algorithms. We
provide a discussion of how the different methods handle the three
challenges, how their statistics compare and inspect whether there are
any additional issues with them. The pre-processing step and the issue
of user credibility are discussed in subsection 4.1. The challenge of
finding the reviews which are relevant to security shows overlap with
the goal of some of the algorithms. As such, this is combined with the
overall performance of the algorithms discussed in subsection 4.2.

4.1 Pre-processing & User Credibility

The four algorithms all start with a pre-processing step. The result
of this step is a normalised and higher quality data set. As such, the
degree of thoroughness is important for the quality of the classification
later on in the process. A summarisation of which pre-processing steps
are done can be found in Table 1. It should be noted that this specific
table provides only a surface level comparison and does not go into
detail of how well each specific method tackles each challenge. First
and foremost, we can see that all the four methods have some form
of noise removal. Both SRR-Miner and UFA make use of character
replacement and all the methods except for SRR-Miner make use of
stemming. Of the four methods, UFA takes the most actions in this
step with the removal of stop words, numbers and punctuation.

It is important to note that not all methods are equally reliant on the
quality of the normalisation in the pre-processing step. AUTOREB
for example, uses a search engine for which the queries do not need
to be normalised. As such, it is for AUTOREB less important to have
extremely thorough pre-processing compared to the others, since the
search engine indirectly solves this problem. Nevertheless, it would

be interesting to see how much the methods would improve by intro-
ducing more thorough pre-processing.

Of the four methods, only AUTOREB addresses the issue of user
credibility. While the performance statistics of AUTOREB, MARS
and SRR-Miner show good results, these concern the performance on
review-level. Apart from UFA, none of the papers disclose the per-
formance in correctly classifying applications as malicious, i.e. on
application-level. The output of AUTOREB is not a set of labels, but
rather as a ranking score. A binary output for each label can be pro-
duced by setting a threshold, but the accuracy of this strategy is not
discussed. As such, it is not possible to compare this against UFA.
Nevertheless, given that more than a third of the reviews cannot be
trusted [16] and the results shown by D. Kong et al. it is likely that
the results of UFA could be improved by taking user credibility into
account.

4.2 Performance
In order to compare the performance between the different algorithms
we look at the precision, recall, F1-Score and accuracy reported in the
corresponding papers. These scores can be calculated using the true
positive, false positive, true negative and false negative rates. A True
Positive (TP) indicates that an algorithm correctly identifies a review
as a security issue. On the other hand, a False Positive (FP) indicates
that an algorithm incorrectly identifies a review as a security issue. A
True Negative (TN) indicates that an algorithm correctly identifies a
review as a non-security issue, while a False Negative (FN) indicates
that an algorithm incorrectly identifies a review as a non-security issue.
Then precision, recall, F1-score and accuracy are defined as follows:

Precision =
T P

T P+FP
(6)

Recall =
T P

T P+FN
(7)

F1 =
T P+T N

T P+FP+T N +FN
(8)

Accuracy =
T P

T P+FP+T N +FN
(9)

Due to the slightly different objectives of the methods, the results can-
not be compared directly in a meaningful way for all four methods.
The exception is AUTOREB and MARS, which use the same mea-
surements. The measurements used by both AUTOREB and MARS
look at how well they are able to classify user reviews. In other words,
these particular metrics are not concerned with the performance of
the method on an application level, but rather on review level. While
the performance on application-level is mentioned for AUTOREB, no
explicit performance measurements are provided. The comparison be-
tween AUTOREB and MARS can be seen in Table 2. We observe that
for all the different metrics, MARS scores considerably higher than
AUTOREB. If we compare the data sets that these two algorithms use,

X Precision Recall F1 Accuracy
AUTOREB 80,1 82,46 81,26 94,05

MARS 94,84 91,30 92,79 N/A

Table 2. Overview of the performance of AUTOREB and MARS.

Comparing Strategies for Mining User Reviews to Determine App Security – Albert Dijkstra and Niels Bügel

36

we see that the data set used by MARS contains a significantly smaller
number of applications. However, the total number of reviews that
MARS is higher compared to AUTOREB. From the way the data sets
were obtained, we can see that both are of similar quality.

SRR-Miner gives good results on the extraction of security-related
review sentences with an F1-score of 89%. One major difference with
other algorithms is that it provides a summarisation report instead of
a classification for the app. Meaning that instead of providing a label
to end users without them knowing how this label was arrived at, end
users receive a summary of the reviews and can draw that conclusion
themselves. A survey with a test group of 20 people indicate 18 found
the report useful in understanding the security issues of the app, while
the other 2 were neutral about the app [8]. This indicates that SRR-
miner provided a successful approach to solving the given problem.
That said, SRR-Miner only tested its algorithm on 17 different, hand-
selected mobile apps. The majority of these apps are well known and
very popular downloaded. While the number of reviews was large, the
small number of apps might cause a bias in the results. The authors
are aware of this and want to give more insight in future work.

UFA only reports the recall and accuracy. However, these metrics
do not concern individual reviews, but rather the classification of an
application as a whole. They reported their recall to be 23%, which
means that only a relatively small percentage of the applications that
are classified as malicious are indeed malicious. The authors of UFA
also identified this problem and concluded: “TPR results show that it
is not feasible for using our method as a sole detection method, and
further research should be performed in this aspect.” [9] Even though
further work might solve this problem, in its current state, the method
does not prove to be a feasible technique in reliably identifying mali-
cious applications. Additionally, the data set that UFA uses was not
manually inspected. As such, the data set is more likely to contain
errors compared to the data sets of the other methods.

5 CONCLUSION

In this paper we compared four different algorithm: AUTOREB,
MARS, SRR-Miner and UFA. While the individual goals of the meth-
ods differed slightly, the fundamental objective is the same: provide
information on the security risks of applications based on user reviews.
The three main challenges that these methods had to deal with were
semantics, relevance and user credibility.

UFA can classify apps as malicious. While it is an interesting
choice, its low recall rate make it untrustworthy. In contrast with this,
SRR-Miner provides a summary of the user reviews. It has practical
value for the end users, since it leaves the final decision of the security
risk up to the user. However, its research might be biased, due to only
testing with a handful of well-known apps.

MARS and AUTOREB both provide classification on review-level.
Of these two, MARS clearly provides more reliable results. MARS
also provides a ranking score on application-level. For this it takes
user credibility into consideration; a strategy that UFA might benefit
from. All in all we provided an overview of the different algorithms
and have shown the advantages and disadvantages of each of them.

5.1 Future Work
There are a number of things that could be done in future research.
First, the results of UFA as of right now are not very usable due to
the low recall rate. Its results might improve by integrating a system
that addresses the user credibility problem. Second, each method used
a different set of pre-processing techniques. As such, it would be in-
teresting to see how the performance of the methods change when the
pre-processing techniques are expanded. Third, the data set that the
authors of SRR-Miner used to validate its performance was very small
compared to the others. As such, it is not immediately clear how it
would perform when using a larger data set.

In general, the methods used vastly different data sets and vary-
ing methods of establishing the ground truth. To better compare the
methods in questions, a single large data set could be established. Not
only would this allow researchers to better compare existing methods,
but it would also be useful for future research. Last of all, the results

and performance of some of these methods are already useful for the
end-users. As such, the next step would be making the results easily
accessible for the end users.

ACKNOWLEDGEMENTS

The authors wish to thank the supervisor, reviewers and organisers of
the 18th student colloquium.

REFERENCES

[1] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman, “A survey of app
store analysis for software engineering,” 2017.

[2] B. F. Demissie, M. Ceccato, and L. K. Shar, “Security analysis of permis-
sion re-delegation vulnerabilities in android apps,” Empirical Software
Engineering : An International Journal, vol. 25, no. 6, pp. 5084–5136,
2020.

[3] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A study of android
application security,” in Proceedings of the 20th USENIX Conference on
Security, SEC’11, (USA), p. 21, USENIX Association, 2011.

[4] J. Chen, C. Wang, K. He, Z. Zhao, M. Chen, R. Du, and G. J. Ahn,
“Semantics-aware privacy risk assessment using self-learning weight as-
signment for mobile apps,” 2021.

[5] S. A. Gorski and W. Enck, “Arf: Identifying re-delegation vulnerabili-
ties in android system services,” in Proceedings of the 12th Conference
on Security and Privacy in Wireless and Mobile Networks, WiSec ’19,
(New York, NY, USA), p. 151–161, Association for Computing Machin-
ery, 2019.

[6] D. Kong, L. Cen, and H. Jin, “Autoreb: Automatically understanding
the review-to-behavior fidelity in android applications,” in Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, CCS ’15, (New York, NY, USA), p. 530–541, Association for
Computing Machinery, 2015.

[7] M. Hatamian, J. Serna, and K. Rannenberg, “Revealing the unrevealed:
Mining smartphone users privacy perception on app markets,” Computers
Security, vol. 83, pp. 332–353, 2019.

[8] C. Tao, H. Guo, and Z. Huang, “Identifying security issues for mobile
applications based on user review summarization,” Information and Soft-
ware Technology, vol. 122, p. 106290, 2020. ID: 271539.

[9] T. Hadad, B. Sidik, N. Ofek, R. Puzis, and L. Rokach, “User feedback
analysis for mobile malware detection,” pp. 83–94, 0001 2017.

[10] V. C. Raykar, S. Yu, L. H. Zhao, G. H. Valadez, C. Florin, L. Bogoni, and
L. Moy, “Learning from crowds,” Journal of Machine Learning Research,
vol. 11, no. 43, pp. 1297–1322, 2010.

[11] C. Hutto and E. Gilbert, “Vader: A parsimonious rule-based model for
sentiment analysis of social media text,” in ICWSM, 2014.

[12] J. R. Quinlan, C4.5: Programs for Machine Learning. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1993.

[13] T. Ho, “The random subspace method for constructing decision forests,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, pp. 832–844, 1998.

[14] S. H. WALKER and D. B. DUNCAN, “Estimation of the probability of an
event as a function of several independent variables,” Biometrika, vol. 54,
pp. 167–179, 06 1967.

[15] J. Pennington, R. Socher, and C. Manning, “GloVe: Global vectors for
word representation,” in Proceedings of the 2014 Conference on Empir-
ical Methods in Natural Language Processing (EMNLP), (Doha, Qatar),
pp. 1532–1543, Association for Computational Linguistics, Oct. 2014.

[16] D. Martens and W. Maalej, “Towards understanding and detecting fake
reviews in app stores,” Empirical software engineering : an international
journal, vol. 24, pp. 3316–3355, Dec 2019.

SC@RUG 2021 proceedings

37

An Overview of Evaluation Metrics for Video GANs
Robbin de Groot and Max Verbeek

Abstract— Generative adversarial networks (GANs) are used to generate high-quality synthetic images and video. These networks
are trained by optimising a generative component and a discriminative component separately. The error for both components is,
by nature, not objective and hence we cannot tell from the error which of two GANs performs best. To assess the performance
of a GAN overall, several objective evaluation methods exist. These methods are less established for video GANs than for image
GANs. Here we present a number of existing evaluation methods that have seen success in the application of video generation.
In this paper, we consider a selection of state-of-the-art video GAN evaluation methods. We aim to discover how they compare in
various applications. To achieve this, we provide an overview of five criteria that these evaluation methods can adhere to, with their
corresponding performance in each criterion. To aid our comparison, we propose a simple generalised evaluation method pipeline to
classify differences between methods. The contribution of our paper is to aid researchers in assessing the performance of their video
GAN by providing an overview of methods to consider. This will improve the quality of future papers by shining light on existing, yet
scarcely used methods.

Index Terms—GAN, Video Generation, Evaluation Metric, Comparison, Objective Function

1 INTRODUCTION

Video generation with Generative Adversarial Networks (GANs) is a
newfound technique to generate video material. This technique has
been made feasible on consumer-grade computers due to a recent in-
crease in computational power. Formerly, GANs have been used to
generate images with great accuracy and good realism [1]. Video
GANs expand on this idea by generating sequences of temporally re-
lated images. This has applications such as generating video from
a description [2] or transforming video captured on a rainy day into
sunny bright blue skies [3].

Goodfellow et al. originally proposed GANs that consist of two
components, a generator and a discriminator, that are optimised sep-
arately [4]. We illustrate these components in Fig. 1. The generator
aims to generate an output that looks indistinguishable from the class
of input that it is trained on. Meanwhile, the discriminator tries to dif-
ferentiate between the real samples and the generated samples. The
GAN is considered to be well-trained when the generator can pro-
duce data that the discriminator cannot confidently distinguish from
real data. However, because the discriminator is trained on synthetic
data, the output depends on the generator as well. The networks play
a zero-sum game in an attempt to find the Nash equilibrium: neither
network can improve their own performance, as modifying the model
will also affect the other party leading to performance decrease. [5]

Generation of video proves to be more difficult, due to the higher
dimensionality of videos. The temporal dimension adds an additional
requirement for video material to look realistic, that is, the continuity
between frames should be fluent. Assigning a numeric score to the
similarity of images or video is very difficult to do objectively for ma-
chines, as this is a problem that requires human intuition of what real
video looks like [6]. Some papers resort to similarity scores made by
humans for their final result set [7, 8], which illustrates the difficulty
in deriving an accurate, numeric metric. Additionally, by the nature
of GANs, the accuracy of the discriminator cannot be used to evalu-
ate the training progress. Many evaluation methods are developed for
images. However, these methods do not extend well to video mate-
rial, largely due to the more sophisticated and diverse requirements
that video GANs have. Because of the scarcity of well-defined meth-
ods in the literature, we aim to explore existing evaluation metrics for
video generation. These video methods are in some cases similar to

• Robbin de Groot of the Faculty of Science and Engineering, University of
Groningen, E-mail: r.s.de.groot@student.rug.nl.

• Max Verbeek of the Faculty of Science and Engineering, University of
Groningen, E-mail: m.j.verbeek.2@student.rug.nl.

Fig. 1. A graphical depiction of the general shape of a video GAN and
an evaluation method.

the methods that can be found in the image domain, with a small exten-
sion to account for continuity in the temporal domain. In other cases,
a completely new technique has been established using trainable clas-
sifiers. Although this paper is aimed at video and image sequences,
we will often return to the image domain. This domain is better es-
tablished and therefore relevant to understand the effects of adding the
time dimension.

In this paper, we will assess five categories for evaluation methods,
namely: efficiency, objectivity, continuity, quality, and diversity. All
of these categories except for continuity are also applicable to the
image domain. A common approach is to combine local similarity
metrics with temporal similarity metrics. In these cases, the local

38

approach can be reused from the image domain and only the temporal
similarity needs to be taken care of. With this paper, we aim to answer
the question: how do existing evaluation methods perform in the five
categories mentioned above, and in which application is each method
most suitable?

We will first outline the state of the art to provide context and back-
ground. We will then present the approach to our comparison. We in-
troduce the measures with which we will compare the methods under
consideration. We then concretely list the said methods, outlining their
origins, past uses, strengths, and weaknesses. With that, we commence
our comparison. We finally conclude by collecting and summarising
our findings.

2 STATE OF THE ART

To evaluate the quality and diversity of GAN generated data, we first
require a definition of these terms. Quality is closely related to the
accordance of generated data with the ground truth. A common ap-
proach involves statistical density estimation. This paper adopts the
common notation for densities; pz for the latent density of the gener-
ator G, pG for the data generated by G : Ez∼pz [G(z)], and the ground
truth density pT . One can compute several metrics on these. For com-
paring generated images, the Fréchet Inception Distance (FID) [5] is a
popular choice. The FID is defined as

FID((µG,ΣG),(µT ,ΣT)) = |µG−µT |2 + tr(ΣG +ΣT −2(ΣGΣT)
1
2),
(1)

where the inputs are the means µ and covariances Σ from samples
drawn from pG and pT . Compared to pre-existing methods, such as
the Kullback-Leibler Divergence [9] and Inception Score [6], the FID
is robust against common patterns in images such as shifting, scaling,
and rotating [5]. These patterns arise because pixels in images are not
generally statistically independent. A comparison between the FID
and other methods for evaluating image GANs are outlined in [1].
Hence, we will not go into further detail. The FID has been proven
useful in evaluating images produced by GANs on their realism
compared to the ground truth [5, 10, 11].

We now extend to the time domain. By introducing recurrent ele-
ments to GANs, we obtain GANs that produce sequences of images:
videos. Video GANs come in many different flavours. Often, video
GANs are conditional GANs, meaning they take additional structured
and meaningful input (e.g. the desired class or previous output). Video
GANs, therefore, differ in the conditioned data or the (temporal) rela-
tionship with the conditioned data. We may distinguish between sev-
eral kinds:

• Sequence extension GANs that generate video material from a
starting image or video [8, 12, 13].

• Sequence-conditioned GANs that generate video using a
variable-length sequence as a condition, such as text or speech [2,
14, 15, 16].

• Video translation GANs that translate e.g. the scene in existing
video or cycle between representations [3, 17].

• Probabilistic video GANs that are capable of generating possi-
ble futures from a starting image of sequence [18, 19].

These different types of GANs require different evaluation methods
for proper assessment, although some methods may be universally ap-
plicable.

To illustrate the need for a proper method, we turn to recent
works [7] and [8]. These papers display the use of Preference Opinion
Scores and Amazon Mechanical Turk, respectively. Both these meth-
ods involve human labour to judge the realism of generated video.
Clearly, quantitative and on-demand assessment of high-dimensional,
temporal data is a challenge of today.

However, if we move away from visual forms of data (im-
ages/video), we may discover better-established methodologies. Work
by Yoon, Jarrett, and Van der Schaar [20] has shown that auto-
regressive, recurrent GANs are successful at generating time series
data. This data does not necessarily consist of images. The paper de-
scribes 3 distinct measures to evaluate their generated time-series data.
We will briefly outline those here.

1. Visualisation: By flattening the temporal dimension, one can
use t-SNE [21] or PCA [22] to visualise samples drawn from pG
and pT alongside each other in 2 dimensions. This allows an
observer to assess distributions quantitatively and qualitatively.

2. Discriminative Score: A classifier is trained to distinguish be-
tween pG and pT . The error on a left-out test quantitatively as-
sesses the generated data. Unlike the discriminator, this model is
not coupled to the performance of the generator.

3. Predictive score: A separate, recurrent model is trained on syn-
thetic data. This model is used for single next-in-sequence pre-
dictions on the ground truth. The error defines this metric. This
tests whether the predictive capabilities of both pG and pT align.

Though these methods are reliable, they are not useful for frequent (i.e.
once per epoch) evaluation. The visualisation method requires human
inspection, and the discriminative score and predictive score require
the training of a recurrent model, which is computationally expensive.
Moreover, neither of these metrics are inherently objective.

Fortunately, work by Zhang et al. shows how simple statistical infer-
ence and clustering methods may be employed to estimate the close-
ness of time-series densities [23]. These approaches are simple, inter-
pretable and fast to compute. They apply their techniques to evaluate
a predictive GAN for power consumption and solar panel production.
One key difference is that their data is 1-dimensional for every time
step. Therefore, these simple methods may not scale to raw, high-
dimensional data like video.

We may also attempt to apply the FID and other such metrics on
time-series data. Because this data may vary in length and therefore di-
mensionality, we cannot compute these metrics directly. However, by
using a feature extraction method, we may reduce all data sequences to
an equal dimensionality and compute the FID on the feature space [12,
18]. For video data, this may be done by training a recurrent model
like an auto-encoder on the ground truth. Though more involved, this
metric is objective and its computational load depends for the majority
on the feature reduction method used. Wang et al. use a state-of-the-
art, pre-trained action detector called Inception3D (I3D) for this pur-
pose. [12] By removing the last few layers, they obtain a fixed-sized
video feature vector for any length of video. These feature vectors are
used for evaluation.

3 APPROACH TO COMPARISON

We will compare the methods described in section 2. We consider only
methods that operate in identical data spaces; we compare images to
images, video to video, and features to features. This eliminates cy-
cling methods, as these are often assessed by comparing the quality of
translating from one space to another and back. We assess the perfor-
mance of evaluation methods in a handful of categories:

1. Computational Efficiency: for methods that are to be frequently
evaluated on a test set, there is a need for computational effi-
ciency. Methods that take relatively long to compute may not be
desirable as they will adversely affect the total train time.

2. Objectivity: methods that always yield the same output for the
same input are called objective. This is desirable, as results are
one-to-one comparable and thus there is no need to accommo-
date for noise or discrepancies.

3. Continuity: the temporal dimension that video adds on top of
single images is more than simply increased data complexity.
Human viewers also expect the content to believably follow from

SC@RUG 2021 proceedings

39

Fig. 2. A pipeline of a general evaluation method.

one frame to the next. The generated video should be context-
aware. Moreover, the context displayed should be realistic with
respect to the ground truth as well.

4. Quality: as the data in question is generated by GANs, we ex-
pect a certain level of realism as seen in the ground truth. Re-
gardless of whether or not an image sequence ‘makes sense’ if
the images that it consists of are not realistic (i.e of high-quality)
the resulting video will not be either.

5. Diversity: as with any generative model, we expect the model
to not simply learn and reproduce a single or handful of exam-
ples. This is a special case of overfitting called mode collapse.
Common causes are oversized models and class imbalance. We
expect a video GAN to learn and be able to reproduce the entire
density, not just a portion of it. Note that good diversity entails
that the density must be skewed towards the ground truth in case
of class imbalance.

Note that categories 3, 4, and 5 are subjective measures to some extent.
In this paper, the term realism is therefore considered with respect to
the provided ground truth. Unfortunately, this implies that selection
between two performant methods may come down to the preference
of the researcher. Therefore, we will not attempt to order or score
methods, rather mentioning the presence or absence of compliance
with these categories.

We will compare GAN generated video to the respective ground
truth using the methods presented in section 2. We observe that most
methods can be split up into a general pipeline. We introduce this gen-
eralised evaluation method as seen in Fig. 2. Pre- and post-processing
are optional steps. For images, it is common to use a technique that ex-
tracts features from images as a pre-processing step. The methods we
present are often distinguished in the ‘Evaluate’ part of the pipeline.
For example, when using the Inception3D, we may apply any tech-
nique to reduce the feature-space representation produced by the net-
work into a value indicative of the performance or assessment.

We will base our comparison on methods sourced from state-of-the-
art literature. These techniques do not encompass all techniques cur-
rently known. Instead, we focus on methods that have been successful
as claimed by their respective authors. Moreover, these methods excel

in different yet comparable applications. Hence, we expect that the
comparison offers meaningful insights into the trade-offs and the gen-
eral strengths and weaknesses of each method. Note that these tech-
niques are, generally speaking, complementary in nature. The deficits
of one technique can be made up for by using another. For example,
one may choose to evaluate the image quality using the FID, then use
another technique to assess the attention to context like in [24]. The
question of how to combine methods into a meaningful value or sum-
mary is beyond the scope of this paper. For further reading, one can
find examples of such use cases in [13, 18, 24].

3.1 Single image FID
One approach to obtain a similarity score is to reduce the problem
to the equivalent problem in the image domain, where there already
exists a solution. This solution in the image domain is the FID score [5,
10]. One can treat every frame of the video as an individual image and
combine the FID scores of each frame into a final score. The FID
can be computed using (1). An obvious drawback of doing this is
that this method does not impose any requirements or constraints on
the continuity between frames. Another disadvantage is that the FID
cannot prevent the generator from generating video that does not have
any coherent context. This is because the FID does not do any form of
image recognition.

3.2 Time-Series Discriminative Score
Following the research presented by Yoon, Jarrett, and Van der
Schaar [20], one can train a recurrent classifier to discriminate between
real and synthetic data.1 The error emitted by the classifier scores the
network, according to

DS(SG,ST) = 1− 1
2
[acc(C(SG), f ake)+acc(C(ST),real)] , (2)

where SG and ST are equally sized sample sets drawn from pG and pT
respectively. C is a binary classifier trained on sample sets SG and ST .
acc(·, ·) is the training accuracy function that returns the probability
of correct classification at train time. A higher score is better. This
method, however, is only objective as long as the classifier model is
constant. If it is retrained every epoch, we cannot objectively describe
progress. Nonetheless, we may deduce that a higher quality synthetic
dataset will yield a higher error in the classifier, as it is harder to dis-
tinguish real from synthetic. This method captures temporal evolution
well and therefore yields excellent attention to context on feature re-
duced images.

3.3 Clustering
A popular use for GANs is the generation of extra data from a limited
dataset. Zhang et al. use GANs to create synthetic datasets [23]. Their
approach uses a statistical model that extracts the probability distri-
bution of a given dataset and then use a GAN to generate data that
statistically lies within the same distribution as the original dataset.
Their validation method, therefore, requires measuring the statistical
difference between two clusters of data. To this end, they apply the F1
score to perform an analysis of variance. Alternatively, the data can be
clustered and their centroid points can be compared. For example, we
may use a nearest neighbour (NN) classifier as

CS(cG,cT) = 1− 1
2
[acc(NN(cG), f ake)+acc(NN(cT),real)] , (3)

where, like with (2), acc is the function of the accuracy of classifica-
tion evaluated at train time. cG and cT are the clusters obtained from
clustering on samples of pG and pT using a clustering algorithm of
choice. Again, higher is better. The results of the experiments done
in this paper show that the synthetic data is indistinguishable from the
ground truth dataset.

1The difference with this network and the discriminator is the dependence
on the generator. This additional classifier simply classifies between real and
synthetic datasets, however these datasets can hypothetically be drawn from
any source.

An Overview of Evaluation Metrics for Video GANs – Robbin de Groot and Max Verbeek

40

3.4 Inception3D FID

Due to the complex nature of video similarity, it is often infeasible
to define a function that will define a numeric similarity between two
videos. This is because such a function would require knowledge of
the contents of the video which is highly dependent on the structure
of the pixels, rather than the value of the pixels themselves. A much
easier approach would be to define a similarity function on the features
of a video, rather than its contents.

This technique has been explored in a few papers [2, 12, 25] with
successful results. The downside of this method is that a feature ex-
tractor would have to be trained, which can be time-consuming and is
a learning problem itself. To this end, modified image and video clas-
sifiers have been used to serve as a feature extractor. Zhang et al. [23]
use two modified pre-trained video recognition CNNs, namely Incep-
tion3D [25] and ResNeXt [26], and strip the last few layers to turn
these networks into feature extractors. The FID can be calculated on
the extracted feature vectors to get a numeric result. We denote this
mathematically as

I3DFID(SG,ST) = FID(I3D(SG), I3D(ST)), (4)

where FID is computed using (1) and I3D denotes the feature extrac-
tion of input samples using the Inception3D network. We assume that
I3D returns a mean and covariance pair instead of raw features.

3.5 Specialised methods

In many cases, the evaluation of the performance of a GAN cannot
be well described using generic existing methods, as these methods
cannot deal with the complexity of the data that is generated by a GAN.
We list a handful of interesting use cases (according to the authors).

• Larsen et al. argue that the evaluation itself can be seen as a prob-
lem that can be solved with a learnable model [27]. In their ex-
periments with image generation, they train a regression network
that should predict features from their generated images.

• Duarte et al. create a GAN to generate video from a given speech
sample [15]. Their evaluation method aims to re-identify speak-
ers from their generated faces, which is a very niche and specific
technique.

• Chen et al. translate video to video by first converting their
source video to a label mapping, and then converting the labels
to a new video [28]. For both of these steps a GAN is used, each
with its evaluation methods. The video-to-label GAN uses three
standard methods defined in [29]: Mean Pixel accuracy, Average
Class accuracy, and Intersection over Union. For the label-to-
video step, the generated video is fed to a fully convolutional
network, which has been pre-trained to generate a similar label
mapping. The labels of the generated video frames are compared
to the source labels to retrieve an accuracy measure.

• Hu et al. work with a non-deterministic, predictive model.
Hence, they use a distance diversity metric to capture both the
prediction accuracy and diversity of their results [18].

To reiterate, these methods are commonly only applicable to the model
they were created for. However, studying them may give insight and
inspiration for the development of new, more general methods.

4 RESULTS AND DISCUSSION

We will now discuss the various methods and their qualities. We will
first provide an overview of the performance in the criteria mentioned
in section 3. Then, we collect all findings and provide suggestions
for various applications based on the discussion prior. In Table 1, we
show a table containing the methods under consideration categorised
for the provided measures. We will briefly elicit the categories and
their respective values.

4.1 Efficiency
For efficiency, we look at the computational load required to evaluate
real versus generated samples using each method. The aim is to eval-
uate once after every epoch to measure training progress. Therefore,
we compare the compute time of the method to that of the epoch itself.
As such, methods labelled as fast induce close to negligible overhead,
whereas slow methods are performance bottlenecks. Slow metrics are
likely not suitable for this kind of evaluation, so fast methods are rec-
ommended. From our results, we observe that a better efficiency score
is a trade-off.

4.2 Objectivity
The objectivity of a method is easily determined from its definition.
Most methods are therefore easily categorised. Clustering requires ad-
ditional explanation. The source paper for this method, [23], describes
a triplet of approaches using different choices for train and test sets.
When the train set consists of solely ground truth data, this method is
objective, as the clusters may be computed in advance. However, in
the remaining two cases, synthetic data is used for training which is
only available during the training phase. Therefore, this metric is not
objective during training using these setups.

4.3 Continuity
Continuity between frames is arguably the most important category
for video GANs in comparison to image GANs. Being able to quanti-
tatively measure it is therefore paramount. The FID by itself evidently
does not capture any relationships between images. We label methods
between none and excellent, the former indicating no continuity and
the latter indicating attention to context akin to human inspection. In
our results, we notice that methods that have good continuity perform
inadequately in at least one other category. This reintroduces the need
for using multiple methods to account for these deficiencies. Conti-
nuity is also a subjective measure. In practice, if a generated video
is shown, it may or may not appear like a real video to a human ob-
server. Metrics that capture this accurately therefore commonly oper-
ate in feature space. Intuitively, some features should persist through-
out multiple frames to indicate some visual context. The Inception3D
FID method achieves this by detecting actions (e.g. playing cricket),
which illustrates this intuition. Clustering also shows the capability to
capture continuity. However, this only applies to sequence extending
GANs, as it compares against the ground truth sequence. The discrim-
inative score method shines in this category. It is effectively designed
to measure context awareness, at the expense of high compute time.
This method is therefore only suitable for post-training evaluation.

4.4 Quality
GANs commonly work with visual data. One of the selling points of
GANs is their ability to generate highly realistic images with as un-
canny resemblance to real images. We scale our results relative to
human inspection. A rating of excellent indicates that images are hard
to distinguish by humans, and poor ratings are trivially distinguished
by humans.2 As mentioned prior, the quality of images produced by
GANs has been an important area of research. This extends to video
GANs. If a video GAN does not produce realistic-looking frames, the
entire footage will be considered unrealistic. The FID score can be
used to evaluate the quality outside the temporal context. The other
methods rely on the technique that is used to reduce the images to fea-
ture space. If the feature reduction method is simplistic or inadequate
for the task, the quality assessment of these methods will suffer. This
is because the feature space representation does not properly represent
the image contents. The Inception3D FID method is a known good
feature reducer, meaning this is not a problem.

4.5 Diversity
When generating images, we want every image to be different. We rate
our methods between poor and excellent, the former given when the

2None of the methods we considered were assigned this rating. However,
we include this definition to indicate the scale we use for our judgement.

SC@RUG 2021 proceedings

41

Table 1. A comparison overview of video GAN evaluation metrics on five different criteria.

Section Name Efficiency Objectivity Continuity Quality Diversity

3.1 FID Fast Objective None Excellent Good
3.2 Disc. Score Slow Not Objective Excellent Adequate* Poor
3.3 Clustering Average Not Objective† Good Adequate* Excellent‡

3.4 I3D-FID Slow Objective Good Good Good
* May vary depending on implementation of pre-processing methods like a feature extractor.
† May be objective when clusters are trained solely on ground truth.
‡ Selection of samples depends on the picked ground truth samples, so diversity is not controlled by the

method.

method is insensitive to mode collapse, the latter when it is sensitive
to exactly the ground truth density. In GANs, this is achieved using
latent input noise and optional condition vectors. A proper evaluation
metric should consider whether the distribution of classes (for a mul-
ticlass generator) in generated data is equivalent to that of the ground
truth. As mentioned in section 3, it is common in poorly trained or
constructed GANs to observe mode collapse. Ideally, methods should
judge the degree to which this happens. Distribution-based methods
usually have this ’built-in’, which is what we observe for both the
FID and Inception3D FID methods. The discriminative score, how-
ever, does not measure diversity. After all, if a generator produces the
same output every time, a classifier will also classify it as the same.
The clustering method can achieve any level of diversity, as it is de-
pendent on the selection of ground truth examples to compare against.
The method operates on extended base sequences and, therefore, the
selection of base sequences determines the diversity.

5 CONCLUSION

The advent of Generative Adversarial Networks introduced a great tool
to generate synthetic data or content to the field of machine learning.
Sometimes, however, they prove to be difficult to train. An objective
evaluation method is crucial to assess the performance of a GAN and
these methods are scarcely present in the domain of video generation.
We have listed a few methods, each with advantages and drawbacks.

One of the methods that we found simply applies the FID to sin-
gle images. This method chooses to solve the problem in the image
domain rather than the temporal domain. This provides an intuitive
solution, however, the continuity between frames will be lost. There-
fore, we conclude that this method is suitable to judge the realism of
individual frames, however not suitable for evaluating video footage.

Other methods acknowledge the difficulty of similarity measure-
ments and solve this problem with additional machine learning or sta-
tistical inference techniques. The clustering technique aims to assess
the difference in probability density of a real and synthetic dataset. It
does this through statistical tests or clustering algorithms. The perfor-
mance of this method is considerably worse than that of the FID score
but much faster than training an entire network.

Further methods employ feature extractors to gain a representation
of images or the entire video. The time-series discriminative score
method trains a network to discriminate between two images or ex-
tracted feature vectors and outputs a score to measure the difference.
In case the network is retrained every epoch, this will not be objective
and slow. This method is however precise, making it a good option to
generate high-quality realistic content.

Lastly, there we covered the Inception3D FID method, which strips
the last few layers of a pre-trained video classification CNN to end up
with a network that generates features instead of class labels. Rather
than using the FID on the raw image data, the features extracted from
the video will be used to obtain an FID score. This method has proven
to be powerful but can be rather slow depending on the feature extrac-
tor that is used.

In this paper, we have derived several criteria to assess the perfor-
mance of evaluation metrics. These criteria are efficiency, continuity,
quality, objectivity and diversity. Existing methods may be classified
under these criteria, which provides an immediate overview of when a

method can be beneficial to a researcher. Future methods may also be
assessed under these same criteria to add to the growing collection of
evaluation techniques.

All in all, we observe that many techniques exist and excel in var-
ious applications that employ video GANs. This paper structures the
search for a suitable method or ensemble of methods by presenting the
strengths and weaknesses of a selection of methods. From here, re-
search can be done in search of more appropriate methods, and meth-
ods that fill the use cases that are not yet covered by the current state-
of-the-art.

6 REFERENCES

[1] Z. Pan et al. “Recent Progress on Generative Adversarial
Networks (GANs): A Survey”. In: IEEE Access 7 (2019),
pp. 36322–36333. DOI: 10 . 1109 / ACCESS . 2019 .
2905015.

[2] Y. Li et al. “Video Generation From Text”. In: arXiv
e-prints, arXiv:1710.00421 (Oct. 2017), arXiv:1710.00421.
arXiv: 1710.00421 [cs.MM].

[3] Y. Chen et al. “Mocycle-GAN: Unpaired Video-to-Video
Translation”. In: Proceedings of the 27th ACM International
Conference on Multimedia. MM ’19. Nice, France: Associ-
ation for Computing Machinery, 2019, pp. 647–655. ISBN:
9781450368896. DOI: 10 . 1145 / 3343031 . 3350937.
URL: https : / / doi . org / 10 . 1145 / 3343031 .
3350937.

[4] I. J. Goodfellow et al. “Generative Adversarial Networks”. In:
arXiv e-prints, arXiv:1406.2661 (June 2014), arXiv:1406.2661.
arXiv: 1406.2661 [stat.ML].

[5] M. Heusel et al. “GANs Trained by a Two Time-Scale Update
Rule Converge to a Local Nash Equilibrium”. In: Advances
in Neural Information Processing Systems. Ed. by I. Guyon
et al. Vol. 30. Curran Associates, Inc., 2017. URL: https:
//proceedings.neurips.cc/paper/2017/file/
8a1d694707eb0fefe65871369074926d - Paper .
pdf.

[6] T. Salimans et al. “Improved Techniques for Train-
ing GANs”. In: Advances in Neural Information
Processing Systems. Ed. by D. Lee et al. Vol. 29.
Curran Associates, Inc., 2016. URL: https : / /
proceedings . neurips . cc / paper / 2016 /
file / 8a3363abe792db2d8761d6403605aeb7 -
Paper.pdf.

[7] W. Xiong et al. “Learning to Generate Time-Lapse Videos
Using Multi-Stage Dynamic Generative Adversarial Net-
works”. In: arXiv e-prints, arXiv:1709.07592 (Sept. 2017),
arXiv:1709.07592. arXiv: 1709.07592 [cs.CV].

An Overview of Evaluation Metrics for Video GANs – Robbin de Groot and Max Verbeek

42

[8] C. Vondrick, H. Pirsiavash, and A. Torralba. “Generat-
ing Videos with Scene Dynamics”. In: Advances in Neu-
ral Information Processing Systems. Ed. by D. Lee et al.
Vol. 29. Curran Associates, Inc., 2016. URL: https : / /
proceedings.neurips.cc/paper/2016/file/
04025959b191f8f9de3f924f0940515f - Paper .
pdf.

[9] S. Kullback and R. A. Leibler. “On Information and Suffi-
ciency”. In: The Annals of Mathematical Statistics 22.1 (Mar.
1951), pp. 79–86. DOI: 10.1214/aoms/1177729694.
URL: https : / / doi . org / 10 . 1214 / aoms /
1177729694.

[10] T. Karras et al. “Analyzing and Improving the Image Quality of
StyleGAN”. In: CoRR abs/1912.04958 (2019). arXiv: 1912.
04958. URL: http://arxiv.org/abs/1912.04958.

[11] N.-T. Tran et al. “On Data Augmentation for GAN Train-
ing”. In: IEEE Transactions on Image Processing 30 (2021),
pp. 1882–1897. DOI: 10.1109/tip.2021.3049346.
URL: https : / / doi . org / 10 . 1109 / tip . 2021 .
3049346.

[12] T.-C. Wang et al. “Video-to-Video Synthesis”. In: Advances in
Neural Information Processing Systems (NeurIPS). 2018.

[13] Y. Kwon and M. Park. “Predicting Future Frames Using
Retrospective Cycle GAN”. In: 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). 2019,
pp. 1811–1820. DOI: 10.1109/CVPR.2019.00191.

[14] D. Kim, D. Joo, and J. Kim. “TiVGAN: Text to Image to Video
Generation With Step-by-Step Evolutionary Generator”. In:
IEEE Access 8 (2020), pp. 153113–153122. DOI: 10.1109/
ACCESS.2020.3017881.

[15] A. Duarte et al. “Wav2Pix: Speech-conditioned Face Gen-
eration using Generative Adversarial Networks”. In: arXiv
e-prints, arXiv:1903.10195 (Mar. 2019), arXiv:1903.10195.
arXiv: 1903.10195 [cs.MM].

[16] S. Alexanderson et al. “Style-Controllable Speech-Driven
Gesture Synthesis Using Normalising Flows”. In: Computer
Graphics Forum 39.2 (2020), pp. 487–496. DOI: https://
doi.org/10.1111/cgf.13946. eprint: https://
onlinelibrary.wiley.com/doi/pdf/10.1111/
cgf.13946. URL: https://onlinelibrary.wiley.
com/doi/abs/10.1111/cgf.13946.

[17] M.-Y. Liu, T. Breuel, and J. Kautz. “Unsupervised Image-
to-Image Translation Networks”. In: arXiv e-prints,
arXiv:1703.00848 (Mar. 2017), arXiv:1703.00848. arXiv:
1703.00848 [cs.CV].

[18] A. Hu et al. “Probabilistic Future Prediction for Video Scene
Understanding”. In: arXiv e-prints, arXiv:2003.06409 (Mar.
2020), arXiv:2003.06409. arXiv: 2003.06409 [cs.CV].

[19] T. Kurutach et al. “Learning Plannable Representations
with Causal InfoGAN”. In: Advances in Neural Infor-
mation Processing Systems. Ed. by S. Bengio et al.
Vol. 31. Curran Associates, Inc., 2018. URL: https : / /
proceedings.neurips.cc/paper/2018/file/
08aac6ac98e59e523995c161e57875f5 - Paper .
pdf.

[20] J. Yoon, D. Jarrett, and M. Van der Schaar. “Time-series Gen-
erative Adversarial Networks”. In: Advances in Neural Infor-
mation Processing Systems. Ed. by H. Wallach et al. Vol. 32.
Curran Associates, Inc., 2019, pp. 5508–5518. URL: https:
//proceedings.neurips.cc/paper/2019/file/
c9efe5f26cd17ba6216bbe2a7d26d490 - Paper .
pdf.

[21] L. Van der Maaten and G. Hinton. “Visualizing data using t-
SNE.” In: Journal of machine learning research 9.11 (2008).

[22] S. Wold, K. Esbensen, and P. Geladi. “Principal component
analysis”. In: Chemometrics and intelligent laboratory systems
2.1-3 (1987), pp. 37–52.

[23] C. Zhang et al. “Generative Adversarial Network for Synthetic
Time Series Data Generation in Smart Grids”. In: 2018 IEEE
International Conference on Communications, Control, and
Computing Technologies for Smart Grids (SmartGridComm).
2018, pp. 1–6. DOI: 10.1109/SmartGridComm.2018.
8587464.

[24] Q. Chen et al. “Scripted Video Generation With a Bottom-Up
Generative Adversarial Network”. In: IEEE Transactions on
Image Processing 29 (2020), pp. 7454–7467. DOI: 10.1109/
tip.2020.3003227. URL: https://doi.org/10.
1109/tip.2020.3003227.

[25] J. Carreira and A. Zisserman. “Quo Vadis, Action Recognition?
A New Model and the Kinetics Dataset”. In: 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR).
2017, pp. 4724–4733. DOI: 10.1109/CVPR.2017.502.

[26] S. Xie et al. Aggregated Residual Transformations for Deep
Neural Networks. 2017. arXiv: 1611.05431 [cs.CV].

[27] A. B. L. Larsen et al. Autoencoding beyond pixels using
a learned similarity metric. 2016. arXiv: 1512 . 09300
[cs.LG].

[28] Y. Chen et al. “Mocycle-GAN”. In: Proceedings of the 27th
ACM International Conference on Multimedia. ACM, Oct.
2019. DOI: 10.1145/3343031.3350937. URL: https:
//doi.org/10.1145/3343031.3350937.

[29] E. Shelhamer, J. Long, and T. Darrell. “Fully Convolutional
Networks for Semantic Segmentation”. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 39.4 (Apr. 2017),
pp. 640–651. DOI: 10.1109/tpami.2016.2572683.
URL: https://doi.org/10.1109/tpami.2016.
2572683.

SC@RUG 2021 proceedings

43

Graph Neural Networks for Pattern Analysis from Time Series

Ayça Avcı, Jeroen de Baat

Abstract— Many real world relations can be expressed as graphs, such as a social network or the state of traffic at a certain time.
These relations often involve a spatial component, and are not static but evolve over time. While many deep learning models have
been proposed to extract patterns from static graphs, fewer models exist for pattern analysis on spatiotemporal graphs because of
the increased complexity data. Yet, the latter has many applications in domains such as behavior prediction, computer vision and
robotics. Here, we present related work on the application of neural networks on graphs in general, give an overview of the current
state of the field, and provide a comparison and discussion of the described methods.

Index Terms—Artificial Intelligence, Neural Networks, Deep Learning, Graph Neural Network, Time series, Pattern analy-
sis/recognition.

1 INTRODUCTION

Pattern analysis is the detection of regularly occurring events in data.
There are various methods for this, of which deep learning approaches
have gained significant popularity as these have shown to be effective
in several disciplines, such as image classification [17] and natural
language processing [1]. Recently, there has been much interest in ex-
tending pattern analysis to graphs, as many real world relations can be
represented as such, for instance, traffic flow [11, 18, 30, 34, 36] and
social networks [28, 38]. Applications include the prediction of traf-
fic flow [11, 18, 30, 34, 36], demographic attribute prediction, content
recommendation, and targeted advertising [28]. Using deep learning
methods on graphs is more challenging due to the increased struc-
tural complexity of the data. Even more challenging is the modeling
of graphs in time series (i.e. a sequence of graphs which evolve over
time), and spatiotemporal graphs (i.e. graphs in times series where the
data also has a location component), which is what we will focus on
in this paper.

An overview of the current state of the field does, to the best of
our knowledge, not exist. In this work, we aim to provide a brief
introduction to deep learning and Graph Neural Networks (GNNs),
followed by a survey of several graph neural network models for the
analysis of time series for pattern recognition. We will focus on how
the various approaches work and how these compare to one another,
based on their specific applications and effectiveness.

This work is structured as follows: In Section 2, we describe
the datasets on which the models are tested. In Section 3, we
describe the models themselves, and in particular their networks,
data representation methods and goals. The metrics used to compare
the models are described in Section 4, and the results obtained form
each method are in Section 5. The results are discussed in Section 6,
and our findings are concluded in Section 7. First, we will provide
definitions and context for the topic at hand.

A graph G is defined as a tuple G = (V,E), with the vector V
representing the vertices (also called nodes or points), and the vector
E representing the edges i.e. the connections between the vertices. A
graph can either be directed or undirected, weighted or unweighted,
and signed or unsigned. In the context of GNNs, we mainly consider
unsigned graphs without self-loops and without multiple edges.
Figure 1a shows such a graph. Depending on the data and model,

• Ayça Avcı, MSc, is a student Computing Science at the University of
Groningen, E-mail: a.avci@student.rug.nl.

• Jeroen de Baat, MSc, is a student Computing Science at the University of
Groningen, E-mail: j.de.baat@student.rug.nl.

Manuscript received 24 February 2021; posted online 15 April 2021.
For information on obtaining reprints of this article, please contact the CS
Student Colloquium of the University of Groningen, faculty of Science and
Engineering.

(a) A representation of an abstract di-
rected graph, with unlabeled vertices and
edges.

(b) A social network represented as a
graph.

Fig. 1: Two examples of graphs representations.

this definition of a graph can be extended. For example, feature
vectors can be added for the vertices and edges to express more
complex information. Figure 1b shows an example of a more complex
graph of a social network, where some vertices represent users and
others represent posted messages. Here, an edge between two users
could mean that the users know each other, and an edge between
a user and a message could mean that the user has posted that message.

Deep Learning is a field within Artificial Intelligence which is de-
fined by the use of artificial neural networks with multiple layers be-
tween the input layer and the output layer. These so called Deep Neu-
ral Networks (DNNs) have been used for a variety of applications with
data of different natures, such as image processing [20] and audio sig-
nal processing [22].

Extensive work has been done on the use of DNNs on non-
spatiotemporal graphs [39], with applications ranging from social net-
works [28, 38] to biology networks. Zhang et al. [39] have identified
several challenges in using DNNs to model graphs in particular:

• Graphs often have irregular structures which makes the applica-
tion of common operations in neural networks, such as convolu-
tion, more difficult.

• The heterogeneity and diversity of graphs: they can be hetero-
geneous or homogeneous, weighted or unweighted, and signed
or unsigned. In addition to this, the learning in graphs can be
node-focused (e.g. node classification, node prediction, link pre-
diction) or graph-focused (i.e. graph classification, graph gen-
eration), depending on the nature of the data and the applica-
tion. Consequently, there is no general modeling approach for
all graphs. Instead, each type of graph and application requires
its own approach.

• Graphs can be very large, requiring the algorithms operating on
them to be very efficient.

• Graphs often represent data from disciplines such as biology,
chemistry, and the social sciences. Understanding the nature of

44

Table 1: “Dataset statistics in terms of min, max, mean, and standard
deviation (SD) of patient counts; dataset size means the number of
locations multiplied by number of weeks” [8].

the data is often essential to modeling, making the modeling pro-
cess require interdisciplinary knowledge.

Despite these challenges, many models have been proposed, cat-
egorized by Zhang et al. [39] into Graph Recurrent Neural Net-
works (GRNNs) [24], Graph Convolutional Networks (GCNs) such as
[2], Graph Autoencoders (GAEs) such as [27], Graph Reinforcement
Learning, and Graph Adversarial Networks. For each of these models,
variants exist depending on the nature of the data and modeling task.

As indicated previously, many real world relations — which can be
represented using a graph — change over time. The change in relations
can therefore be represented as a sequence of graphs, also known as
temporal graphs. The patterns in these graphs may not only extend
to the static nodes and edges themselves, but also to their relation to
the temporal dimension. Therefore, specialized models are required to
perform pattern analysis on these graphs.

2 DATASETS

In this section, we describe the datasets used by the models surveyed.

2.1 CalendarGNN: Calender Graph Neural Networks
The CalendarGNN model has been trained and tested using large-
scale user behavior logs which have been collected from two real
portal websites. The data contains articles and news updates on
several topics. The two spatiotemporal datasets are created as B(w1)

and B(w2) [28]. These datasets provide spatiotemporal behavior logs
of the browsing behavior of users from these two websites, both
ranging from January 1, 2018 to June 30, 2018. Each dataset is
filtered to 10000 users, who have most clicks, after users have been
anonymized [28].

The 3 user attributes used for prediction tasks are as follows:

• Gender: The user’s binary gender, where the gender is {“f”,
“m”}, “f” represents female, and “m” represents male.

• Income: The user’s categorical income level, where the income
is in {0,1, . . . ,9}. Larger values represent a higher annual in-
come and 0 represents unknown.

• Age: The user’s age according to their registered birthday.

2.2 Cola-GNN: Cross-location Attention based Graph
Neural Networks

Deng et al. [8] made use of the following datasets as shown in Ta-
ble 1 for their experiments: The Infectious Disease Weekly Report
(IDWR) in Japan to obtain Japan-prefectures data, the Center for Dis-
ease Control (CDC) in the United States to obtain influenza data about
the US-states, and the ILINet portion of the United States Department
of Health and Human Services (US-HHS) to obtain data about the US-
region.

2.3 Examining COVID-19 Forecasting using Spatio-
Temporal Graph Neural Networks

Kapoor et al. [15] took advantage of the following datasets for the
modeling: The New York Times (NYT) COVID-19 dataset for com-
mon node features such as day, past cases, and past deaths; the Google

COVID-19 Aggregated Mobility Research Dataset to obtain inter-
county flows and intra-county flows to establish the graph neural net-
work; and the Google Community Mobility Reports to obtain sum-
marized mobility trends at places which are aggregated at the county
level.

2.4 Traffic Flow Prediction via Spatial Temporal Graph
Neural Network

Wang et al. [30] tested the framework on two real-world traffic datasets
as seen Table 2:

Table 2: “Dataset statistics in terms of sensors, length, unit and
size [30].

• METR-LA: A traffic dataset which is centered around the LA
county road network [14] and includes high-resolution spatio-
temporal transportation data. Loop-detectors in the network sup-
ply traffic speed or volume data as well.

• PEMS-BAY: A traffic dataset which is supplied by the California
Department of Transportation (Caltrans) Performance Measure-
ment System (PeMS) [4] to measure traffic in the Bay Area.

3 GNN METHODS

In this section we will describe the networks of several spatiotemporal
GNN models.

3.1 CalendarGNN: Calender Graph Neural Networks
Wang et al. have developed the CalendarGNN model [28] which pre-
dicts specific user features (e.g. binary gender, income and age) based
on spatiotemporal behavior data. Various methods exist [7, 13, 16, 19,
26] which aim to predict features using merely temporal (sequential)
data, however, the authors state that user behavior often follows a spa-
tiotemporal pattern which can be modeled and used to generate more
accurate predictions than the existing methods. The prediction of user
behavior has applications in content recommendation and targeted ad-
vertising.

3.1.1 The CalendarGNN network
The CalendarGNN model takes as input a network consisting of three
sections: locations, timestamps, and items (e.g. reading a news article,
clicking on a website, posting a message on social media). Depending
on the type of data, the raw features are transformed using a Mul-
tilayer Perceptron (i.e. a variation on the original perceptron [23]
which uses multiple layers) or Bidirectional Long Short-Term
Memory [25] encoder into dense hidden representations. These repre-
sentations are subsequently concatenated into a vector. The set of all
item and location vectors and then embedded in their respective layers.

The item embeddings are then aggregated together with the
temporal data, resulting in session embeddings, which in turn are
aggregated into separate embeddings for the hour, week, and weekday
time units. The session embeddings are also combined with the
location embeddings. The embeddings per time unit and location
are then aggregated into patterns embeddings, which are fused (by
concatenation) into a final user embedding. This user embedding is
the input for a dense layer resulting in a prediction. Note that the
authors chose hour, week, and weekday time units based on their data
and application, however other time units can be used as well.

SC@RUG 2021 proceedings

45

The aggregation layers use the Gated Recurrent Unit (GRU) [5]
for the aggregation function, and a non-linear activation function,
e.g. ReLU [21]. The temporal aggregation layer partitions the
continuous timestamps of the sessions into discrete time units,
aggregate sessions of the same time unit, and aggregate time
unit embeddings into a temporal pattern embedding. For the mathe-
matical definitions of each operation, please consult the original paper.

The CalendarGNN model has two limitations. First, the different
time units (i.e. week, hour, weekday) are all considered equally im-
portant in the aggregation step into patterns, while this may not reflect
the input data. Second, the spatial and temporal data are processed
separately, while the relation between the two should be captured by
the model as well to achieve true modeling of spatiotemporal patterns.
To achieve this, the authors propose a variation on the CalendarGNN
model called CalendarGNN-Atnn [28]. This model is identical to
CalendarGNN, except that it uses pattern definitions which allow for
location-time interactions.

3.2 Cola-GNN: Cross-location Attention based Graph
Neural Networks

The forecasting of influenza-like illnesses (ILI) is of high importance
to epidemiologists in terms of resource allocation and the intervention
of outbreaks. Deng et al. [8] focused on the long-term forecasting
of ILI by using influenza surveillance data from several locations.
It was difficult to accurately forecast long-term epidemics due to
limited accountability of short-term input data and the change in the
influence of other locations on any location. Deng et al. [8] aimed to
construct a long-term prediction of the spread of ILI by accounting
for a limited time range of data with deep spatial representations
inside a graph propagated model. They implemented a graph neural
network framework to model epidemic propagation at the level of
the population. Furthermore, they explored capturing sequential
dependencies in local time-series data through recurrent neural
networks; and identify short- and long-term patterns through dilated
temporal convolutions [8].

The framework, as shown in Figure 2, is comprised of: location-
wise interactions (node attributes) to be caught through location-aware
attention, short-term and long-term local temporal dependencies (node
attributes) to be caught through dilated convolution layer, and the com-
bination of the temporal features and the location-aware attentions
through global graph message passing to make forecasts on newly
learned hidden location embeddings [8].

Fig. 2: The Cola-GNN framework [8].

3.2.1 Direct spatio influence learning
Deng et al. [8] constructed a dynamic model to assess the impact ILI
in one location can have on the ILI of another location. They first
utilized a Recurrent Neural Network (RNN) to learn the hidden states
of each location from a certain period. Then, using the data from the
RNN, they defined a general attention coefficient to measure to what
extend two locations impact each other [8]. Finally, they include the
spatial distance between the two locations in their calculations. The
feature fusion gate is dynamically learned, and then models the influ-
ence that two locations have on each other by weighing the geographic
and historic information [8].

3.2.2 Multi-scale dilated convolution
Convolutional Neural Networks (CNN) have proven very accurate in
determining grid data, sequence data, and other local patterns. Deng
et al. [8] aimed to use CNN for graph message passing. Hence, they
adopted a multi-scale dilated convolutional module consisting of mul-
tiple parallel convolutional layers with different dilation rates, but the
same filter and stride size. They then used multiple filters to produce
different filter vectors [8]. They proceeded to concatenate these filter
vectors to get the final convolution output. This output encodes local
patterns into short-term and long-term trends [8].

3.2.3 Graph message passing
Using Graph Neural Networks (GNN), they designed a flu propaga-
tion model. They modeled ILI propagation among different locations,
where each location is a node in a graph [8]. In their calculations, the
dilated convolved features are used instead of the original time series
since multiple levels of granularity can be captured in the hidden tem-
poral features. Using the RNN hidden states and the graph features,
they send their combination to the output layer to obtain their predic-
tion [8].

3.3 Examining COVID-19 Forecasting using Spatio-
Temporal Graph Neural Networks

During the COVID-19 pandemic, being able to accurately forecast
caseload is highly necessary for numerous reasons, such as control-
ling outbreaks. Currently, two approaches of modeling COVID-19
outbreak are most commonly used: the mechanistic approach, and
the time series learning approach [15]. Both approaches usually only
depend on information from a single location or nearby locations
where a pattern emerged, in forecasting for that location. Utilizing
the widespread use of GPS-enabled mobile devices, Kapoor et al. [15]
believe that they can build a better model by using more accurate real-
time data and developing an approach that combines both the above
approaches. They proposed a spatio-temporal graph neural network
that uses precise mobility data to forecast daily new COVID-19 cases.
The key discernment of the GNN-model is that the input node’s signal
transformation can be associated with the information propagation of
a node’s neighbors. This serves to better notify the future hidden state
of the original input. The messaging framework designed by Gilmer
et al. [10] is a great example of this. The messages are first propagated
at the neighboring nodes and then aggregated to obtain new represen-
tations [15].

3.3.1 Modeling the COVID-19 graph
Multiple time-series sequences are most often used in the modeling of
infectious diseases. However, this method does not take the human
mobility across locations into account. Kapoor et al. [15] created a
graph with different edge types to model both spatial and temporal
dependencies. The edges in the spatial domain represent inter-location
movement and are weighted by normalizing the mobility flow against
the intra-flow. In Figure 3, edges in the temporal domain represent
connections to the past days [15].

Fig. 3: “A slice of the COVID-19 graph showing spatial and temporal
edges (highlighted in red) across three days.” [15].

Graph Neural Networks for Pattern Analysis from Time Series – Ayça Avcı, Jeroen de Baat

46

3.3.2 Skip-Connections Model
Concerning graph convolutions, Kapoor et al. [15] integrated skip-
connections between layers in the spectral graph convolution model
designed by Kipf and Welling [16] to avoid diluting the self-node fu-
ture state, represented in Figure 4. A learned embedding from the tem-
poral node features is concatenated to the output of each layer [15].

Fig. 4: 2-hop Skip-Connection model [15].

3.4 Traffic Flow Prediction via Spatial Temporal Graph
Neural Network

The analysis and predictability of dynamic traffic conditions are
of key importance in the planning and construction of roads and
future city expansion. The problem lies in the increasing difficulty of
traffic flow predictability [30]. This is due to the volatility of vehicle
flow in the temporal dimension in the short-term, as well as the
complex relationship between the vehicles and the roads in the spatial
dimension. The inclusion of road crossings and vehicle lanes, which
come with increased complexity, further decreases the predictability
of traffic. A time series can be implemented on a road network to
represent traffic data, where the spatial proximity of separate roads
can be used to connect them [30].

Wang et al. [30] propose a new Graph Neural Network layer with
a position-wise attention mechanism such that the traffic flow from
connected roads can be better aggregated. Local and global temporal
dependence is captured using the combination of a recurrent network
and a Transformer layer. A new Spatial-temporal Graph Neural
network (STGNN) is specifically designed to model series data with
topological and temporal dependency. This new framework is finally
tested on real traffic datasets to obtain results about short-term traffic
speed predictions [30]. The experiments prove the proposed model
is significantly better than other previously used methods. They plan
to predict future traffic flow by utilizing historical traffic flow data.
This data can be represented on a traffic network of connected traffic
sensor nodes with proximity weighted edges [30].

Figure 5 illustrates the proposed spatial-temporal Graph Neural
Network framework. There are three main components to the frame-
work: Spatial Graph Neural Network (S-GNN) [30] layers that use
the traffic network to represent the spatial relations between different
roads, the Gated Recurrent Unit (GRU) layer which serves to represent
the temporal relation sequentially, and the Transformer layer which
serves to directly represent the long-term temporal dependence on the
sequence. The S-GNN layer models the spatial relation between the
nodes. As in Figure 5, the S-GNN layer is applied to both the input and
the hidden representations of the GRU. Although they represent differ-
ent perspectives, both the GRU layer and Transformer layer represent
the temporal dependency of each node individually [30].

4 EVALUATION METRICS

In the experiments, the following evaluation metrics are used to assess
the performance of the methods:

• Pearson’s correlation coefficient (PCC): Measures the linear de-
pendence between two variables [8].

Fig. 5: Spatial Temporal Graph Neural Network Framework [30].

PCC =
∑n

i=1(ŷi− ¯̂y)(yi− ȳ)√
∑n

i=1(ŷi− ¯̂y)2
√

∑n
i=1(yi− ȳ)2

(1)

• Root Mean Squared Error (RMSE): Measures the difference be-
tween two values (true values and the predicted values) after the
projection of normalized values to the real range [8].

RMSE =

√√√√ 1
N

N

∑
i=1

(yi− ŷi)2 (2)

• Root Mean Squared Logarithmic Error (RMSLE): Measures the
difference between the logarithms of two values (the true val-
ues and the predicted values) after the projection of normalized
values to the real ones [9].

RMSLE =

√√√√ 1
N

N

∑
i=1

(log(yi +1)− log(ŷi +1))2 (3)

• Mean Absolute Error (MAE): Measures the absolute difference
of two continuous variables [30].

MAE =
1
N

N

∑
i=1
|yi− ŷi| (4)

• Mean Absolute Percentage Error (MAPE): Measures the abso-
lute difference divided by true value of two continuous variables
(the true value and the predicted value) [30].

MAPE =
100%

N

N

∑
i=1
|yi− ŷi

yi
| (5)

• R-squared (R2): Represents the proportion of the variance for a
dependent variable which is explained by an independent vari-
able [6].

R2 = 1− ∑i(yi− ŷi)
2

∑i(yi− ȳ)2 (6)

Here, we list the surveyed models and the metrics used:

• CalendarGNN: Calender Graph Neural Network: PCC, RMSE,
MAE, R2.

• Cola-GNN: Cross-location Attention based Graph Neural Net-
works: PCC, RMSE, MAE.

SC@RUG 2021 proceedings

47

• Examining COVID-19 Forecasting using Spatio-Temporal
Graph Neural Networks: PCC, RMSE, RMSLE.

• Traffic Flow Prediction via Spatial Temporal Graph Neural Net-
work: MAE, MAPE.

5 FINDINGS

5.1 CalendarGNN: Calender Graph Neural Networks
The CalendarGNN and CalendarGNN-Attn models have been tested
using large-scale user behavior logs from two real portal websites pro-
viding news updates and articles on various topics. The models were
used to predict the user’s binary gender, income and age. Compared
against various baseline methods as well as logistic/linear regression
(LR), LearnSuc [29], and SR-GNN [31], the proposed models outper-
form all other models based on nearly all different metrics used.

5.2 Cola-GNN: Cross-location Attention based Graph
Neural Networks

The results of their methods are evaluated in terms of the Root Mean
Square Error (RMSE) and Pearson’s Correlation (PCC) metrics [8].
Leadtime represents the number of weeks that is predicted by the
model in advance. They also showcase a relative performance ad-
vantage of their method to the best baseline model. The variance in
their data is the cause of the large differences in RMSE values across
the different datasets. Considering a relatively small leadtime window,
their proposed method performs the best and the most stable for all the
datasets. This is also true for most datasets if they consider a long lead
time window [8]. The performance results of Vector Autoregression
(VAR) and RNN suggest the necessity to control model complexity
when only insufficient data is available, as well as that long-term ILI
forecasts require a better design to capture the spatial and temporal de-
pendencies. All methods perform relatively equally well when a short
leadtime window is used, but the simpler methods quickly degenerate
into severe inaccuracy as the leadtime window is increased [8].

5.3 Examining COVID-19 Forecasting using Spatio-
Temporal Graph Neural Networks

Kapoor et al. [15] represent the forecasting performance of the
spatio-temporal GNN in comparison to some baseline models. The
Root Mean Squared Log Error (RMSLE) and Pearson Correlation
(PCC) [15] evaluation metrics are represented for the predicted
caseload and the case deltas. The results are that the graph neural
network surpasses the baselines and obtains the best score on nearly
every evaluation metric. Furthermore, inserting further mobility data
improves performance for all the deep models, yet weakens the per-
formance of the Autoregressive Integrated Moving Average (ARIMA)
baseline [15]. It is understood this to be due to ARIMA assuming fixed
dynamics and a linear dependence on county-level mobility.

5.4 Traffic Flow Prediction via Spatial Temporal Graph
Neural Network

Wang et al. [30] measure the forecasting performance of different
methods using Root Mean Square Error (RMSE), Mean Absolute
Error (MAE), and Mean Absolute Percentage Error (MAPE) as
metrics [30]. Since diverse traffic conditions can be expected from
different areas, an absolute error could be useful to indicate where
the model is overfitting to relatively simple samples. Meanwhile, in
volatile areas, a square error is more scrutinizing and can therefore
give better performance under complex situations [30].

A time-scale forecasting of 15, 30, and 60 minutes was averaged for
the results. The STGNN proposed framework is superior to all other
methods across all timescales, errors, and datasets. The superiority of
STGNN was more profound in PEMS-BAY than on METR-LA [30].
Two variations of STGNN were tested as well; one without gated re-
current units and the other without transformer layers. These are also
mostly superior to all the baseline methods across all timescales, er-
rors, and datasets, and yet were still inferior to the STGNN with all the
components present. This indicates how all components discussed are

key to optimal results but are still significant even without GRU and
Transformer [30].

6 DISCUSSION

In the previous sections, we have described four models for pattern
analysis on graphs in time series. Our observations are that this is
indeed a relatively new field, with proposed models that are some-
what ‘isolated’, meaning that each model has a unique approach, ap-
plication and is trained on a very specific dataset. We do not see any
convergence towards one particular approach that performs the best,
although we do observe some very general patterns.
We see that the proposed models:

• operate on spatiotemporal graphs,

• use frameworks with multiple sequential processing steps, and

• are composed of existing models, e.g. CNNs, GRUs, MLPs.

It is difficult to directly compare the models as the approaches
(and thus the frameworks) are significantly different. Any differences
in effectiveness cannot easily be attributed to any specific minor or
major difference in the framework. In addition to this, the datasets
used in the experiment are all different, as are the goals. Also note
that all proposed models substantiate their results by performing an
experiment on a very limited number of datasets. Analytical analysis,
for example of time and space complexities, of the proposed models
was largely absent.

When choosing a model with a particular application in mind, hav-
ing domain knowledge will be very useful, if not essential, as the pro-
posed models have been developed with a specific goal in mind, and
may not perform well under different circumstances.

For more context, a broader look at the field is summarized in Ta-
ble 3, listing the (abbreviated) model names, network types, datasets
used and metrics. We see here, again, that most models use some form
of convolution and that there is very little overlap in the datasets used.

7 CONCLUSION

In this literature review, we discussed how different Graph Neural
Networks are used for analyzing time series data. All the proposed
models are effective in producing results for the application they were
designed for. However, lacking information, little can be said about
which model is better in extracting patterns from spatiotemporal
graph data in general. We concluded that since each method use dif-
ferent dataset and evaluation metrics, comparison between proposed
methods is not trivial.

To reach definite conclusions about the effectiveness and gener-
alization ability of the proposed models, more research is needed in
which the models with the same goal are directly compared using the
multiple identical datasets. In addition to this, more general variations
of the models could be designed with the goal of making them suitable
for a broader range of applications. These variations could then be
directly compared in the general ability to extract patterns from
spatiotemporal graph data, perhaps leading to more fundamentally
relevant results. However, the models’ respective usefulness related to
their specific application is certainly valuable on a practical level.

In their survey of Deep Learning on Graphs, Zhang et al. [39] have
categorized four possible future directions, which includes the study
of dynamic graphs. The other directions are: new models for unstud-
ied graph structures, compositionality of existing models, and inter-
pretability and robustness. All three can be studied on dynamic graphs
as well.

ACKNOWLEDGEMENTS

The authors wish to thank expert reviewer dr. Estefanı́a Talavera
Martı́nez and reviewers Nitin Paul and Floris Westerman.

Graph Neural Networks for Pattern Analysis from Time Series – Ayça Avcı, Jeroen de Baat

48

Model name(s) Network type(s) Data set(s) Metric(s)

ASTGCN [12] Convolutional, attention. PeMSD4, PeMSD8. RMSE, MAE.
CalendarGNN, CalendarGNN-Attn [28] Attention, aggregation. Self-collected. Mean accuracy, AUC, F1, MCC, Cohen’s kappa, R2, MAE, RMSE, PCC.
Cola-GNN [8] Convolutional, recurrent. Japan-Prefectures, US-States, US-Regions. RMSE, MAE, PCC, Leadtime.

STGNN [15] SGC, message passing.
NYT COVID-19,

Google COVID-19 AMR,
Google CMR.

RMSLE, PCC.

STGNN [30] Convolutional. METR-LA, PEMS-BAY. MAE, MAPE.
DMVST-Net [35] Convolutional, LSTM. Self-collected. RMSE, MAPE.
DCRNN [18] Convolutional, recurrent. METR-LA, PEMS-BAY. RMSE, MAE, MAPE.
WD-GCN, CD-GCN [19] Convolutional, LSTM. DBLP (subset), CAD-120. Monte Carlo Cross-Validation, Wilcoxon test.
Graph WaveNet [32] Convolutional. METR-LA, PEMS-BAY. MAE, RMSE, MAPE.
STDN, STDN-Graph [34] Convolutional, FGN, PSAM. STDN: NYC-Taxi, NYC-Bike. STDN-Graph: Self-collected. RMSE, MAPE.
STGCN [33] Convolutional. Deepmind Kinetics human action dataset, OpenPose, NTU-RGB+D. Accuracy percentage.

STGCN [37]
Convolutional,

gated convolutional. BJER4, PeMSD. MAE, MAPE, RMSE.

StemGNN [3] Spectral, spectral convolution. METR-LA, PEMS-BAY, PEMS07, PEMS03, PEMS04, PEMS08, Solar, Electricity, ECG5000, COVID-19. MAE, MAPE, RMSE.

Table 3: Overview of models

REFERENCES

[1] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by
jointly learning to align and translate, 2016.

[2] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and
locally connected networks on graphs, 2014.

[3] D. Cao, Y. Wang, J. Duan, C. Zhang, X. Zhu, C. Huang, Y. Tong, B. Xu,
J. Bai, J. Tong, and Q. Zhang. Spectral temporal graph neural network
for multivariate time-series forecasting. In H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural In-
formation Processing Systems, volume 33, pages 17766–17778. Curran
Associates, Inc., 2020.

[4] C. Chen, K. Petty, A. Skabardonis, P. Varaiya, and Z. Jia. Freeway perfor-
mance measurement system: Mining loop detector data. Transportation
Research Record, 1748(1):96–102, 2001.

[5] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio. Learning phrase representations using rnn
encoder-decoder for statistical machine translation, 2014.

[6] A. Colin Cameron and F. A. Windmeijer. An r-squared measure of good-
ness of fit for some common nonlinear regression models. Journal of
Econometrics, 77(2):329–342, 1997.

[7] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural
networks on graphs with fast localized spectral filtering, 2017.

[8] S. Deng, S. Wang, H. Rangwala, L. Wang, and Y. Ning. Cola-gnn: Cross-
location attention based graph neural networks for long-term ili predic-
tion. In Proceedings of the 29th ACM International Conference on In-
formation & Knowledge Management, CIKM ’20, page 245–254, New
York, NY, USA, 2020. Association for Computing Machinery.

[9] K. V. Desai and R. Ranjan. Insights from the wikipedia contest (ieee
contest for data mining 2011), 2014.

[10] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neu-
ral message passing for quantum chemistry, 2017.

[11] S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan. Attention based spatial-
temporal graph convolutional networks for traffic flow forecasting. In
AAAI, 2019.

[12] S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan. Attention based spatial-
temporal graph convolutional networks for traffic flow forecasting. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 33:922–929,
07 2019.

[13] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
Computation, 9:1735–1780, 1997.

[14] H. V. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou, J. M. Patel,
R. Ramakrishnan, and C. Shahabi. Big data and its technical challenges.
Commun. ACM, 57(7):86–94, July 2014.

[15] A. Kapoor, X. Ben, L. Liu, B. Perozzi, M. Barnes, M. Blais, and
S. O’Banion. Examining covid-19 forecasting using spatio-temporal
graph neural networks, 2020.

[16] T. N. Kipf and M. Welling. Semi-supervised classification with graph
convolutional networks, 2017.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. Commun. ACM, 60(6):84–90,
May 2017.

[18] Y. Li, R. Yu, C. Shahabi, and Y. Liu. Diffusion convolutional recurrent
neural network: Data-driven traffic forecasting, 2018.

[19] F. Manessi, A. Rozza, and M. Manzo. Dynamic graph convolutional
networks. Pattern Recognition, 97:107000, Jan 2020.

[20] S. Mohapatra, T. Swarnkar, and J. Das. 2 - deep convolutional neural
network in medical image processing. In V. E. Balas, B. K. Mishra, and
R. Kumar, editors, Handbook of Deep Learning in Biomedical Engineer-
ing, pages 25–60. Academic Press, 2021.

[21] V. Nair and G. E. Hinton. Rectified linear units improve restricted boltz-

mann machines. In ICML, 2010.
[22] H. Purwins, B. Li, T. Virtanen, J. Schluter, S.-Y. Chang, and T. Sainath.

Deep learning for audio signal processing. IEEE Journal of Selected Top-
ics in Signal Processing, 13(2):206–219, May 2019.

[23] F. Rosenblatt. The perceptron: a probabilistic model for information stor-
age and organization in the brain. Psychological review, 65 6:386–408,
1958.

[24] L. Ruiz, F. Gama, and A. Ribeiro. Gated graph recurrent neural networks.
IEEE Transactions on Signal Processing, 68:6303–6318, 2020.

[25] M. Schuster and K. K. Paliwal. Bidirectional recurrent neural networks.
IEEE Transactions on Signal Processing, 45(11):2673–2681, 1997.

[26] Y. Seo, M. Defferrard, P. Vandergheynst, and X. Bresson. Structured se-
quence modeling with graph convolutional recurrent networks. In Inter-
national Conference on Neural Information Processing, pages 362–373.
Springer, 2018.

[27] R. van den Berg, T. N. Kipf, and M. Welling. Graph convolutional matrix
completion, 2017.

[28] D. Wang, M. Jiang, M. Syed, O. Conway, V. Juneja, S. Subramanian,
and N. V. Chawla. Calendar graph neural networks for modeling time
structures in spatiotemporal user behaviors. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, KDD ’20, page 2581–2589, New York, NY, USA, 2020.
Association for Computing Machinery.

[29] D. Wang, M. Jiang, Q. Zeng, Z. Eberhart, and N. V. Chawla. Multi-type
itemset embedding for learning behavior success. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pages 2397–2406, 2018.

[30] X. Wang, Y. Ma, Y. Wang, W. Jin, X. Wang, J. Tang, C. Jia, and J. Yu.
Traffic flow prediction via spatial temporal graph neural network. In
Proceedings of The Web Conference 2020, WWW ’20, page 1082–1092,
New York, NY, USA, 2020. Association for Computing Machinery.

[31] C. Wu and M. Yan. Session-aware information embedding for e-
commerce product recommendation. In Proceedings of the 2017 ACM
on Conference on Information and Knowledge Management, CIKM ’17,
page 2379–2382, New York, NY, USA, 2017. Association for Computing
Machinery.

[32] Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang. Graph wavenet for deep
spatial-temporal graph modeling, 2019.

[33] S. Yan, Y. Xiong, and D. Lin. Spatial temporal graph convolutional net-
works for skeleton-based action recognition, 2018.

[34] H. Yao, X. Tang, H. Wei, G. Zheng, and Z. Li. Revisiting spatial-temporal
similarity: A deep learning framework for traffic prediction, 2018.

[35] H. Yao, F. Wu, J. Ke, X. Tang, Y. Jia, S. Lu, P. Gong, J. Ye, and Z. Li.
Deep multi-view spatial-temporal network for taxi demand prediction,
2018.

[36] B. Yu, H. Yin, and Z. Zhu. Spatio-temporal graph convolutional net-
works: A deep learning framework for traffic forecasting. Proceedings
of the Twenty-Seventh International Joint Conference on Artificial Intel-
ligence, Jul 2018.

[37] B. Yu, H. Yin, and Z. Zhu. Spatio-temporal graph convolutional net-
works: A deep learning framework for traffic forecasting, 2018.

[38] C. Zang, P. Cui, and C. Faloutsos. Beyond sigmoids: The nettide model
for social network growth, and its applications. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’16, page 2015–2024, New York, NY, USA,
2016. Association for Computing Machinery.

[39] Z. Zhang, P. Cui, and W. Zhu. Deep learning on graphs: A survey. IEEE
Transactions on Knowledge and Data Engineering, pages 1–1, 2020.

SC@RUG 2021 proceedings

49

A Comparative Analysis of Swarm Intelligence-Based Clustering
Algorithms

Sjoerd Bruin and Jasper van Thuijl

Abstract— Unsupervised clustering is a difficult problem because in general we do not have a good idea about the number of
expected clusters. As a result, we are at risk of underclustering or overclustering. Further problems with determining the shape
of clusters compound these potential issues even more. One recent development in unsupervised learning is the development of
algorithms based on the emergent behaviour of swarms analogous to natural swarms such as flocks of birds, colonies of ants,
or schools of fish. These swarm-based clustering algorithms typically maximise a fitness function in order to guide positioning of
individual agents in the artifical swarm. However, the DataBionic Swarm (DBS) framework does away with the fitness function
optimisation and instead uses game-theoretical payoff functions to guide the positioning of individual agents. This represents a novel
approach to implementing the behaviour of a swarm. In addition to this novel swarm implementation, the DataBionic Swarm framework
also visualises a two-dimensional projection of a higher-dimensional dataset in order to facilitate understanding and manual clustering,
which can then help inform the clustering process.
In this study, we compared the DataBionic Swarm with a more traditional state-of-the-art implementation of a swarm that uses a
hybrid of Particle Swarm Optimisation and Genetic Algorithm, and looked at a more general modification for swarm-based algorithms
that uses computational centroids instead of particle positions. We found that the modification of the DBS projection algorithm with
the computational centroids showed significant promise as a potential improvement of the DBS framework. In addition, we looked
at the Particle Swarm Optimisation with Genetic Algorithm performance. The main advantage of this algorithm over the DataBionic
Swarm framework is that it has much faster computation times: its convergence is fast, whereas evaluating the DataBionic Swarm
projection algorithm can take up to a day. The DataBionic Swarm framework provides a powerful clustering algorithm due to its ability
to handle non-circular clusters well. We identified computational centroids as an enhancement that could potentially improve this
property further by centering the clusters in a better way. Future research should focus on the applicability of this improvement in
order to try and improve the DataBionic Swarm framework further.

Index Terms—Self-organised clustering, clustering, semi-interactive clustering, unsupervised learning, swarm intelligence, particle
swarm optimization.

1 INTRODUCTION

The DataBionic Swarm (DBS) framework that [12] present, com-
bines a number of aspects that are important in unsupervised learning.
Firstly, it contains a projection algorithm that projects a dataset with
a large dimensionality down to a two-dimensional space. Secondly,
the algorithm provides an intuitive topographic map of this projection.
With this visualisation, we can visually judge the number of clusters
present in a dataset, and can judge the connectedness of the dataset by
means of a topographic analogy. Lastly, the DBS framework provides
two clustering options based either on compactness or connectedness.
The visualisation aspect of the DBS framework is very useful for visu-
ally judging the number of clusters and for learning about the structure
of the data. Naturally, we have to make the assumption that the two-
dimensional projection algorithm does indeed map a high-dimensional
dataset to a two-dimensional projection in a way that preserves the
structure of the high-dimensional dataset as closely as possible. To
this end, DBS uses a swarm-based algorithm that maps agents to a
two-dimensional grid and moves them around on that grid in such a
way that it preserves the high-dimensional properties of the original
dataset as well as possible.

At the early stages of swarm intelligence research, [1] gave the
first major description of swarm intelligence in the context of artifi-
cial intelligence, and identified several of the core principles that a
swarm-based algorithm should display. They also give the main emer-
gent behaviours that a swarm should exhibit in order to facilitate self-
organisation.

There are two main types of swarm-based clustering algorithms:

• Sjoerd Bruin is with University of Groningen, E-mail:
s.bruin.5@student.rug.nl

• Jasper van Thuijl is with University of Groningen, E-mail:
j.m.van.thuijl@student.rug.nl

the first one is Ant Colony Systems (ACS), which communicate indi-
rectly by using scent to inform future movement and, as [8] mention,
is often used in data mining applications. The second type is Parti-
cle Swarm Optimisation (PSO), which was first proposed by [3]. PSO
algorithms communicate directly rather than via indirect queues such
as scent. The polar swarm algorithm that the DBS framework uses
for projecting the dataset to a two-dimensional space is similar to the
movements strategies of agents that PSO employs. The polar swarm
algorithm also uses a scent function similar to the ones used in ACS
algorithms.

The concept of an artifical swarm agent, sometimes called a
DataBot, was proposed by [13]. The DBS framework uses DataBots in
the polar swarm algorithm to create a two-dimensional projection of a
larger-dimensional dataset. In this study, we reviewed the DBS frame-
work and compared its functionality with other state of the art ap-
proaches to swarm-based learning. In particular, we looked at Particles
Swarm Optimisation with the Genetic Algorithm that [7] presented in
order to compare the performance of both swarm-based clustering ap-
proaches. In addition, we looked at an improvement to swarm-based
algorithms proposed by [10]. This improvement, which uses computa-
tional centroids for distance measures rather than agent positions, has
shown tangible benefits for many clustering approaches, and in this
study we looked at the applicability of this technique to the projection
algorithm that DBS uses.

The aim of this study was to assess the quality of the DBS frame-
work, and to propose ways in which we could improve the underlying
algorithm. This helps to determine how accurate this framework is
for unsupervised learning tasks, and helps to improve the quality of
this framework in order to advance the state of the art in unsupervised
clustering. The DBS framework is useful because it combines pro-
jection, visualization, and clustering in a semi-interactive framework.
The visualization that the framework produces succeeds in producing
an easy-to-understand representation of the clusters. Furthermore, the
clustering accuracy of the framework is also quite high, outperform-

50

ing other unsupervised clustering techniques. However, the reliance
of DBS on radial distance measures between data elements might im-
pede its effectiveness for non-radially distributed datasets. Therefore,
we propose that an approach using computational centroids could im-
prove the accuracy of the algorithm even further. One downside of
DBS is its computational complexity: it takes many hours to compute
the result even for datasets with only a few thousand entries. Other
PSO algorithms typically have much faster convergence, making them
more convenient to use.

In section 2, we examine the theoretical underpinnings of the DBS
framework and a PSO with Genetic Algorithm hybrid in detail, and
we discuss the computational centroids modification. In section 3,
we compare DBS and the other algorithms, and we highlight some
approaches in these algorithms that could potentially improve DBS.
Lastly, we discuss our findings and introduce future research opportu-
nities in section 4.

2 METHODS

In this section, we discuss the different swarm-based learning algo-
rithms that we are going to compare. We discuss the DataBionic
Swarm (DBS), Particle Swarm Optimisation (PSO) combined with a
genetic algorithm (GA), and Fitness Evaluation with Computational
Centroids (FECC). We aim to highlight the difference between these
approaches in order to make clear which improvements could benefit
DBS.

The algorithms under consideration in this paper all belong to the
class of particle swarms. A particle swarm is inspired by biological
swarms, for example ants and schools of fish. Such swarms exhibit
five significant properties, summarised by [12], that make them very
useful as a template for clustering algorithms:

• Homogeneity: Every agent has the same behaviour.

• Locality: The motion of each agent is influenced only by its
nearest neighbours.

• Velocity Matching: Each agent attempts to match the velocity
of its closest neighbours.

• Collision Avoidance: Each agent avoids collisions with nearby
neighbours.

• Flock Centering: Agents attempt to stay close to neighbouring
agents.

The desirability of these five properties for a clustering algorithm
is immediately obvious: the homogeneity principle ensures that data
point behaviour depends only on the attribute values, not on any ar-
bitrary differential treatment between otherwise similar data points.
The locality principle puts a focus on the nearby data points, which
are most likely to have a significant impact on the clustering result,
in contrast to data points that are far from the current data point. The
velocity matching principle makes sure that data points become or-
ganised at comparable speeds. This prevents the unfortunate situation
where some data points reach a locally optimal position while other
data points are still far from their local optimum, which potentially
can cause some convergence issues. The collision avoidance princi-
ple prevents data points from converging on the same point in the at-
tribute space. The flock centering principle, finally, encourages that
data points which are close together try to stay close together, which
allows for clusters to form.

2.1 Particle Swarm Optimisation with Genetic Algorithm

A difficulty in cluster analysis is determining the optimal number of
clusters for unknown data. The DCPG algorithm proposed by [7] is
a dynamic clustering technique that is capable of automatically deter-
mining the optimal number of clusters, which minimizes the need for
user interactions. DCPG is a hybrid of Particles Swarm Optimization
(PSO) and Genetic Algorithm (GA).

2.1.1 PSO

The key foundation of the DCPG algorithm is the PSO algorithm,
which is based on swarm processes that can be observed in several
animal species. For instance, if an individual bird knows the direction
to food, it will transmit that information to its flock, which will in turn
correct their direction. This will allow the other birds in the flock to
move to the food location. Similarly to birds in a flock, PSO models
both the individuals’ knowledge of the search space and global knowl-
edge of the search space. In the implementation of the algorithm, each
potential solution is called a particle, and each particle keeps track of
its own position and velocity [3]. One of the main advantages of PSO
is high convergence velocity towards locally optimal solutions [7].

On initialization, a random number of particles is assigned a ran-
domized velocity and direction. Iteratively, the particles move through
the search space of the input problem’s dimension N. In each iteration,
an objective fitness function f is evaluated for each particle based on
its position, producing a real number. The personal best value and lo-
cation are tracked for each particle, and stored in yi : RN . This models
the individuals’ cognition of the search space. The overall best value
and location obtained by any particle in the population is stored in
ŷ : RN , which can be interpreted as the social model. The velocity and
direction of a particle is controlled by these values, but also depends
on the previous velocity of the particle.

In Equation 1 the velocity update step is specified for an individual
particle i for each dimension j ∈ {1, ...,N}. In each iteration, indi-
vidual particles accelerate towards both their previous best position
and the global best position randomly by factors r1, j ∼U([0,1]) and
r2, j ∼U([0,1]) respectively. Besides the random factors, hyperparam-
eters c1 and c2 are used to influence the learning rates of both the
cognition and social models respectively. The hyperparameter w for
inertia is used to control the impact of the previous velocity of the
particle on the new velocity. A low inertia value favours exploitation,
while a high inertia value favors exploration around the best solutions
found thus far [9]. Figure 1 shows the effects of the particles’ inertia,
cognitive model and social model on individual particles in the PSO
update step.

vi, j(t +1) =wvi, j + c1r1, j(t)(yi, j(t)− xi, j)

+ c2r2, j(t)(ŷ j(t)− xi, j(t))
(1)

The new velocity vi(t + 1) is capped between [−vmax,vmax], where
vmax is a hyperparameter. After updating the velocity of a particle, its
new position is calculated according to Equation 2.

xi(t +1) = xi(t)+vi(t +1) (2)

2.1.2 DCPG

The authors of the DCPG algorithm base their work on the Dynamic
Clustering using Particle Swarm Optimisation (DCPSO) algorithm
that was proposed by [9] for image segmentation. In DCPSO, a binary-
PSO is used. This version of the PSO algorithm operates in binary
space instead of continuous space, and is better suited towards dis-
crete problems. To obtain the binary-PSO algorithm, the regular PSO
algorithm only needs few minor modifications. The velocity update
for a particle as described in Equation 1 remains the same, however,
position xi(t) and local best value yi are restricted to the set {0,1} in
ZN . Furthermore, the velocity vi(t + 1) now represents a probability
that a bit is flipped. The position update of a particle is modified by
using a sigmoid function as shown in Equation 3, such that the new
particle position is now calculated through Equation 4.

sig(vi(t +1)) =
1

1+ evi(t+1)
(3)

xi(t +1) =

{
1 if rand()< sig(vi(t +1))
0 otherwise

(4)

SC@RUG 2021 proceedings

51

Fig. 1. Update steps of individual particles in the PSO algorithm in a
two-dimensional search space. The effect of the social component and
individual’s knowledge of the search space are clearly shown. Free to
use image adapted from [11].

In order to overcome the binary-PSO algorithm falling into the lo-
cally optimal solution instead of the global optimal solution, [7] imple-
mented the crossover and mutation operators of GA into the DCPSO
algorithm. The authors state that GA is especially suited towards large
nonlinear space problems where solutions are unpredictable. Notable
benefits of GA include increased search capability, high accuracy, and
the ability to escape from locally optimal solutions. Other research
also suggests that using a hybrid of PSO+GA is superior to using PSO
or GA alone [6].

In every iteration of the DCPG algorithm, the population of par-
ticles is copied to a second population. The first population is kept
intact, while on the second population two-point crossover is applied
to yi and ŷ and mutation for ŷ. After this, population 1 and popu-
lation 2 are combined, and the fitness values of all the particles are
calculated. Elitist selection is applied to disregard the particles with
the worst fitness values, and keep the particles with the highest fitness
values for the population that will be used in the next iteration.

The resulting DCPG algorithm works as follows: In the first run,
a set of cluster centroids M is randomly chosen from the input set of
data points Z, and a swarm of particles S is randomly initialized. Fit-
ness values are calculated for all particles, after which binary-PSO is
applied to the swarm of particles. Next, two-point crossover and muta-
tion operations from GA are applied. Elitist selection selects the next
population of particles and the steps are repeated for a predefined num-
ber of iterations. After the iterations have completed, the best set of
cluster centroids, known as Mτ remains. Subsequently, the k-means
algorithm is applied to correct the particle centroids. Random com-
ponents Mr are again chosen from the set Z, and M is calculated as
M = Mτ ∪Mr. The previous steps are repeated using the new M until
a predefined number of iterations are met. On completion, Mτ will
contain the optimum number of cluster centroids, and nτ the optimum
number of clusters. A representation of the DCPG algorithm is shown
in Algorithm 1.

In their research, [7] compared the DCPG algorithm to two binary-
PSO and one GA-based clustering algorithms on four benchmark
datasets and in one concrete case-study. In their benchmark study,
DCPG converged in less iterations than the other algorithms, with sim-

Algorithm 1 DCPG algorithm
INPUT: Set of data points Z, maximum number of PSO+GA iter-
ations amax, maximum number of inner iterations bmax, population
size s, inertia weight w, max velocity vmax, learning factors c1,c2,
maximum number of clusters Nc, crossover rate and mutation rate
OUTPUT: Set of cluster centroids M

Randomly choose set of data points M from Z
Randomly initialize swarm S = {x1, ...xi, ...xs}, where xi =
{xi1, ...xik, ...xiNc} and xik ∼U(0,1); // xik = 1 means that particle i
belongs to cluster k, xik = 0 means the opposite
Randomly initialize particle velocities vi
for a = 0→ amax do

for b = 0→ bmax do
f = ∑Nc

k=1 ∑∀Z∈nik
‖Z−Mi‖ // Calculate fitness value f for all

particles
for particle i ∈ S do

Determine yi and ŷ
Calculate new particle velocity vi(t +1) using Equation 1
Calculate new particle position xi(t +1) using Equation 4

end for
Copy all particles to generate population 1
Perform two-point crossover for yi and ŷ and mutation for ŷ
to generate population 2
Combine populations and calculate fitness values
Perform elitist selection to generate next population

end for
Apply K-means for correction of the particle centroids, resulting
in Mτ
Randomly choose a set Mr from Z.
M = Mτ ∪Mr

end for

ilar computation times. Validation completed by the authors shows
that DCPG achieved the lowest error rates in clustering results, and
can accurately determine the correct number of clusters.

2.2 DataBionic Swarm
DBS is not just a clustering algorithm but it is an entire clustering
framework. This means that DBS tries to integrate the steps of cluster
selection, classification, and visualization into a single approach. This
becomes clear when we look at the polar swarm algorithm at the cen-
ter of the DBS framework. The name polar swarm highlights that the
algorithm evaluates the movement of agents in the swarm in log-polar
coordinates. The aim of the polar swarm algorithm is to use the prop-
erties of swarm behaviour in order to produce a two-dimensional rep-
resentation, denoted as the output space or projection space O ⊆ R2,
of an N-dimensional dataset (where N > 2), denoted as the input space
I ⊆RN , using swarm properties to make sure that the two-dimensional
representation maintains the inherent clusters that are present in the
original N-dimensional representation.

The mechanics of a swarm lead to the concept of emergence due to
four properties identified by [12]:

• Randomness: The update of agents contains a degree of ran-
domness to prevent predictable movement patterns.

• Temporal and structural unpredictability: We do not make
assumptions about the structure of the swarm or about the way
in which the structure changes over time.

• Multiple non-linear interactions among many agents: Agents
interact with one another in non-linear ways, leading to complex
behaviour.

• Irreducibility: We cannot trace back the behaviour of the
macroscopic swarm to the characteristics of individual agents.

Emergence produces swarm-level behaviour which we cannot ac-
curately trace back to properties of the individual agents. This defini-

A Comparative Analysis of Swarm Intelligence-Based Clustering Algorithms – Sjoerd Bruin and Jasper van Thuijl

52

tion is suspicious, since it only tells us that there is some macroscopic
behaviour for which we do not yet know the underlying microscopic
dynamics, but emergence is useful as a concept nonetheless.

The polar swarm algorithm plays a game in the game-theoretical
sense: it applies different strategies, which we understand to be dif-
ferent movements in the projection space, and it reaches a Nash equi-
librium for the strategy with the best stability. The Nash equilibrium
represents a state of the system where no change of an individual ac-
tor’s strategy leads to a better payoff. We use a scent function similar
to the one defined in equation 5 as the payoff function. We reproduce
the polar swarm algorithm defined by [12] in algorithm 2 (we slightly
changed the layout and included additional annotations, while preserv-
ing the core structure, so that the structure of the algorithm is clearer
in our estimation).

Algorithm 2 Polar swarm projection algorithm

INPUT: Input space I ⊆ RN , output space O⊆ R2, distance matrix
D(l, j)
OUTPUT: Output space O with the projected positions of the data
points

for all zi ∈ I do
assign an initial random polar position uφ (r) ∈ O on the grid to
generate agents bi ∈ B, where B is the set of agents

end for
for R = {Rmax = Lines/2, ...,Rmin} do

calculate chance P(R) that an agent is allowed to jump
repeat

s = sample(P(R),B) // take a distance-weighted random sam-
pling of agents
mk(s) = uniform(1,Rmax) for k = 1, ...,α , with α the number
of possible jump positions
l(s) = argmax j∈{i,mk(s)}(λ (b j,B))
l(!s) = i // Agents not selected for new positions stay in place
S = ∑l λl(bl ,R) // Compute sum of scents

until ∂S(e,λ (R))
∂e = 0

end for
return Output space O with computed agent positions

Polar swarm randomly assigns all data points onto a position on a
(toroidal) two-dimensional grid, and then attempts to take a number of
movements for a random subset of the data points. It then evaluates
the scent function to see whether the move improved the state of the
agent. If so, it accepts the move. Otherwise, the move is reversed,
and the agent stays in its current position. The algorithm starts by
considering large jumps (i.e. a large value of R), in order to find large
possible improvements in the beginning. Then, it decreases the size of
R. For each value of R, polar swarm continues to make moves until the
sum S of scents no longer changes during an epoch. During an epoch,
the algorithm calculates a random sample which it will consider for a
new position as a function of the jump size R, and then it determines
a set of new positions mk(s) by moving a randomly chosen distance in
the range [1,Rmax]. After that, we determine whether one of the new
positions has a better scent value than the current one. The agents that
were not selected stay in their respective original positions.

In order to ensure that the data projection adheres to the swarm
properties, [12] defines a general scent function λ (b j,R) given in
equation 5.

λ (b j,R) =
∑l∈I hR(d(j, l)) ·D(j, l)

∑l∈I hR(d(j, l))
(5)

Here b j is the current actor under consideration, D(j, l) defines the
distance between two locations in a neighbourhood I in the dataset
space, and d(j, l) defines the distance between two locations in the
output space O. hR(x) is a monotonically increasing function in the
range [0,1]. The scent function λ therefore defines a weighted sum of
the distances of neighbouring agents.

The polar swarm algorithm relies on the scent function to make
sure that the connectivity present in the N-dimensional dataset is trans-
lated to the two-dimensional projection. Polar swarm considers radial
movements of the agents. Using this knowledge, [12] defines the scent
function given in equation 5 more precisely using a radial monotoni-
cally decreasing function hR(x) as given in equation 6.

hR(Re) =

1− r(j,l)2

πR2
e

iff r(j,l)2

πR2
e

< 1

0 otherwise
(6)

In equation 6, the distance Re depends on the epoch we are currently
in, and the function r(j, l) is a distance measure in the output space
O. By using equation 6, [12] defines the scent function used in polar
swarm, which we reproduce in equation 7.

λe(b j,Re,S0) =

S0− ∑l∈I hR(r(j,l))·D(j,l)
∑l∈I hR(r(j,l)) iff ∑l∈W hR(r(j, l))> 0

S0 otherwise
(7)

In equation 7, we define S0 as the initial scent value, as given in
equation 8.

S0 = ∑
j
|λ (b j,Rmax,0)| (8)

Thanks to the polar swarm algorithm, the DBS framework can
produce very informative visualizations. We most likely lose some
information because we do not have a guarantee that the two-
dimensional projection accurately represents the N-dimensional con-
nectivity, which was proven in [2]. This is not inherently a conviction
of the method, of course: every clustering algorithm needs to reduce
the dataset to a lower-dimensional description, and will lose some ac-
curacy compared to storing the entire dataset. This is the fundamental
trade-off between learning and storage.

The DBS framework includes a built-in visualization that displays
the clusters, as shown in figure 2. Figure 2 shows that the DBS vi-
sualization very clearly shows the clusters and their separation. The
visualization represents the connectivity of the two-dimensional pro-
jection by using topographical analogies: mountain peaks denote large
distances between data points (i.e. low density), lakes denote small
distances between data points (i.e. high density). This visualization
is useful for visually determining clusters in the dataset. Thanks to
the topographical description that the visualization uses, we can easily
discern outliers and figure out how many clusters are appropriate for
the clustering we are going to attempt. The accuracy of this method
depends, of course, on the accuracy of the polar swarm projection:
if the projection is not accurate, then we cannot figure out accurate
information from the visualization, either.

Fig. 2. Visualization of the projection produced by the Polar swarm al-
gorithm in the DBS framework. This image was reproduced from [12].

SC@RUG 2021 proceedings

53

The next step in the DBS framework is the actual clustering step.
For this, we need to determine the number of clusters we want to find
from the visualization we have just produced. Using this number of
clusters, we can then apply a clustering algorithm. The clustering algo-
rithm is applied on the two-dimensional projection, using the number
of clusters we just indicated along with a choice of clustering method.
DBS uses a shortest path calculation to evaluate a hierarchical clus-
tering process which ultimately assigns the data points to a cluster.
DBS includes two clustering approaches, based either on a compact
or a connected representation of the clusters. The compact representa-
tion prevents the inclusion of data points that are too far out, but it can
overestimate the number of clusters in the two-dimensional projection.
The connected representation generally produces a lower number of
clusters, but it can go over low-density regions of the visualization to
find connections with other groups of data points. We need to make a
choice based on the visualization which approach gives the best results
for the given dataset.

2.3 Computational Centroids in PSO
As an improvement to the traditional PSO fitness evaluation, [10] pro-
pose using computational centroids, instead of centroids based on par-
ticle positions. Assigning centroids based on particle positions makes
intuitive sense in PSO, because we want those particles to represent the
clusters. However, [10] suggest not giving in to this assumption and
instead using the computational centroids. The computational centroid
is the familiar centroid that we can compute from the positions of the
data points. At initialisation, we randomly initialise the centroid po-
sitions. Then, we compute the data points which are closest to the
centroid, and recompute the centroid based the set of m j data points
M j ⊆ RN assigned to centroid C j ∈ RN . The new location of C j at
any point in the algorithm is computed using equation 9.

C j =
1

m j
∑

xi∈M j

xi (9)

While intuitively we would expect that both approaches to deter-
mining the centroid would converge, [10] point out that this is only
likely for non-overlapping clusters. For overlapping clusters, the
methods are likely to yield different results.

In order to figure out whether the Function Evaluation with Com-
putational Centroids modification is useful, [10] compare the FECC-
modified versions of different Clustering Validity Indices (CVIs).
These CVIs are measures for evaluating the accuracy of a given clus-
tering. The PSO algorithm at some point requires these CVIs, and thus
needs to compute the centroids of the dataset in question. As a result,
we can directly compare the accuracy of the original CVIs with the
FECC-modified version of the CVIs. The replacement is quite direct:
we only need to modify the centroid computation procedure, so that
it uses the computational centroids given by equation 9 instead of the
particle positions of the swarm.

In their research, [10] find that the FECC-modified variants almost
always perform better than the original versions. They explain this by
noting that the computational centroids have a more natural tendency
to center on the cluster than the centroids found by using the particle
positions of the swarm, and therefore the clustering algorithms, which
usually make use of radially symmetric distance measures, perform
better when we use these computational centroids. For PSO in partic-
ular, the fitness evaluation function depends on the centroids, so the
accuracy of these centroids is important in achieving a good criterion
for validating the swarm behaviour.

FECC-modified versions have a tendency to overcluster, meaning
that they find more clusters than the corresponding original versions
do. This is not necessarily incorrect, of course. There are two op-
tions: firstly, the original versions might undercluster, which means
that the larger number of clusters might bring the total number of clus-
ters closer to the ground truth. Obviously, this is not always the case.
However, [10] refer to the discussions by [5] and [14] when they say
that the accuracy of a clustering algorithm amounts to more than just
finding the correct number of clusters: an underclustered result can

still have a better training and generalisation error if these clusters are
more generally aligned with the ground truth clusters than a result with
the same number of clusters as the ground truth. In short, we need to
take into account not only the number of clusters, but also their accu-
racy.

3 RESULTS & DISCUSSION

In this section, we compare DBS with the other methods we described
in section 2. In section 3.1, we compare DBS with PSO+GA in order
to see how DBS compares and whether PSO+GA offers suggestions
that could improve the DBS framework. In section 3.2, we look at the
implications that the FECC modification has for the DBS clustering
process.

3.1 DBS and DCPG

A fundamental difference between the DBS and DCPG approaches is
that the DCPG algorithm aims to optimize an objective function, and
therefore makes implicit assumptions about the underlying structure
of the data [7, 12]. The DBS algorithm takes a different approach
by omitting optimizing a global objective function, and relying on the
concept of emergence instead.

The DCPG algorithm is characterized by its quick convergence, and
despite its relative complexity it has short computation times and low
computational costs. In comparison, the DBS algorithm suffers from
one main limitation in its computation times. For example, the anal-
ysis of a dataset with more than 4000 cases would require more than
a day of computation time [12]. This is due to the fact that every
case needs its own agent, and the implementation of the polar swarm
algorithm can only utilize a single core. The authors of the DBS algo-
rithm also mention that if prior knowledge of the data set is available, a
clustering algorithm with appropriately chosen parameter settings can
outperform DBS.

The DCPG algorithm does come with some disadvantages however.
[12] argue that the application of the k-means algorithm for clustering
imposes a spherical cluster structure on the dataset, rendering it less
practical for the detection of elongated clusters. Furthermore, the k-
means algorithm is sensitive to noise and outliers. Besides these rea-
sons, [12] also reason that it is difficult to determine a correct stopping
criterion for the PSO algorithm, which is usually a fixed number of
maximum iterations.

3.2 DBS and FECC

DBS can potentially benefit from the use of computational centroids.
We explained in section 2.3 that FECC brings an improvement to the
traditional PSO implications which rely on particle positions. This is
due to the tendency of the particle positions to be more off-center for
the cluster, which implies a lower compactness. The authors of [10]
showed quite clearly that this optimisation had a positive impact on the
classification performance of the PSO algorithms for which they tested
the FECC modification. Although [12] do not refer to the centroids,
they do rely on the same implicit assumption that [10] refer to, which
is that the particle position is assumed to represent the centroid. We
can see this in equation 6. The radial monotonic function centers on
the current particle j under consideration, and the value of the scent
function is dependent on this function from the definition in equation
7. The minus sign in equation 7 tells us, since we want to maximise the
value of λ , that we want to minimise the fraction ∑l∈I hR(r(j,l))·D(j,l)

∑l∈I hR(r(j,l)) .
Before we can consider what a computational centroid could add to

the polar swarm algorithm, we note that the centroid aims to position
itself such that the average distance of the centroid to all associated
data points is minimised. This means that we minimise 〈D(j,C j)〉,
where C j is the centroid to which we associate data point j. In the
projection space O, we have to replace the distance r(j, l) with the
distance r(j,C j,O), where C j,O is the centroid computed for the set
of agents in the region under consideration. By definition of the cen-
troid, we minimise the average value 〈r(j,C j,O)〉. As a consequence of
minimising 〈D(j,C j)〉 and 〈r(j,C j,O)〉, we expect to have maximised

A Comparative Analysis of Swarm Intelligence-Based Clustering Algorithms – Sjoerd Bruin and Jasper van Thuijl

54

equation 7, although the product in the sum of the numerator indi-
cates that we cannot assume this result to be true. If it is true, then we
have found the strongest possible scent function value. Since the scent
function represents the payoff function of the game-theoretical game,
an attractive conclusion would be that we have produced a configura-
tion that is maximally stable, but this assumption does not necessarily
follow. Indeed, we only use the scent function to determine the best
current configuration, but we consider the best possible configuration
over a moveset, which includes a certain amount of randomness due
to the random choice of movement that we take. As such, further re-
search is necessary in order to test the hypothesis that we present above
with respect to the FECC modification for DBS.

The results that [10] present for the use of computational centroids
clearly show that using computational centroids can improve cluster-
ing performance, so there is good reason to study this effect for DBS.
We explained in this section that it is possible to introduce computa-
tional centroids into DBS as well.

We must note that the visualisation aspect of the DBS framework
does not impact the discussion we have given above. What sets DBS
apart from the PSO algorithms that [10] studies is that DBS contains
a semi-interactive visualisation which can be used to determine the
number of clusters we expect the final result to have. However, this
visualisation does not change the polar swarm algorithm that produces
the projection. Indeed, the suggestion that we presented in this section
proposes a modification to the polar swarm algorithm, and thus the
semi-interactive nature of the visualisation does not ultimately affect
this discussion.

4 CONCLUSION

The aim of this study was to assess the quality of the novel DBS frame-
work proposed by [12], and present ways in which the underlying al-
gorithm can be improved. To this end, we compared the DBS algo-
rithm to other state-of-the-art clustering techniques. Literature study
was performed to find suitable algorithms for comparison.

Frequently used hybridization techniques in clustering algorithms
include PSO, GA and k-means [4]. The dynamic clustering technique
DCPG presented by [7] utilizes all of these techniques, and is able
to automatically determine the optimal number of clusters. By com-
bining the PSO, GA and k-means algorithms, it offers fast conver-
gence and better clustering results than by using PSO or GA-based
algorithms alone [7]. We have highlighted the inner workings of the
DCPG algorithm, and compared the algorithm to the DBS framework.
In contrast to the DCPG algorithm, the DBS framework is a good can-
didate for data sets where no prior knowledge is available. For known
data sets however, the DCPG algorithm with appropriately specified
parameters could potentially outperform DBS. The choice between
DCPG and DBS is therefore application-specific and mostly depends
on whether knowledge of the data set is available. Further research is
necessary to establish clustering results for both algorithms and pro-
vide a clear insight in their clustering accuracy. The Iris, Wine, Glass
and Vowel data sets mentioned in [7] are commonly used benchmark
data sets, and could be well-suited for this research project.

In an attempt to improve the accuracy the PSO clustering algorithm,
[10] propose a technique that uses computational centroids instead
of using the particle positions directly. The authors find that FECC-
based algorithms almost always outperform the original versions, even
though the FECC algorithm tends to overcluster in comparison. This
suggests that not only the determined number of clusters is important,
but also the accuracy of the found clusters. For this reason, the im-
plementation of computational centroids in the DBS algorithm could
possibly improve its performance.

At the present time, the main limitation of the DBS framework is its
computation time. As the framework is currently only capable of using
a single core, the DBS frameworks’ performance might significantly
increase from a multi-threaded implementation of the polar-swarm al-
gorithm.

REFERENCES

[1] Eric Bonabeau et al. Swarm intelligence: from natural to artificial sys-
tems. Oxford University Press, New York, 1999.

[2] Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem
of johnson and lindenstrauss. Random Structures and Algorithms, 22:60–
65, November 2002.

[3] R. Eberhart and J. Kennedy. A new optimizer using particle
swarm theory. In MHS’95. Proceedings of the Sixth Interna-
tional Symposium on Micro Machine and Human Science, pages 39–
43. IEEE. URL: http://ieeexplore.ieee.org/document/
494215/, doi:10.1109/MHS.1995.494215.

[4] Elliackin Figueiredo, Mariana Macedo, Hugo Valadares Siqueira,
Clodomir J. Santana, Anu Gokhale, and Carmelo J.A. Bastos-
Filho. Swarm intelligence for clustering — a systematic
review with new perspectives on data mining. 82:313–
329. URL: https://linkinghub.elsevier.com/
retrieve/pii/S0952197619300922, doi:10.1016/
j.engappai.2019.04.007.

[5] Ibai Gurrutxaga et al. Towards a standard methodology to evaluate inter-
nal cluster validity indices. Pattern Recognition Letters, 32(3):505–515,
February 2011.

[6] C.-F. Juang. A hybrid of genetic algorithm and particle swarm optimiza-
tion for recurrent network design. 34(2):997–1006. URL: http://
ieeexplore.ieee.org/document/1275532/, doi:10.1109/
TSMCB.2003.818557.

[7] R.J. Kuo, Y.J. Syu, Zhen-Yao Chen, and F.C. Tien. Integration of particle
swarm optimization and genetic algorithm for dynamic clustering.
195:124–140. URL: https://linkinghub.elsevier.com/
retrieve/pii/S0020025512000400, doi:10.1016/
j.ins.2012.01.021.

[8] David Martens et al. Editorial survey: swarm intelligence for data mining.
Machine Learning, 82:1–42, September 2010.

[9] Mahamed G. H. Omran, Ayed Salman, and Andries P. Engel-
brecht. Dynamic clustering using particle swarm optimization with
application in image segmentation. 8(4):332–344. URL: http:
//link.springer.com/10.1007/s10044-005-0015-5, doi:
10.1007/s10044-005-0015-5.

[10] Jenni Raitoharju et al. Particle swarm clustering fitness evaluation with
computational centroids. Swarm and Evolutionary Computation, 34:103–
118, February 2017.

[11] Axel Thevenot. Particle swarm optimization visually explained. URL:
https://towardsdatascience.com/particle-swarm-
optimization-visually-explained-46289eeb2e14.

[12] Michael C. Thrun and Alfred Ultsch. Swarm intelligence for self-
organised clustering. Artificial Intelligence, 290(1):103237, January
2020.

[13] Alfred Ultsch. Clustering with databots. In Int. Conf. Advances in Intel-
ligent Systems Theory and Applications, 2000.

[14] Lucas Vendramin et al. Relative clustering validity criteria: A compara-
tive overview. Statistical Analysis and Data Mining, 3(4):209–235, July
2010.

SC@RUG 2021 proceedings

55

A Review of Image Vectorisation Techniques

Ştefan Evanghelides (s2895323), Ethan Waterink (s3417611)

Abstract— Most available and captured images are raster (bitmap) images, which are, by definition, resolution dependent. In this
paper, we look at three image vectorisation methods available today for converting a raster image to a vector one. First, we look at
optimized gradient meshes, which semi-automatically create gradient meshes from raster images by minimizing an energy function.
Second, we consider diffusion curves, which partition the space through which it is drawn, defining different colors on either side.
These colours are then diffused over the image. Third, we look at thin-plate splines, which create a hybrid vector structure, using
parametric patches and detailed features for localized and parallelized thin-plate spline interpolation. Finally, we quantitatively and
qualitatively compare the three methods, deriving strengths and weaknesses with respect to vectorisation complexity, reconstruction
accuracy, image editing and animation.

Index Terms—Image vectorisation, optimized gradient mesh, diffusion curve, thin-plate spline, editing

1 INTRODUCTION

Image vectorisation is the process of converting a raster (bitmap) im-
age into a vector image. Raster images typically consist of a rectangu-
lar grid of pixels, holding the colours. This means that raster images
are dependent on the scale they were created in. If such an image is
zoomed in, then blocky artifacts appear for round/shaded objects.

Vector images, on the other hand, are 1) scale independent, meaning
they remain sharp when zoomed in. Their inner structure consists of
a set of shapes, which determine the resulting pixel values usually by
some interpolation technique. Such an image is 2), most of the time,
more efficient in terms of space than the bitmap images. These are
two of the reasons why it is useful to vectorise a raster image. The
process of vectorising an image has been greatly improved over the
years. While image designers are able to manually vectorise an image,
nowadays it is possible to achieve near-perfect results using automatic
methods.

The aim of this paper is to provide a review analysis of the current
techniques used to automatically vectorise bitmap images. This paper
gives a guideline in the field of image vectorisation that could possibly
assist professionals and artists in choosing the most suitable approach
for image vectorisation on a case-by-case basis. While a wide collec-
tion of techniques are available, we focus on analysing the following
methods:

1. Image vectorisation based on optimized gradient meshes
(OGM) [21],

2. Image vectorisation based on diffusion curves (DC) [16],

3. Image vectorisation using real-time thin-plate splines (TPS) [3].

These three methods represent different approaches, with different
primitives used in image vectorisation, namely mesh-based, curve-
based and patch-based vectorisation methods, respectively. As the
names suggest, the first method aligns meshes with edges encoding
colour information with interpolation inside each primitive for render-
ing. The second method uses curves and lines as colour constraints
to ensure smooth colouring and rasterization. Lastly, the third method
encodes colour and geometric information in parametric patches to fa-
cilitate editing and flexibility.

During our analysis, the proposed methods are considered quanti-
tatively, by judging their performances based on metrics such as ac-
curacy, efficiency and storage, as well as qualitatively, by analysing
their performances and limitations in the context of complexity and

• Ştefan Evanghelides is an MSc Computing Science student of the
University of Groningen, E-mail: s.evanghelides@student.rug.nl.

• Ethan Waterink is an MSc Computing Science student of the University of
Groningen, E-mail: e.waterink@student.rug.nl.

editability. The implementation and the results achieved by the meth-
ods cannot be judged independently of their experimental setup, there-
fore the scope and limitations of the conducted experiments must also
be considered.

This paper is structured as follows: Section 2 addresses related
work on image vectorisation. Section 3 describes the preliminary in-
formation of the image vectorisation techniques. Then, Section 4 pro-
vides an overview of the state-of-the-art techniques. Section 5 presents
a detailed comparison and discussion of the presented approaches. Fi-
nally, Section 6 offers the conclusions of our investigation, and Sec-
tion 7 suggests possible extensions for the research conducted in this
paper.

2 RELATED WORK

Numerous vector image (or vector graphic) representations and vec-
torisation techniques have been developed over the last 60 year, see
e.g. [7, 18, 17]. In the field of image vectorisation, fundamental meth-
ods are the optimized gradient mesh [21] and the diffusion curves [16],
making them representative methods in our analysis. These served as
a basis for more advanced extensions. Barendrecht et al. [1] extended
on the gradient mesh primitive by introducing a method for local re-
finement, while Lieng et al. [13] and Svergja et al. [23] created gra-
dient meshes of arbitrary manifold topology. Li et al. [12] proposed
temporal diffusion curves, which represent not only the graphics but
also their evolution over time using continuous functions. For other
extensions we refer to [25, 14, 22].

Considering the publishing dates of [21, 16], we included the con-
temporary real-time thin-plate splines method [3]. Lai et al. [9] be-
gan with an initial mesh created manually by artists, whereas Xia et
al. [24] attempted to automate the vectorisation process using trian-
gular meshes. However, both methods result in a large number of
patches, decreasing the performance, as opposed to TPS.

3 PRELIMINARIES

Vectorising binary (black and white) images can be done by extract-
ing the edges, which can then be represented using existing primi-
tives, such as curves [5]. This can be realized by basic thresholding to
separate the objects. Vectorising coloured images poses certain chal-
lenges, most notable being the combination between sharp and smooth
colour transitions [16] and diffusion constraints [2]. In this section, the
main components of the vectorisation methods are generally defined,
namely Bézier splines, Ferguson patches, gradient meshes, diffusion
curves and thin-plate splines.

Bézier splines Understanding gradient meshes and diffusion
curves relies on understanding Bézier splines. A spline is a special
function defined piece-wise by polynomials. When each polynomial
piece of the spline is represented by Bernstein polynomials we speak
of Bézier splines. A Bézier curve is a parametric curve, defined by
the interpolation of a set of control points. The first and final control

56

points are always the endpoints of the curve; however, the intermediate
control points (if any) generally do not lie on the curve. Bézier curves
can be combined to form Bézier splines. Hence, they are piece-wise
Bézier curves that are at least continuous [20].

Gradient meshes A gradient mesh is a topological lattice con-
taining vertices grouped in quad primitives. The vertices have colours
associated to them, which are interpolated across the mesh. Vertices
are connected using 4 mesh-lines, which are defined as Bézier splines.
The user therefore can control the vertex positions, the splines deriva-
tives at each vertex and the RGB colour [21].

Ferguson patches Gradient meshes can be regarded as topolog-
ically planar rectangular Ferguson patches with mesh-lines. A Fergu-
son patch consists of a grid of bicubic-interpolated control points [6].
Figure 1 shows a simple mesh consisting of 4 Ferguson patches, along
with the mesh-lines.

Fig. 1. The gradient mesh in (b) consists of 4 Ferguson patches (a).
Image taken from [21].

Diffusion curves Diffusion curves are cubic Bézier splines which
contain colours on both sides of the curve. Besides the control points
of the curve, the curve contains a set of blur control points, which
allow to control the smoothness of the transition of colours between
the two halves [16].

Rendering images with diffusion curves is a 3-step process: first,
the curves are defined, along with the colours on each side of the
curves. Secondly, the colours are diffused over the image. Thirdly,
the image is reblurred using the blurring attributes. Figure 2 illus-
trates the three components of a diffusion curve (a)–(c) and the final
result is shown in (d).

Fig. 2. Diffusion curve components: (a) geometric curve, (b) colours on
either side, linearly interpolated along the curve, (c) blur amount linearly
interpolated along the curve; (d) final image, obtained by diffusion and
reblurring. Image taken from [16].

Thin-plate splines Thin-plate splines are spline-based tech-
niques for data interpolation and smoothing, and are an important spe-
cial case of a polyharmonic spline. The TPS interpolates a surface
that passes through each control point. The fit resists bending, imply-
ing a penalty involving the smoothness of the fitted surface. The TPS
arises from consideration of the integral of the square of the second
derivative – this forms its smoothness measure [8].

4 IMAGE VECTORISATION TECHNIQUES

This section presents the three main image vectorisation techniques:
optimized gradient meshes, diffusion curves and thin-plate splines.
Improved diffusion curves models are also described.

4.1 Optimized gradient meshes
Optimized gradient meshes semi-automatically create gradient meshes
from a raster image [21]. By formulating an energy minimization
problem, an optimized gradient mesh is obtained. This energy term
E(M) is the reconstruction residual between the input image and the
colour graphics rendered by the gradient mesh. Given a smooth raster
image, the aim is to create a gradient mesh with a small reconstruction
error. In this case, the gradient mesh is a set of connected Ferguson
patches (Figure 1) which is fitted to the image.

4.1.1 Optimization
In fact, minimizing the energy function E(M) is a non-linear least
squares (NLLS) problem. To solve this, the Levenberg-Marquadt
(LM) algorithm [10] is employed, as it uses an effective damping strat-
egy that lends it the ability to converge promptly from a wide range of
initial guesses.

Figure 3 shows an example of an optimized gradient mesh. First,
a manually created gradient mesh in Adobe Illustrator is rasterized to
an image as the input, see Figure 3(a). The mesh is initialized by a
4× 4 evenly divided mesh. Then, Figure 3(b) is the optimized gradi-
ent mesh after 40 LM iterations. The optimized mesh-lines are similar
to the manually created mesh-lines, and the rendering results are vir-
tually identical. Notice that both smooth regions and sharp edges are
faithfully reconstructed.

Fig. 3. Optimization. (a) A screen snapshot of a gradient mesh in Adobe
Illustrator, which is rasterized as the input image. (b) and (c) Optimized
gradient mesh. Image taken from [21].

In order to obtain more satisfactory results, Sun et al. (2007) en-
force two constraints on the optimized gradient mesh [21].

Smoothness constraint The simple input image in Figure 3 was
reconstructed faithfully. However, for complex examples or real im-
ages with noise, the optimization of energy function E(M) often be-
comes stuck in a local minimum. As the resulting gradient mesh is not
smooth, a smoothness term SC (smoothness constraint) is added into
the energy, yielding the new energy term E ′(M) = E(M)+ SC. The
new energy term is the smoothness of the gradient mesh. Smaller re-
construction errors are obtained by arriving at a better local minimum;
see Figure 4.

Fig. 4. Smoothness constraint. Input image and optimized results with-
out and with the smoothness constraint. Image taken from [21].

Boundary constraint The boundary of a gradient mesh consists
of four segments, see Figure 1, and each segment is one or more cu-
bic Bézier splines. In the optimization, a boundary constraint is en-
forced in which the control points on the boundary only move along
the splines.

SC@RUG 2021 proceedings

57

4.1.2 Guided optimized gradient mesh
In most cases, the optimization can create satisfactory results automat-
ically. To give the user more control, a few vector lines can be drawn
in the image to control the mesh generation (i.e. the dominant direc-
tion of the mesh lines). This is formalized by adding a new term V to
the energy function, to represent the user’s input. Consequently, the
new energy function E ′′(M) = E ′(M)+V is minimized. The new en-
ergy term encourages consistency between optimized mesh-lines and
specified vector lines [21].

4.1.3 Mesh initialization
A complex object usually consists of several semantic parts. The input
image object is first decomposed into several sub-objects using an in-
teractive image cutout tool [11] or a free lasso tool. Then, the boundary
of each sub-object is manually divided into four segments. In order to
obtain a good result, it is better to have a division so that the segments
follow the major and minor axes of the object. Each segment is then
fitted by one or more cubic Bézier splines. Finally, the mesh-lines are
initialized in two ways: evenly distributed or by interactive placement.

Each sub-object with four segments is treated as a Coons patch [4],
which supports multiple splines on one segment. To create an evenly
distributed mesh, the Coons patch is divided evenly in the parametric
coordinates.

4.2 Diffusion curves
There are three ways to create a diffusion curve: manual, assisted and
automatic. The artist can manually create diffusion lines from scratch,
where she/he sketches the lines of the drawing and sets the colours.
In most cases, however, the artist has an existing image as a start-
ing point, which she/he manually traces and recovers the underlying
colours from (assisted approach). The third approach automatically
extracts and vectorises diffusion curve data from a bitmap [16].

The manual and assisted creation of the diffusion curves rely solely
on the artist’s skill to recreate the raster image. For the purpose of this
paper, the automatic creation approach is much more relevant. This
process involves two steps: data extraction and conversion to diffusion
curves.

Data extraction Edges are extracted based on Orzan et al.
(2007) [15]. The main point is to determine sharp changes of colours
by blurring the image at a high scale (the higher the scale, the more
blurred the edge), followed by determining the edges. The scale at
which the edge is best represented will be used to identify the degree
of the blur needed for the respective edge in the reconstructed im-
age. In the same paper, Orzan et al. (2007) also designed a method
to determine the edge’s lifetime. This lifetime is used to adjust the
preservation of details.

Conversion to diffusion curves Inspiration from Selinger
(2003) [19] is taken for vectorisation of positions. This method gen-
erates smooth connected Bézier curves that approximate the appro-
priate pixel chains, where the user specifies the fitting error and the
degree of smoothness. Several parameters influence the quality and
complexity of the resulting image: for edge geometry: threshold for
number of edges, despeckling parameter, smoothness and fitting error;
for blur and colour: size of neighbourhood for eliminating outliers and
the maximum error accepted when fitting the polyline. The paper also
proposed values for each parameter. An example of the diffusion curve
conversion is shown in Figure 5.

Fig. 5. Example of DC reconstruction: (a) original image; (b) result after
conversion into DC representation; (c) automatically extracted diffusion
curves; (d) RGB difference between original and reconstructed image
(amplified by 4). Image taken from [16].

The article of Orzan et al. (2008) [16] served as a ground base for
further development of the diffusion curves as vector primitives. These
include: diffusion constraints [2], diffusion coefficients [14], inverse
diffusion curves using shape optimization [25] and, finally, temporal
diffusion curves [12]. We briefly describe diffusion constraints and
coefficients.

4.2.1 Diffusion constraints
Diffusion constraints came as a theoretical extension to diffusion
curves. As stated by Bezerra et al. (2010), the original diffusion curves
do not allow the control of the diffusion in images and that the colour
changes must be defined across the whole curves. When the diffu-
sion constraints are taken into account, the user is able to control the
strength and direction of the diffusion, by means of solving a linear
system [2].

4.2.2 Diffusion coefficients
Lin et al. (2018) proposed an update of the diffusion curves primitives
to take into account the diffusion constraints (strength and direction,
described in Section 4.2.1) and diffusion points [22]. Such points are
useful, for instance, in images with stars on a sky.

This model is based on a diffusion equation with coefficients to
produce a vector image. It was therefore named “Diffusion equation
with coefficients” (DCC). This model consists of two types of layers:
colour layers and coefficients layers. The colour layer is the colour
source curve from Orzan et al. (2008), but discretised into pixels.
The coefficients layer is further divided in two: strength coefficient
layer and direction coefficient layer (as described in Section 4.2.1).
Typically, there is at least one colour layer, and each colour layer is
accompanied by at least one strength layer and one direction layer.

The combination of these two layers allows for the following: fea-
ture preservation, e.g. a flower’s yellow stamens; emissivity, e.g. in-
creasing the strength layer on the contour of a moon object will make
the moon glow; diffusion direction: e.g. a rainbow, created only using
the initial line strip of colours and modelled/arched using the diffusion
direction. Diffusion direction can also be used to produce and control
shadows.

4.3 Real-time thin-plate splines
According to Chen et al. (2020) real-time thin-plate splines encode
global manipulation geometries and local image details within a hy-
brid vector structure, using parametric patches and detailed features
for localized and parallelized thin-plate spline interpolation [3]. Thin-
plate splines provide direct control over derivative interpolation and
help to maintain their smoothness, in particular smooth local extremes.

Parametric patches (see Figure 6(a)) represent object components
to facilitate editing. Colour details are encoded as features (see Fig-
ure 6(b)) to achieve faithful rasterization using TPS interpolation.
Real-time patch-wise TPS inversion and interpolation allows for sev-
eral vector image editing operations, including image magnification,
colour editing, and cross mapping (see Figures 6(c)–(e)).

Fig. 6. Illustration of the image vectorisation process. (a) Raster image
encoded by object segments as parametric patches marked by green
curves. (b) Detailed features as colour constraints. (c) Rasterization
employs a biharmonic interpolation of detailed features for scalability
and compactness. (d) Colour editing. (e) Cross mapping. Image taken
from [3].

In short, the real-time thin-plate splines image vectorisation con-
sists of two parts:

• A novel hybrid vector representation of detailed colour fea-
tures embedded in parametric patches for localized GPU TPS

A Review of Image Vectorisation Techniques – Ştefan Evanghelides and Ethan Waterink

58

rasterization to enhance compressibility and scalability, while
enabling interactive editing in real time.

• An optimal feature selection scheme using gradient intensity
histogram of an image to balance the number of features and
the reconstruction error based on a compression efficiency metric
defined by Chen et al. (2020).

The proposed algorithm maintains scalability and editability by vec-
torising a photorealistic image and its corresponding labeling map to
create a hybrid representation comprising of parametric patches and
detailed colour features. The vectorisation process involves paramet-
ric patch construction, detail feature extraction, TPS inversion, and
rasterization [3].

Figure 7 presents the vectorisation and rendering pipeline accord-
ing to Chen et al. (2020). First, the user provides a raster image and
labeling map of interesting object segments. The system then con-
structs Hermite patches from these segments. After computing the
gradient distribution histogram, image characteristics are analyzed to
select an initial set of detailed colour features using adaptive super-
pixel and Canny operators. The system embeds the extracted features
into the Hermite patches and clusters them into localized groups for
evaluation. It then packs these groups with neighboring features and
applies TPS interpolation to compute the colours of the pixels in the
group. Finally, the rasterization regions are extended to provide suit-
able overlap. A weighted average is applied to the overlapping groups
to remove seams, i.e. improve continuity. This system enables editing
in real time by adjusting the colour and location of features and then
repeating the rasterization process in order to generate results with
minimal distortion [3].

5 COMPARISON AND DISCUSSION

The different methods presented in Section 4 have their advantages
and disadvantages. In order to give an overview of the cases for which
each method is most suitable, the results obtained by each approach
are considered and discussed from a quantitative and qualitative point
of view. A direct comparison between the methods is often difficult, as
much depends on the chosen image content, as well as the application
of the vectorised image.

5.1 Quantitative comparison
First, we quantitatively compare the presented image vectori-
sation techniques with respect to their reconstruction accuracy,
(re)construction efficiency and storage requirements. We use the pep-
per from Figure 8 for the quantitative comparison. Note that there is
no reconstructed pepper for TPS, as it was not directly available, but
only mentioned in tables.

5.1.1 Accuracy
The vectorisation methods aim at reconstruction the input raster image
with minimal reconstruction error. Hence, we focus on their accuracy
in terms of reconstruction error.

OGM specifies the reconstruction error in terms of error per pixel,
which is defined as the average of the differences between values of
pixels in the images. The reconstruction errors of the experimental
results were all below 1.0/pixel, so likewise for the pepper in Fig-
ure 8(a,b), the tomato in Figure 4(c) and the mesh in Figure 3.

DC does not report any quantitative reconstruction errors. While
the reconstruction error is low, the most visible error occurs along
edges, most probably because, through vectorisation, their localization
is changed; see Figure 5(d). The main inaccuracy of DC comes from
the sharp changes in colours or from images rich in features. We note
that the DC-reconstructed pepper in Figure 8(c,d) is missing certain
light reflections when compared to OGM. Emmissivity is therefore
lacking. This is, however, solved in the diffusion curves with coef-
ficients, as proposed by Lin et al. (2018), making DC images much
more accurate than OGM [14].

TPS reports a low mean error of 1.06 · 10−5 (no scale mentioned)
for the pepper image. On top of that, the representation allows for a
high compression ratio of 62% for the same pepper image.

5.1.2 Efficiency
Next, we consider the efficiency of the vectorisation methods with re-
spect to their (re)construction time.

The vectorisation of the pepper image in Figure 8 took 7.3 minutes
using the optimized gradient mesh, according to the Sun et al. (2007).
This is the total duration of three phases: 3 minutes for the boundary
initialization, 1.5 minutes for the mesh initialization and 2.8 minutes
for the optimization.

The most time-consuming operation of the DC method is the colour
diffusion. DC does not report any quantitative timings. However, as
the diffusion is implemented on the GPU, real-time performance can
be achieved. When using the diffusion curves with coefficients, the
pepper in Figure 8 took 16.72 seconds to generate, according to the
Lin et al. (2018).

The thin-plate spline method renders the images in real-time. The
TPS kernels are rendered in the CPU, which are then sent to the GPU
for inversion [3]. This means that the speed of rendering is dependent
on the performance of CPU and GPU, as well as the bus speed between
the CPU and GPU.

5.1.3 Storage
Lastly, we consider the storage requirements of the vectorised image,
e.g. in terms of number of lines and patches, or bytes.

The storage space of the optimized gradient meshes is influenced
by the number of patches in the mesh(es). The OGM pepper image
in Figure 8 contains three meshes with 276 patches in total. There
is, however, no mention on the actual space used in this case. The
optimized gradient mesh of a yolk image (see [21]) consists of 270
patches, which has a size of 7.7KB. It can be safely inferred that the
pepper image would take roughly the same amount of storage space,
as it has about the same amount of patches.

The storage space for diffusion curves is influenced by the number
of curves, geometric control points, left and right colour control points
and blur control points. As the storage method may appear sparse, it
is important to note that each geometric curve can hold an arbitrary
number of colour and blur control points. This means, for an image
rich in features, the resulting storage space may be relatively high.
The DC pepper in Figure 8 contains 38 diffusion curves, with 365
geometric, 176 left-colour, and 156 right-colour control points.

The storage space for thin-plate splines depends on three aspects.
First, TPS records a feature using (x,y,R,G,B) : 2× 2+ 3 = 7bytes.
Second, a parametric patch requires four corner points, and the two
control parameters’ derivatives for 4× (2+2+2+2) = 32bytes. The
third contribution comes from the labeling map. The pepper image
from Figure 8 uses 0.66 Bits-per-pixel and the resolution is 750×800,
which is 600,000 pixels. From this we infer that the pepper image
would have a resulting size of approximately 396KB.

We note that the storage requirements, naturally, change with the
level of added detail, i.e. the number of primitives used.

5.2 Qualitative comparison
Next, we qualitatively compare the presented image vectorisation
techniques with respect to the complexity of the vectorisation process
and the ease of post-editing. On top of that, we consider some other
aspects of the vectorisation methods.

5.2.1 Complexity
First, we consider the complexity of the methods with respect to the
vectorisation process. To determine this, we look at the complexity of
their components.

The OGM aims at optimizing an energy function, which is an NLLS
problem. This is solved by the LM algorithm, which requires the com-
putation of the block-sparse Jacobian matrix. In order to avoid local
minima and make the solver robust, a Gaussian pyramid is built from
the input image and applied a coarse-to-fine optimization for LM.

The DC starts with data extraction using the Gaussian scale space.
It then extracts edges at all available scales using a classical Canny de-
tector. Lastly, it converts polylines to curves by performing classical
least square Bézier fitting based on a maximum user-specified fitting

SC@RUG 2021 proceedings

59

Fig. 7. Input raster image and its corresponding labeling map of object segments. The vectorisation pipeline involves parametric patch construc-
tion, optimal colour feature extraction, patch-based feature grouping, TPS kernel construction, and rasterization using GPU-based TPS colour
interpolation. The red rectangle presents the eyebrow under 4X magnification. Image taken from [3]

Fig. 8. Pepper reconstruction. (a,b) Optimized gradient Mesh. (c,d)
Diffusion curves. Images taken from [21] and [16].

error and degree of smoothness. However, the DC model is more in-
tuitive and easier to create, when compared against OGM, as noted by
Orzan et al. (2008).

The most complex method is TPS. As described in Section 4.3 the
TPS process consists of several steps, namely the parametric patch
construction and detailed feature extraction, and creating the hybrid
structure.

5.2.2 Editability

Next, we consider the editability of the resulting vector images. We
define “editability” as the ease and flexibility of editing vector images.

The OGM is considerably simpler than other mesh-based image
vectorisation methods. This simplicity allows users to more easily
edit the mesh. For each control point in the mesh, three types of
variables can be interactively edited: position, derivatives, and RGB
colour. Sharp edges within an image object can be preserved by plac-
ing two closely-spaced mesh lines on either side of the edge. For each
mesh point, its derivatives are manipulated by dragging four direction
handles. Each mesh point’s direction handles and paths define how
this point’s colour blends with other colours from other mesh points.

Gradient meshes produced by the OGM technique have several ad-
vantages: 1) Efficiency of use; the optimized gradient mesh makes it
much faster for users to create gradient meshes from an input image.
2) Easy to edit; compared with other vectorisation tools, the optimized
gradient mesh can produce a simpler mesh that the user can further
edit and animate. 3) Scalability; The gradient meshes can be scaled
in size with fewer artifacts. 4) Compact representation; The gradi-
ent mesh is an efficient representation for image objects with smooth
transitions [21].

The DC provides great control and flexibility, as it allows any de-
gree of control on a curve, without a topologically-imposed upper or
lower bound on the number of control points. As artists commonly
use strokes to sketch boundaries in an image, DCs are a more natural
drawing tool than gradient meshes. Diffusion curves further allow an
artist to evolve an artwork gradually and naturally. Gradient meshes,
on the other hand, require careful planning and sound knowledge of
the final composition of the intended art piece. Most gradient mesh
images are a complex mixture of several individual gradient meshes,
often overlapping. All these decisions have to be made before the rel-

evant image content can be created and visualized.
In certain instances, the topology constraints of gradient meshes can

be rather advantageous, for example when moving a gradient mesh to
a different part of an image, or when warping the entire mesh. Such
manipulations are also possible in the DC representation, but not as
straightforward. For moving part of an image, the relevant edges have
to be selected and moved as a unit. More importantly, without sup-
port for layering and transparency it is difficult to determine how the
colours of outer edges should interact with their new surroundings. A
mesh warp could be implemented as a space warp around a group of
edges [16].

The TPS’ hybrid vector representation uses efficient patch-wise
TPS-based inversion and interpolation, which is ideally suited to edit-
ing in real time. It gives the flexibility required for image magnifica-
tion, colour editing, and cross mapping with low reconstruction error
in an intuitive manner. The ability to edit images directly in the vec-
tor space without for requiring intermediate raster representation and
vectorisation would be beneficial to artists.

TPS enables natural magnification by directly scaling the paramet-
ric coordinate of all pixels, based on a given magnification ratio and
rasterizing them based on these coordinates using the original TPS
kernels. It also enables direct application of colouring operations to
gradation and curvilinear features inside the desired region for the
modification of appearance without altering the curvilinear features
across the boundary, thereby maintaining important border character-
istics. Lastly, it provides intuitive high-level object-based shape ma-
nipulation rather than low-level feature-based manipulation [3].

5.2.3 Other aspects

Finally, we consider some other aspects of the presented image vec-
torisation techniques.

First, we note some limitations of the three methods. For OGM, a
simple gradient mesh is insufficient to capture the fine image details
and highly textured regions. Another difficult case is when the bound-
aries of the object are too complicated, or the object has complicated
topologies, very thin structures, or many small holes. The original DC
system is single layered, but multiple, independent layers (i.e. DCC
model [14]) offer more flexibility to artists. For TPS, although scat-
ter data interpolation permits localized acceleration and manipulation
while rasterizing with a very large magnitude of magnification, these
point constraints become sparse and are prone to aliasing and blurring
artifacts.

The vector representation can be used to create images in differ-
ent styles. OGM, DC and TPS can best be used for designing photo-
realistic images, depending on the level of details. TPS has the added
benefit that it can realize fine detail. DC is best fitted for more cartoon-
like images, although OMG and TPS can be used for this purpose as
well. The DCC model has the flexibility needed for finer details, but
that will result in more curves and potentially more time spent by the
user for finer details.

A Review of Image Vectorisation Techniques – Ştefan Evanghelides and Ethan Waterink

60

OGM and DC allow for keyframe animation, enabling the user to
easily create animations with the vector images. One advantage of the
TPS method is that besides images, it also allows for video editing.
A proposed improvement is adding a temporal parameter, which can
be used to give a lifetime of an edited feature across multiple frames
in video. Such temporal parameter would then make TPS a powerful
vectorisation technique for videos.

6 CONCLUSION

In this paper, we have presented three image vectorisation methods:
optimized gradient meshes, diffusion curves and thin-plate splines.

OGM allows artists to automatically vectorise a raster image by
means of a gradient mesh. However, depending on the number of fea-
tures, the resulting image may not be entirely accurate. Nonetheless,
gradient meshes can be manually edited until the required level of de-
tail is reached.

DC is more natural and provides, most often, more accurate results
than the OGM method. The base DC model lacks certain properties,
such as specularity, due to the reblurring at the end. The improved
DCC model, however, fixes these problems and gives the users more
flexibility: the extra layers allow, for instance, to control the emissivity
of a shining moon and stars in a sky image.

TPS is better suited for direct editing of images, as changes can be
generated in real-time by avoiding the intermediate raster representa-
tion. Objects can be manipulated directly with ease, which is highly
beneficial for users.

All in all, our quantitative comparison showed that TPS outper-
formed OGM and DC on two metrics, achieving the highest accu-
racy and efficiency. The OGM, however, has the lowest storage re-
quirements. Our qualitative comparison showed that DC has the least
complex vectorisation process, followed by OGM and TPS. All three
methods can be used successfully for editing images. We note that DC
is more intuitive and thus easier to use for image creation, and that TPS
can realize fine detail for photo-realistic images. Lastly, for creating
keyframe animations, OGM and DC could be used, while TPS could
be used for editing features and textures across frames.

7 FUTURE WORK

Although the aim of this paper was to provide a complete overview of
the current image vectorisation methods, there is room for improve-
ment. First, in this paper, we considered the main vectorisation meth-
ods: optimized gradient meshes, diffusion curves (and its variants) and
thin-plate splines. The research carried out in this area is vast and we
could not capture it in its entirety. It is therefore possible that certain
(novel) methods were simply overlooked. A potential improvement of
this paper is further analysis of other (possibly better) methods.

Secondly, this paper was also intended to provide a general
overview of the advantages and disadvantages of the three methods in
various contexts. These contexts, although broad, are limited. A more
scoped, in-depth review could yield a better analysis with respect to
certain domains, such as photo and video editing. One example of an-
other application is storing vector images in .pdf format. Since most
vector images are stored in the .svg format, it would be worth deter-
mining the compatibility of these methods between .svg and .pdf
formats.

Lastly, given that each vectorisation method has advantages and
disadvantages, a potential improvement would be to automatically de-
termine the best vectorisation method in terms of accuracy or other
criteria.

ACKNOWLEDGEMENTS

The authors wish to thank our expert reviewer Prof. J. Kosinka for
his valuable feedback, and Prof. R. Smedinga and Prof. M. Biehl for
giving us the required guidance in writing this paper.

REFERENCES

[1] P. Barendrecht, M. Luinstra, J. Hogervorst, and J. Kosinka. Locally refin-
able gradient meshes supporting branching and sharp colour transitions.
The Visual Computing, 34(6):949–960, 2018.

[2] H. Bezerra, E. Eisemann, D. DeCarlo, and J. Thollot. Diffusion con-
straints for vector graphics. NPAR 10, pages 35–42, 2010.

[3] K. Chen, Y. Luo, Y. Lai, Y. Chen, C. Yao, H. Chu, and T. Lee. Im-
age vectorization with real-time thin-plate spline. IEEE Transactions on
Multimedia, 22(1):15–29, 2020.

[4] S. A. Coons. Surfaces for computer-aided design of space form. Tech-
nical report, Massachusetts Institute of Technology, 201 Vassar Street,
W59-200 Cambridge, MAUnited States, 06 1967.

[5] K.-C. Fan, D.-F. Chen, and M.-G. Wen. A new vectorization-based ap-
proach to the skeletonization of binary images. ICDAR, 2:627–632, 1995.

[6] J. Feguson. Multivariable curve interpolation. Journal of the ACM,
11(2):221–228, 1964.

[7] R. Grimsdale, F. Summer, C. Tunis, and T. Kilburn. A system for the
automatic recognition of patterns. Proc. IEE, pages 210–221, 1959.

[8] W. Keller and A. Borkowski. Thin plate spline interpolation. Journal of
Geodesy, 93:1251–1269, 2019.

[9] Y.-K. Lai, S.-M. Hu, and R. R. Martin. Automatic and topologypreserv-
ing gradientmesh generation for image vectorization. ACM Trans Graph,
28(3):85:1–85:8, 2009.

[10] K. Levenberg. A method for the solution of certain problems in least
squares. Quarterly of Applied Mathematics, 2(2):164–168, 1944.

[11] Y. Li, J. Sun, C.-K. Tang, and H.-Y. Shum. Lazy snapping. ACM Trans-
actions on Graphics, 23(3):303–308, 2004.

[12] Y. Li, X. Zhai, F. Hou, Y. Liu, A. Hao, and H. Qin. Vectorized painting
with temporal diffusion curves. IEEE Transactions on Visualization and
Computer Graphics, 27(1):228–240, 2019.

[13] H. Lieng, K. J., S. J., and N. A. Dodgson. A colour interpolation scheme
for topologically unrestricted gradient meshes. Computer Graphics fo-
rum, 36(6):112–121, 2016.

[14] H. Lin, J. Zhang, and C. Xu. Diffusion curves with diffusion coefficients.
Computational Visual Media, 4(2):149–160, 2018.

[15] A. Orzan, A. Bousseau, P. Barla, and J. Thollot. Structure-preserving
manipulation of photographs. NPAR ’07, page 103–110, 2007.

[16] A. Orzan, A. Bousseau, H. Winnemöller, P. Barla, J. Thollot, and
D. Salesin. Diffusion curves: A vector representation for smooth-shaded
images. ACM Trans. Graph., 27(3):1–8, Aug. 2008.

[17] T. Pavlidis. A hybrid vectorization algorithm. Proceeding of the Seventh
International Conference on Pattern Recognition, pages 490–492, 1984.

[18] T. Pavlidis and K. Steiglitz. The automatic counting of asbestos fibers in
air samples. IEEE Trans. Comput., 27:258–261, 1978.

[19] P. Selinger. Potrace: a polygon-based tracing algorithm, 2003.
[20] E. V. Shikin and A. I. Plis. Handbook on Splines for the User. CRC Press,

1995.
[21] J. Sun, L. Liang, F. Wen, and H.-Y. Shum. Image vectorization using

optimized gradient meshes. ACM Trans. Graph., 26(3):11–es, July 2007.
[22] T. Sun, P. Thamjaroenporn, and C. Zheng. Fast multipole representation

of diffusion curves and points. ACM Transactions on Graphics, 3(4):1–
12, 2014.

[23] J. K. Svergja and H. Lieng. A gradient mesh tool for nonrectangular
gradient meshes. SIGGRAPH ’17: ACM SIGGRAPH 2017 Posters, 2017.

[24] T. Xia, B. Liao, and Y. Yu. Patch-based image vectorization with au-
tomatic curvilinear feature alignment. ACM Trans Graph, 28(5):115:1–
115:8, 2009.

[25] S. Zhao, F. Durand, and C. Zheng. Inverse diffusion curves using shape
optimization. IEEE Transactions on Visualization and Computer Graph-
ics, 24(7):2153–2166, 2018.

SC@RUG 2021 proceedings

61

The role of inhibition in Deep Learning

Abdulla Bakija and Fatijon Huseini

Abstract—With the advancement of technology and machine learning, devices nowadays can identify voices, movements, and
objects in images. Achieving the identification of objects in images, has passed through a lot of periods before the devices could
figure out what was in the image. There are many methods like ReNet (Recurrent Neural Network), CapsNet (Capsule Neural
Networks), the HMax Model and CNN (Convolutional Neural Networks). From all of the previous mentioned, CNN proved to be the
state-of-art method in recognizing objects in images. Even though CNN was the best method when it came to identifying objects in
images it had an accuracy of 70-85 percent. The reason behind this issue, was the background colour interfering with the colours of
the objects that needed to be identified. To solve this issue at the AAAI-18 Conference, Chunshui Cao et al published their paper,
as an attempt of modelling visual attention known as Lateral Inhibition Convolutional Neural Networks (LICNN), which proved to be
the best-known method until now at identifying objects in images. With the presentation of LICNN, many individuals were interested
and tried to see the advantages of LICNN. One of them was Filip Marcinek, who made a research paper, where he made some
experiments to see how LICNN works on images.

Index Terms—Machine Learning, Object Identification, ReNet, CapsNet, HMax model, CNN, LICNN

1 INTRODUCTION

Visualizing objects is one of the most important activities the visual
sense has, identifying objects in all sort of images, videos, daily life
and all things seen by the human eye. This is done as a result of an
activity brain does, which differentiates the object and its background,
by making the object recognizable while lowering the background
visibility level. This process is known as visual attention. This kind
of mechanism in today’s deep learning is known as LICNN (Lateral
Inhibition Convolutional Neural Network). In deep learning the visual
attention is done in a process of 5 steps:

1. Input an image.
2. Using CNN to create category-specific attention – in which with

the use of CNN we can create gradient-based maps of the objects in
the input image.

3. After creating those maps, we apply lateral inhibition in the
hidden neurons of the gradient-based maps.

4. By doing the first 2 steps we obtain 5 category-specific attention
maps.

5. With the sum of the specific attention maps we create salient
objects. By creating salient objects, we obtain the object requested to
be visualized.[2]
In our research paper we will explain what are CNN (convolutional
neural networks), their structure and how do they recognize objects
in images. We will continue to explain about saliency maps, how are
they created and what is their purpose in object identification.
Then, we will explain lateral inhibition and their uses in different
branches of science. In the paper we will also provide deeper
explanation about LICNN(Lateral Inhibition CNN), which is our
main topic, their algorithm, why LICNN is the state of art, how do
they work and finally we will present some experiments done by the
originators of LICNN and other researchers.
To finalize our research paper, we will provide how LICNN expands
the future of Deep Learning and other sciences, in which LICNN is
used.

2 CNN
Convolutional Neural Networks is a Deep Learning architecture used
for identifying objects in images. This method tries to work like the

• Abdulla Bakija is with University of Groningen, E-mail:
a.bakija@student.rug.nl.

• Fatijon Huseini is with University of Groningen, E-mail:
f.huseini@student.rug.nl.

part of the brain which identifies objects through our sense of sight.
CNN are used a lot in Deep Learning and the reasons are:

· First, the key interest for applying CNN lies in the idea of using
concept of weight sharing, due to which the number of parameters that
needs training is substantially reduced, resulting in improved general-
ization [2]. Due to less parameters, CNN can be trained smoothly and
does not suffer overfitting.

· Secondly, the classification stage is incorporated with feature ex-
traction stage, both use the learning process.

· Thirdly, it is much difficult to implement large networks using
general models of artificial neural network (ANN) than implement-
ing in CNN. CNNs are widely being used in various domains due to
their remarkable performance such as image classification, object de-
tection, face detection, speech recognition, vehicle recognition, dia-
betic retinopathy, facial expression recognition and many more. [9]

Fig. 1: CNN Structure Scheme [8]

The above figure (Fig.1) shows the structure scheme of CNN. The
first part of the structure is the input layer, where the image given by
the user is stored. The upcoming layers are convolution + ReLu layer,
pooling layer which is the feature learning layer where the features of
the input are learned by the machine.
The next layers are, flatten layer, fully connected layer and softmax
layer which make the classification part of the structure which
classifies different objects in the image.

2.1 Layers of CNN structure
Convolutional Layer is the first layer of the feature learning layers,
which is made of convolution kernels that compute several outputs
known as feature maps from the inputs[3], as seen in Fig.2.
The feature maps contain values that are changed in the Nonlinearity
layer. This happens as a result of activation functions which allows
neural networks to learn nonlinear dependencies [3]. The activation
functions used in the nonlinearity layer are Relu, sigmoid or tanh.

62

Fig. 2: Convolutional layer [2]

The formula used to calculate feature value yi j , in the k-th featured
map, can be calculated :

[2]

where wk and bk mean k-th kernel containing weights and its
bias term, xi j is the input patch centered at location (i, j), � means
Hadamard product of two matrices, and sum-all() means summing all
values from matrix.
After the feature maps are computed, pooling layer reduces the
feature maps resolution. This computation is done by down-sampling
the representation. The pooling function can be max or average.[3]
(Fig.3).

Fig. 3: Max Pooling and Average Pooling [10]

The aforementioned layers can happen many times in the process,
dependable on the type of the image and the objects in it.
The next layer is the Flatten layer, in which the data given from the
pooling layer is turned into a 1D array for inputting it into the fully-
connected layer.[5] (Fig.4)

Fig. 4: Flatenning process [11]

The objective of a fully connected layer is to take the results of the
convolution/pooling process and use them to classify the image into a

label.
The fully connected layer of the CNN network goes through its own
backpropagation process to determine the most accurate weights. Each
neuron receives weights that prioritize the most appropriate label. Fi-
nally, the neurons “vote” on each of the labels, and the winner of that
vote is the classification decision.[7]

Fig. 5: Fully-connected layer [12]

The last layer of CNN is the loss layer, in which the global min-
imum of the loss function is searched. In this layer, the most used
function is the softmax function which is an activation function that
turns numbers into probabilities that sum to one. Softmax function
outputs a vector that represents the probability distributions of a list of
potential outcomes.[3]

2.2 Saliency Map
Saliency maps are otherwise known as attention maps, in which the
important features of the input data are highlighted. In other words
saliency maps, visualize the required objects in the image as topologi-
cal representation. Creating saliency maps on images are done in dif-
ferent methods. For example, coloured images are converted to black-
and-white images in order to analyse the strongest colours present in
them. Other instances would be using infrared to detect temperature
(red colour is hot and blue is cold) and night vision to detect light
sources(green is bright and black is dark).[1]

3 LICNN(LATERAL INHIBITION CNN)
Lateral inhibition in top-down feedback is widely existing in visual
neurobiology. LICNN authors are based on this concept from neuro-
biology which occurs in the human brain and is the process by which
stimulated neurons to inhibit the activity of the nearby neuron.
Stimulated neurons inhibit the activity of nearby neurons, which helps
sharpen our sense perception. What happens at LICNN, is that the
neurons with higher signal block the ones that have a lower signal
(mostly background neurons).[2] (Fig.6)
The lateral inhibition model is used for suppressing noise and increas-
ing the contrast between targeted objects and the background.

Fig. 6: Lateral Inhibition CNN [2]

SC@RUG 2021 proceedings

63

Fig. 7: Comparison between responses and gradients [3]

LICNN is such a powerful process when it comes to identifying
salient objects from complicated images with only weak supervision
cues. This is because CNN classification has learned many patterns of
the objects and with the use of lateral inhibition these objects will be
easily recognized and identified.

3.1 LI model implementation

To implement the lateral inhibition, we need to go through an
equation so that we can compute the lateral inhibition value for each
location. Both papers go through the implementation in the same
way, they assume that there is a layer l which produces a cub of
CWs(contribution weight) with dimension (W, H, C) where W stands
for width, H for height and C for the channel. Primarily, maximum
CW at each location should be selected, obtain a CW map, a matrix
of dimensions (W, H) obtained by max operation, which is known as
Max-C Map. Then lateral connections are constructed so that we can
compute the lateral inhibition value for each location as mentioned
before.[2]
This value is computed by this equation:

[2]

where xi j is a mean of all values in LIZ, xuv is a neighbour of xi j
in LIZ, duw is the Euclidean distance between xi j and xuv, divided by
k,(x) = max(0; x), a and b are the balance coefficients.

xi
L
j
I is calculated in a square zone known as lateral inhibition zone

(LIZ) which is formed by the k neighbouring points of xi j . The xuv
is the neighbouring point of xi j . The Euclidean distance between
these points is denoted as duw. This distance is calculated by the
equation:[2]

[2]

The lateral inhibition equation is constructed of 2 parts: Average
term and Differential term. The average term protects the neurons
within the high response zone. The differential term sharpens the
boundaries of the object and increases the contrast between the ob-
ject and the background in the protected zone created by the average
term.[2]
The above equation shows that the furthest and nearest neighbours

don’t inhibit a lot of the central neuron and indicates that the inhibi-
tion is caused by the difference between the central and its neighbour-
ing neurons.

3.2 Top-down Approach
Top-down Approach is a mechanism that proved to be better in terms
of detecting an object and visualizing them. This came as a result that
using top-down approach uses feedback gradient signals to estimate
how much a pattern learned by the neuron, contributes to the given
category.[3]
This means that if specific neurons are positively correlated to the neu-
rons of a receptive field, they will be activated. Top-down approach is
used to create specific category attention maps.

3.3 Category-Specific Attention Maps
Category Specific Attention Maps are maps that are created from
LICNN as a result of doing hierarchical lateral inhibition, which is
done by suppressing noise and interference in every layer[2]. This
method helps a lot when it comes to detecting objects that are very
close to each other and may interfere in visualizing those objects. For
example, a person wearing a blue jacket trying to get to his/her blue
car or a person with a dog as shown in the Fig.7.
In the fig.7, the first 2 rows show the response and gradient of SUM-C
maps of the original VggNet. As it can be seen from the 2 rows, noise
cancellation around the object is inconvenient since the object in col-
umn (e) and (i) are nowhere to be seen. On the other 2 rows where
the response and gradient of SUM-C maps of the LICCN are shown,
the noise cancellation is excellent. The image in column (e) shows the
non-zero gradient of the dog and the image in column (i) shows the
non-zero gradient of the human. For achieving these results in each
layer, ReLu function will be used so that the object can identified and
for noise cancellation around the object. The columns (b), (c), (d), (f),
(g) and (h) are response and gradient of SUM-C maps.

3.4 LICNN Algorithm
Scheme of the algorithm for obtaining attention map:

1.Given an image and a pre-trained CNN classifier.
2.Perform feed-forward and gain predicted category.
3.Carry out gradient back-propagation of the predicted category to

estimate contribution to the given category for all neurons.
4.In each ReLU layer, compute the Max-C map and apply the lateral

inhibition model on the obtained Max-C map (save obtained suppres-
sion mask to the future feed-forward).

5.Perform feed-forward again, during which in each ReLu output
layer erase through all channels locations which are 0 in suppression
mask for this ReLu layer (erase means ’assign 0 value to it’).

6.Calculate Sum-C map and normalize with L2 norm for each ReLu
output layer (activation layer) obtained in this feed-forward.

7.Resize all Sum-C maps to the input image size, sum all together
and normalize with L2 norm.
To gain a saliency map, one should perform the above algorithm

The role of inhibition in Deep Learning – Abdulla Bakija and Fatijon Huseini

64

Fig. 8: Visual Comparison between saliency maps of LICNN and LEGS, MC, MDF. The last column is the GT (ground truth) [2]

Fig. 9: Comparison of quantitative results including maximum
F-measure (the larger is the better) and MAE (the smaller isthe

better). The best three results are shown in red, blue, and green color,
respectively. Note that LEGS, MC, and MDF are strongly supervised

CNN based approaches, and our method is based on weak
supervision cues.[2]

separately for each of top-5 predicted categories, then sum all these
category-specific attention maps together and normalize with L2
norm.[3]

4 COMPARISON BETWEEN METHODS

Chunshui Cao et al, made an experiment known as The Pointing game
where they evaluated the discriminative power of attention maps cre-
ated by LICCN and compared it to other methods like Excitation Back-
drop (c-MWP), error back-propagation (Grad) and deconvolutional
neural network for neuron visualization (Deconv). For achieving this
experiment, they used PASCAL VOC 07 with 4952 images as a test
set.
Excitation Backdrop is a backpropazation scheme which integrates
both top-down and bottom up information to compute the winning
probability of each neuron efficiently [6].Error back-propagation is the
algorithm used along with an optimization algorithm such as Gradient
Descent (GD) to learn the parameters of a neural network model. Error
back-propagation produces gradients which are then used in optimiza-
tion. [4] Deconvolutional neural network for neuron visualization is
the opposite method of convolutional neural networks.
The experiment was done by extracting the maximum point on a
category-specific attention map as the final prediction. For each of the
methods mentioned above, the maximum points on a category specific
attention map are counted as hits or misses, dependable if the points
corresponds to the object category or not. The localization accuracy is
measured by

Acc =
Hits

Hits+Misses

for each category.[2]
By collecting the sum of all categories we find the mean accuracy
which can be seen in the table below.

The table above shows that LICNN outperforms all the other meth-
ods. From the table shown it can be seen that LICNN as its close

Table 1: Mean Accuracy

Center Grad Deconv c-MWP LICNN (%)
ALL 69.5 76.0 75.5 80.0 85.3

Difficult 42.6 56.8 52.8 66.8 70.0

competitor has the Excitation Backdrop (c-MWP). The fig.11 shows
the comparison between them which contain objects from two cate-
gories of Pascal VOC. It can be seen that LICNN has better accuracy
in its attention maps, meaning less noise and frequency.

4.1 Salient Object Detection Experiment

LICNN has proved that even though there is not a CNN classifier ap-
plied to the input images, it can detect objects better than any other
method.
To demonstrate the above-mentioned sentence, Chunshui Cao et al
evaluated some methods by certain criteria. He and the rest compared
LICNN with methods: LEGS, DRFI, wCtr, RC, BSCA, PISA, MC
and MDF, to find out which was better at detecting salient objects. As
datasets used at the salient object detection methods they used:
HKU-IS(4447 images, most of which have either low contrast or mul-
tiple salient objects), PASCAL-S(850 images and is built using the val-
idation set of the PASCAL VOC 2010 segmentation challenge), EC-
SSD (1,000 structurally complex images collected from the Internet)
and DUTOM-RON(5,168 challenging images, each of which has one
or more salient objects with complex background).
To show the importance of LI (Lateral Inhibition) in the evaluation, for
each dataset they compared the methods in maximum F-measure (the
higher the better) and MAE (the smaller the better). Also to analyze
the importance of LI they reported 3 baseline results: Baseline 1 (B1),
LI is turned off; Baseline 2 (B2), they applied average denoising algo-
rithm on the Max-C map and then handle the denoised Max-C map by
thresholding with its mean value; Baseline 3 (b3), they turned off the
optimization technique. [2]
Table 2 shows the results from the comparisons between methods in
salient object detection by showing the best results coloured in blue,
green and red. The values coloured in red are the best values, followed
by blue and green as the third best method.
The reason why some methods outperform LICNN, is because LEGS,
MC and MDF rely on the manually labeled segmentation masks of
salient objects for model learning, while LICNN is based on pre-
trained VGG classifier which only requires the image-level class la-
bel.
In the fig.8 we can see 4 tables that show the visual comparison be-
tween saliency maps of the methods previously mentioned. From the
table, we can see that LICNN outperforms the other methods when it
comes to creating saliency maps for objects where the background has

SC@RUG 2021 proceedings

65

high interference with it, and make the objects harder to identify. The
last column of the table shows the saliency map of the object required
without any noise. The closest to it is LICNN, where its saliency maps
are 90 percent identical with the real saliency map.
From all these results, we can say that with the help of feedback sig-
nals, LICNN merges all different activated patterns and create the final
saliency map of different objects.

4.2 Sanity check of LICNN

Fig. 10: Cascading randomization resulting saliency maps of the
Junco bird image[3]

Fig. 11: Independent randomization resulting saliency maps of the
Junco bird image.[3]

Filip Marcinek conducted a test based on Google Brain and Berke-
ley University, where he tested if he could find whether the saliency
map creation method could be used to explaining the relationship be-
tween inputs and outputs that the model learned and debugging the
model. (Marcinek, 2020)
He conducted 2 tests (cascading randomization test and independent
randomization test) in which he tried to find out if the saliency maps
created by the random values of heights, width and channel would
be the same as the saliency maps created by a trained model. If the
saliency maps would be the same, it would mean that saliency maps
are insensitive to the model parameters.
In the cascading randomization test, the model parameters would be
randomized gradually from the top layer to the bottom layer.
While in the independent randomization test, the weight would be in-
dependent of the other model parameters.
When the tests were done, the result proved that saliency maps are
sensitive to the model parameters, and the saliency maps can change
if the model parameters change.
The figures 10 and 11 show the saliency maps of the Jumbo bird cre-
ated in the cascading randomization test and independent randomiza-
tion test. We can see that the result, achieved from the cascading
randomization show saliency maps, that are more clear than the ones
achieved from independent randomization test.

4.3 Types of background influences
Since the background tends to seize the bigger part of the image, in
some cases it may influence a lot when it comes to identifying se-
lected objects.
Sometimes the object doesn’t classify as an object that is part of that
background, or other classified objects tend to occur more in that back-
ground.
Using salient maps those objects can be identified as not part of the
background but not as the class requested to be seen. But if blurring is
used then those objects can be easily identified and be put on the class
they belong to.

Fig. 12: Example of background impact on image classification.
Normally classified as: (1) nail, (2) agama , (3) walking stick, (4)
long-horned beetle, (5) foxsquirrel; whereas blurred image as: (1)

barn spider, (2) ANT, (3) tick, (4) spaceshuttle, (5) cardoon. Ground
truth is indicated by BIG letters.[3]

In the fig.12, it can be seen how blurring affects identifying targeted
objects.

4.4 Blurring images
Before it was mentioned that LICNN was created to identify objects
in an image, where the background interferes when it comes to identi-
fying the specific object. Filip Marcinek tested this by blurring images
in 2 ways. In the first test, he obtained the saliency maps for each
image and then blurred the background using a python library Pil-
low.ImageFilter which applies Gaussian blurring. In the second test
he did the opposite operation by blurring the object.
By doing these tests, he tried to find out if the background will inter-
fere in the object detection. Meaning if he blurs the background, will
it blur the object too. While in the second test, if blurring the object
will blur the background.
For blurring the image, he used Gaussian blurring with the radius 2, 5
and 10.

Fig. 13: Blurring the background with Gaussian blurring with the
radius 2, 5 and 10 [3]

Fig. 14: Blurring the salient object with Gaussian blurring with the
radius 2, 5 and 10 [3]

From the test conducted with the Gaussian blurring, Filip Marcinek
proved that using LICNN can identify objects very easy, even though
the background may interfere with the object.

5 CONCLUSION

In this paper, we researched the role of inhibition in Deep Learning, by
analyzing 2 research papers about LICNN. We analysed experiments
given in both papers, explained them and their results, and based on
what we read we can conclude that LICNN proves to be the state-of-
art in the process of identifying specific objects in images.

The role of inhibition in Deep Learning – Abdulla Bakija and Fatijon Huseini

66

With LICNN, we can create salient maps, that differentiate specific
objects from the background, which has a huge impact when it comes
to finding those objects. By the experiments done by different re-
searchers, it could be easily seen that when using LICNN, specific
objects are found even without using category-specific attention. Us-
ing LICNN has proved that even when blurring is used, either on the
object or the background, the needed results are shown.
More research has to be done to reliably determine whether Lateral
Inhibition is the best model used in different experiments. One could
be integrating Lateral Inhibition in self driving cars, where it could
be used for the network to automatically learn the maximum variable
features from the camera input, without requiring any human interven-
tion. Another experiment would be introducing Lateral Inhibition into
the area of gravitational-wave (GW) data processing, which is strongly
connected with the detection of black-holes. Lateral inhibition can
show its power in medicine too, especially in creating prosthetic eyes,
that can help blind people, see the world as it is.
LICNN is a powerful tool, that has made a huge step into the advance-
ment stage of Deep Learning and AI. With LICNN the future is bright
for technology, medicine and science as a whole.

REFERENCES

[1] Abhishek Sharma. What are saliency maps in deep learning.
https://analyticsindiamag.com/what-are-saliency-maps-in-deep-
learning/.

[2] Chunshui Shao, Zilei Wang, Yongzhen Huang, Liang Wang, Ninglong
Xu, Tieniu Tan. Lateral inhibition-inspired convolutional neural network.
The thirty-second AAAI Conference on Artificial Intelligence - AAAI-18
(p. 8), 2018.

[3] Filip Marcinek. Reproduction of lateral inhibition - inspired convolutinal
neural network. 2020.

[4] Hollan Haule. Understanding error backpropagation.
https://towardsdatascience.com/error-backpropagation-5394d33ff49b.

[5] J. Jeong. The most intuitive and easiest guide for convolutional neural
network. January 2019.

[6] Jianming Zhang, Zhe Lin, Jonathan Brandt, Xiaohui Shen, Stan Sclaroff.
Top-down Neural Attention by Excitation Backprop.

[7] MissingLink. Fully connected layers in convolutional neural networks.
https://missinglink.ai/guides/convolutional-neuralnetworks/fully-
connected-layers-convolutionalneural-networks-complete-guide/.

[8] Raghav Prabhu. Understanding of convolutional neural network cnn
deep learning. https://medium.com/@RaghavPrabhu/understanding-of-
convolutional-neural-network-cnn-deep-learning-99760835f148.

[9] Sakshi Indolia. Conceptual understanding of convolutional neural net-
work - a deep learning approach. In International Conference on Com-
putational Intelligence and Data Science, 2018.

[10] Sumit Saha. A comprehensive fuige to cnn - the eli5 way.
https://towardsdatascience.com/a-comprehensive-guide-to-
convolutional-neural-networks-the-eli5-way-3bd2b1164a53.

[11] SuperDataScience Team. Convolutional neural networks - flatening
process.
https://www.superdatascience.com/blogs/convolutional-neural-
networks-cnn-step-3-flattening.

[12] SuperDataScience Team. Convolutional neural networks - fully con-
nected layer.
https://www.superdatascience.com/blogs/convolutional-neural-
networks-cnn-step-4-full-connection.

SC@RUG 2021 proceedings

67

Facial Expression Recognition and its Impact on Athletes’
Performance

Klaas Tilman and Robert Monden

Abstract—Using Facial Emotion Recognition (FER) systems, it is possible to detect the psychological state of athletes. There
are various approaches that can be used for this purpose. In this paper we looked specifically at the deep learning and regular
machine learning approaches proposed by [3] and [11] respectively, and how athletes’ performance may benefit from using emotional
recognition. Although both approaches resulted in models with promising accuracy, we found that using the regular machine learning
approach as proposed by [11] delivered more accurate results. However, the deep learning approach had a wider range of detectable
emotions. We also found that, in the case of soccer, there was a clear link between emotional state of players and team performance.
We concluded that facial expression recognition can indirectly lead to improved team performance, since the psychological state of
athletes could be monitored using artificial intelligence. This, in turn, would make it easier to take appropriate action at the right time.

Index Terms—Facial recognition, emotion recognition, artificial intelligence, machine learning, sports.

1 INTRODUCTION

The ability to predict the winning team of the next soccer world cup
by simply looking at the participating players’ faces may seem far
fetched, but may soon become a reality through developments in the
field of facial recognition. Research has shown that there is a clear
link between emotions and how much a soccer team wins or loses [4],
meaning advances in facial recognition could be used to give insight
into the performance of athletes as well as possibly improve their per-
formance.

In this paper we will discuss various facial recognition methods that
are available and see what impact they can have on the performance
of athletes. Part of deducing this impact is determining the relation
between the performance of an athlete and their emotional state. From
this, we will try to answer the following question: ”what is the impact
of measuring psychological features from the faces of athletes?”.

A typical FACIAL EMOTION RECOGNITION (FER) system consists
of three main stages: facial detection and pre-processing, feature ex-
traction and classification [3], as can be seen in Figure 1.

Fig. 1: Stages of a typical FER [5]

Facial detection and pre-processing can be challenging, for exam-
ple due to insufficient or an abundance of lighting. In addition, it is
necessary to filter out any information not needed for recognizing fa-
cial expressions. The image’s background is a notable example of such
information [3].

• Klaas Tilman is a master’s student of Computing Science at the University
of Groningen. E-mail: k.tilman@student.rug.nl

• Robert Monden is a master’s student of Computing Science at the
University of Groningen. E-mail: r.monden.1@student.rug.nl

In FER systems extracted features are used to classify one or more
subjects portrayed in an image, based on their detected psychological
(i.e. emotional) state. These two steps can be performed using, inter
alia, DEEP LEARNING or regular machine learning.

Benamara et al. describe a method that makes use of an approach
that involves a CONVOLUTIONAL NEURAL NETWORK (CNN). CNNs
are frequently used in pattern recognition, although their widespread
use is limited by the amount of resources required by a typical modern
CNN architecture [9]. The other method, described by Zedan et al.,
involves regular machine learning.

After discussing the different possible methods of facial expression
recognition we will be discussing its possible impact on athletes’ per-
formance on the field.

The paper is organized as follows:

• Section 2: Methods and Materials — Concerns the methods used
for answering the research question.

• Section 3: Results — The core findings of the two different facial
recognition approaches as well as the studies regarding impact on
athletes.

• Section 4: Discussion — Discussion of the results presented in
Section 3.

• Section 5: Conclusion — Answering of the main research ques-
tion and suggestions for future work.

2 METHODS AND MATERIALS

In order to answer the main research question described in the previous
chapter, it is necessary to first discuss the methods that were used. This
includes discussing the methods used in [3] and [11]. Furthermore, we
will look at the methods used in two papers regarding the appliances
for athletes.

2.1 Machine Learning Approach
The paper ”Controlling Embedded Systems Remotely via Internet-of-
Things Based on Emotional Recognition” introduces a way to transfer
human facial emotional vision to a wifi signal and thereby controlling
an IoT application. At first hand, this might not seem relevant to the
objective of improving the performance of athletes. However, using
this approach it is possible to automatically detect symptoms of vari-
ous emotions such as depression, anxiety and sadness. For that reason,
this method could still be used to deduce an analysis of an athlete.

The methodology of the paper is divided into three phases: Training
the model, making predictions and lastly using the Internet-of-Things
for communication. Firstly, the training is done using images from the
GENKI-4 database. After reading the images, pre-processing opera-
tions are performed. Next, face detection is used to crop the images

68

such that only the face is used in the following steps. The algorithm
for face detection used is Viola-Jones [10]. Then, histogram orienta-
tion gradient (HOG) is applied in order to perform feature extraction.
HOG produces a vector for each sample, consisting of a number of
features. The HOG descriptor is computed by dividing the images into
cells, then for each cell a histogram is computed of gradient directions
for the pixels in the cell. The magnitude of the gradient is calculated
as follows:

G(i, j) =
√

gx(i, j)2 +gy(i, j)2

In this function gx and gy are the gradient images computed by tak-
ing the convolution of the image and the gradient estimation filters,
which are defined as hx = [−1,0,1] and hy = [−1,0,1]. The gradient
orientation can then be obtained using the dominant gradient angle,
which as defined as follows:

θ(i, j) = tan−1
[

gy(i, j)
gx(i, j)

]

Using discretization and normalization the descriptor is then
formed.

Lastly the classification is done using support vector machine
(SVM).

The next phase is using the model to make predictions. The same
operation is performed as in the previous phase, however it is ap-
plied on a real-time video from which snapshot images are captured.
The prediction is done by using the SVM based on the training SVM
model. After deriving a result, a control signal is generated and sent
through serial communication to the Arduino board. The last phase in-
cludes the communication which uses the Internet-of-Things platform.
A receiver is programmed to control the specific function for the con-
nected device. All communication is performed using the HTTP pro-
tocol.

2.2 Deep Learning Approach
The evolution of GRAPHICS PROCESSING UNITS (GPUs) has reached
a stage where GPUs are sufficiently powerful that the use of deep
learning has become a viable option. Research has shown that deep
learning, with its use of CNNs, can return highly accurate results [3].
It is important to note that this assumes a training set where most, if
not all, images are accurately labeled.

The approach proposed by Benamara et al. [3] applies deep learning
to the feature extraction and classification stages. In addition, two
more stages are added: label smoothing optimization and ensemble
learning / fine-tuning.

2.2.1 Facial Detection and Pre-Processing
Two facial detection methodologies were chosen, with the final choice
being based on the user’s hardware configuration. As explained prior,
this is because deep learning is computationally intensive and there-
fore needs a GPU. The two methodologies are:

• The VIOLA-JONES method, a non-deep learning based method.

• The YOU ONLY LOOK ONCE (YOLO) v2 method, which is a
deep learning-based method. [3]

The pre-processing part of this phase involves cropping detected
faces, converting the image into grayscale and resizing the resulting
image. The input image is then normalized on an [0,1] scale. [3]

2.2.2 Feature Extraction and Classification
A deep convolution neural network is used in the feature extraction
and classification phase. Several models were created:

• Model A — Nine convolutional layers with a kernel size of 3×3,
except for the last convolutional layer, which has a kernel size of
1× 1. The model has a total size of 1.37 million parameters.
Several other layers were also added, e.g. to reduce overfitting.

• Model B — Same as model A, but with a kernel size of 3× 3
for the ninth convolutional layer as well. Another convolutional
layer was added with a kernel size of 1×1. The model has a total
of 1.71 million parameters.

• Model C — An extension of model B, but with the addition of
another convolutional layer having a kernel size of 3×3, result-
ing in a total number of 2.17 million parameters.

• Model D — An extension of model C, with a total of 2.83 million
parameters.

2.2.3 Label Smoothing Optimization
Mislabeled images in the training set decreases the accuracy of the sys-
tem. Using the label smoothing optimization technique, these effects
can be minimized.

By using noise, the confidence factor is reduced, thus decreasing
the effects of mislabeled training set images.

The cross-entropy loss function λ ′ is therefore defined as follows:

λ ′ =−
K

∑
y=1

[
(1− ε)p(y|x)+ ε

K

]
log(q(y|x))(1),

where λ ′ denotes the loss, K the number of classes, ε the smooth-
ing factor, p(y|x) the true label probability distribution and q(y|x) the
probability that the image belongs to y for each case x. [3]

In the proposed approach, the smoothing factor was defined as ε =
0.2.

2.2.4 Ensemble Learning and Fine-Tuning
Benamara et al. propose several ensemble learning and fine-tuning
techniques, such as K-fold Cross-Validation and Bootstrap Aggrega-
tion.

In K-FOLD CROSS-VALIDATION, the training data set is split k-
fold. k−2 different subsets are used for the training phase, while the
two remaining subsets are used for model selection and error estima-
tion respectively [2, 3].

BOOTSTRAP AGGREGATION is also known as BAGGING and is a
technique that can help reduce variance for algorithms with a high
variance (e.g. classification and regression trees) [1], thus reducing
overfitting. It is also used to improve the accuracy of models. Boot-
strap Aggregation works by aggregating the predictions of multiple
weaker, individual models to get to a final prediction [7].

Additionally, the initial weights of the model may be fine-tuned,
possibly leading to increased performance. Lastly, the creation of an
ensemble probability function was proposed, based on a number of
models M:

q(yi|xi)ens =
1
M

M

∑
m=1

ezyi

∑K
j=1 ez j

The above formula considers an average, however an alternative
formula considering the maximum estimate was also proposed:

q(yi|xi)ens = max
M

ezyi

∑K
j=1 ez j

In both formulae described above, zyi denotes the logit.

2.3 Impact on Athletes
There exist various studies regarding the impact of facial expressions
on the performance of athletes. In this paper we will be focusing
on two papers. Firstly, Emotional expressions by sports teams: An
analysis of World Cup soccer player portraits [6], which focuses on
emotional display of soccer players and its connections with their per-
formance on the field. Secondly, we will be discussing The effects
of facial expression and relaxation cues on movement economy, psy-
chological, and perceptual responses during running [4]. This papers
focuses on the relation between the emotional display of runners and

SC@RUG 2021 proceedings

69

Fig. 2: Example of player portraits from Panini sticker
albums. Extract from 2014 Panini album displaying de-
fensive players Campagnaro (Argentina) and Boateng
(Germany).

their performance. In this section we will be discussing the methods
used in these papers.

For the analysis of world cup soccer players, photo portraits of the
players were used, like in Figure 2. In total 4896 portraits were col-
lected, from 76 different squads. Analysis of the portraits was done
using a tool named FaceReader 6, which outputs the emotions anger,
happiness, disgust, fear, sadness and surprise. The emotions used fur-
ther in the research are anger and happiness. The portraits which per-
formed best were the ones with good lightning and a frontal view of
the face. Furthermore, a larger percentage of the pictures were cor-
rectly analyzed for Caucasian faces.

Then, after analyzing the different portraits, it has to be compared to
the performance of the concerning teams. For this data was gathered
from The Rec.Sport.Soccer Statistics Foundation. [8]. In total three
measurements for performance were used: goal difference, number
of goals scored and number of goals conceded. Additionally, special
attention was given to the first stage of the world cup, because no teams
have left the tournament yet at that point.

Secondly, we will take a look at the method for linking emotional
expressions to the performance of runners. For the study, 24 endurance
runners competing on club-level were used, who all were completely
healthy. For each participant, two sessions were performed. Where
each session was done under the same circumstances for each runner,
with respect to hydration, time of session and food consumed. Ses-
sion one was done on a treadmill and session two consisted of four
blocks of 6 minutes running. Each block was done either while smil-
ing, frowning, consciously relaxing or with normal attentional focus.

With regards to the data collection, for session two respiratory ex-
change variables (VO2,VCO2), respiratory frequency, tidal volume,
minute ventilation (VE), respiratory quotient and heart rate were mea-
sured continuously. Additionally, following each block completed, the
participated rated their perceived effort with regards to to how hard,
heavy or strenuous they perceived the session. The participants were
also asked to rate their ability to maintain attentional cues during a
block, as a manipulation check. Lastly, statistical analyses was per-
formed. For this REPEATED MEASURES ANALYSIS OF VARIANCE
(RM-ANOVA) was performed for each of the primary dependent vari-
ables, secondary respiratory variables (see Table 6) and the manipula-
tion check.

3 RESULTS

This section discusses the results of the different approaches. These
results are then related to the possible impact of recognizing the psy-
chological state of athletes.

3.1 Machine Learning
The results of the machine learning approach is divided into two parts,
the results of training and testing the feature extraction and classifier,
and the part which includes controlling the remote embedded device.
We will be focusing on the first part, since this is most relevant to our
research.

We have included the results from experiments in the tables 1 and
2. During the experiments that Zedan et al. performed they modified
the parameters of HOG and SVM, in order to find the best recognition
rate. The image size used in the experiments is [100 x 100] pixels.
Furthermore, the block size (bs) of HOG is fixed at two pixels for all
the experiments.

Table 1 shows experiments conducted using the learning algorithm
(LS). Here, the most accurate experiment is experiment number one,
with an accuracy of 88.6%. The CONFUSION MATRIX on the right
indicates the correctly recognized emotions. The confusion matrix has
the following format:

TN FN
TP FP

where, given two categories A and B, an image i and a prediction
pi:

• True Negative (TN): If i ∈ A, then pi correctly states that i /∈ B

• True Positive (TP): If i ∈ A, then pi correctly states that i ∈ A.

• False Negative (FN): If i ∈ A, then pi (incorrectly) states that
i ∈ B

• False Positive (FP): If i /∈ A, then pi (incorrectly) states that
i ∈ A.

For experiment one, 809 non-smiling faces are correctly recog-
nized, while 110 are not. Moreover, 963 smiling faces are correctly
recognized and 118 are not.

Additionally, Table 2 shows the experiments performed with se-
quential minimal optimization (SMO), which is another learning al-
gorithm. The best experiment again has an accuracy of 88.6%. The
confusion matrix has the same correctly recognized faces as with the
previous algorithm.

This means that the recognition rate is not affected by changing
the algorithm used. The paper proposes to decrease the training and
testing time by using a smaller image size of 80 by 80 pixels. Using
this method the accuracy is increased to 88.9%.

3.2 Deep Learning
In order to assess the validity of their method, Benamara et al. carried
out experiments consisting of three phases:

i. Training single models on a FER database (without label
smoothing)

ii. Training single models using label smoothing (ε = 0.2)

iii. Fine-tuning of single-model weights, both with and without label
smoothing [3]

For the experiments, the FER 2013, SFEW 2.0 and ExpW databases
were used for training, validation and test images. In this paper, how-
ever, we will specifically focus on results of the FER 2013 database
for simplicity.

The models were tested both individually and as part of an ensemble
(e.g. AB, AC, ABC, ABD, etc).

After performing the experiments, the results were then analyzed
based on three aspects: (ensemble) performance, label smoothing op-
timization and computation time.

Facial Expression Recognition and its Impact on Athletes’ Performance – Klaas Tilman and Robert Monden

70

Exp. No. HOG-CS HOG-bs Image size Feature length/image Training time Testing time Accuracy ConMat)

1 11 2 100 864 4.6 1.1 88.6000 809 110
118 963

2 7 2 100 2808 7.3 4.6 87.9000 801 118
124 957

3 9 2 100 1440 7.31 3.7 88.4500 808 111
120 961

4 13 2 100 432 5.3 0.3 87.7 802 117
129 952

5 15 2 100 360 6.40 0.4 88.20 807 112
124 957

Table 1: HOG and SVM optimized parameters for training and testing with the LS learning algorithm

Exp. No. HOG-CS HOG-bs Image size Feature length/image Training time Testing time Accuracy ConMat)

1 7 2 100 2808 97.74 4.0 87.80 800 119
125 956

2 9 2 100 1440 92.01 2.5 88.45 808 111
120 961

3 11 2 100 864 3.32 0.5 88.60 809 110
118 963

4 13 2 100 432 3.2 0.5 87.70 801 118
128 953

5 15 2 100 360 2.95 0.3 88.10 806 113
125 956

Table 2: HOG and SVM optimized parameters for training and testing with the SMO

Model No Label Smoothing Label Smoothing
A 66.40% 67.15%
B 65.76% 66.95%
C 65.51% 68.60%
D 67.26% 67.85%

Table 3: Object recognition performance of each single
CNN model, expressed in terms of validation accuracy.
The FER 2013 database was used for the validation set.
Source: [3]

3.2.1 (Ensemble) Performance and Label Smoothing

Table 3 lists the object recognition performance of each single CNN
model, expressed in terms of accuracy. For each model the results are
shown both with and without label smoothing optimization applied.

Table 4 displays the object recognition performance of various en-
semble models. For each ensemble the results are shown both with
and without label smoothing optimization applied.

Ensemble No Label Smoothing Label Smoothing
AB 68.96% 69.43%
AC 68.93% 70.27%
AD 69.77% 69.63%
BC 68.43% 69.57%
BD 67.46% 69.16%
CD 68.68% 69.60%
ABC 69.30% 70.88%
ABD 69.41% 69.74%
BCD 68.88% 69.91%
CAD 69.69% 70.19%
ABCD 70.00% 70.66%

Table 4: Object recognition performance of each sin-
gle CNN model, expressed in terms of average valida-
tion accuracy. The FER 2013 database was used for the
validation set. Note that this table does not include the
maximum accuracy. Source: [3]

Compared to other reported performances regarding the FER 2013
database, the proposed method outperformed methods such as those
proposed by Mollahosseini et al. in 2016 (66.40%) and Devries et al.
in 2014 (67.21%), but with a reported performance of 72.72% it has
lower performance than the methods proposed by Kim et al. in 2016
(73.73%) and Pramerdorfer et al. in 2016 (75.20%). [3]

It must be noted, however, that when using the SFEW 2.0 database a
much lower performance of 51.04% is recorded. Among the compared
methods, the best-performing method has an accuracy of 55.15% using
a SFEW 2.0 dataset. [3]

3.2.2 Computation Time
Experiments were carried out in order to compare computation time
across different configurations. The Viola Jones and YOLO v2 face
detection methods were tested on multiple hardware configurations.
In all cases the ABC ensemble was used.

Face Detection Method Hardware Total time in ms
Viola Jones i7 CPU 141.97 ± 3.34
YOLO v2 i7 CPU 307.71 ± 3.67
Viola Jones GeForce GTX 1080 17.23 ± 0.84
YOLO v2 GeForce GTX 1080 13.48 ± 1.48
Viola Jones Tegra X1 137.22 ± 3.37
YOLO v2 Tegra X1 203.04 ± 1.84

Table 5: Comparison of computation times of different
face detection methods on different hardware. Source:
[3]

3.3 Impact on Athletes
In this chapter we will discuss the results of the two different method-
ologies for measuring the impact of facial recognition on athletes.

Firstly, for the world cup soccer players we focus on the results
which described the relationship between emotion display and behav-
ior. The paper presents econometric evidence that both the emotions
anger and happiness can be linked to the performance of a team. Here,
the display of both anger and happiness is a sign of a better team per-
formance, due to more goals being scored than conceded. Specifically,

SC@RUG 2021 proceedings

71

Measure Smiling Frowning Relaxed Control p Partial n2

Primary variables
VO2 (ml/min/kg) 32.90 (4.05) 33.84 (3.99) 33.63 (3.89) 33.65 (4.18) 0.001 0.20
Heart Rate (bpm) 146.86 (14.46) 148.65 (14.41) 146.96 (16.02) 147.30 (13.84) 0.231 0.06
Perceived Effort (AU) 11.25 (1.49) 12.29 (1.88) 11.38 (1.76) 11.63 (1.44) 0.004 0.17
Affective Valence (AU) 2.58 (1.77) 1.96 (1.83) 2.50 (1.50) 2.54 (1.25) 0.266 0.06
Activation (AU) 2.83 (0.96) 3.63 (1.13) 2.96 (1.12) 2.94 (1.20) 0.001 0.24
Manipulation Check (%) 82.08 (16.41) 85.42 (13.51) 87.08 (8.59) 81.25 (16.50) 0.312 0.05
Secondary Variables
VCO2 (ml/min/kg) 31.16 (4.22) 32.07 (4.40) 31.58 (4.07) 31.73 (4.49) 0.025 0.14
Respiratory Frequency (bpm) 38.80 (7.39) 38.55 (9.40) 36.58 (7.57) 36.62 (8.36) 0.079 0.10
Tidal Volume (L) 1.75 (0.45) 1.83 (0.52) 1.84 (0.50) 1.86 (0.55) 0.083 0.10
Minute Ventilation (L/min) 65.64 (13.35) 67.16 (13.02) 64.95 (12.82) 65.02 (13.30) 0.047 0.11
Respiratory Quotient (AU) 0.95 (0.04) 0.95 (0.05) 0.94 (0.04) 0.94 (0.04) 0.298 0.05

Table 6: Outcomes for primary and secondary variables during each attentional focus condition.

happiness is linked to scoring more goals and anger to conceding fewer
goals. The same holds for the teams position in the world cup, because
they usually reach a better position in the tournament when displaying
either anger or happiness.

Next, we take a look at the impact of facial recognition for runners.
The outcomes can be seen in Table 6. The study showed that most
(58.33%) participants were most economical when smiling while run-
ning. The perceived effort by runners was higher while frowning than
for both smiling and relaxing. Lastly, there was no significant effect
on the heart rate of runners, related to their emotions showed.

4 DISCUSSION

In the past sections we have focused on two methods for facial recog-
nition: A deep learning and machine learning approach. We have also
looked at the results of these two methods in Section 3. Furthermore,
we have looked at two applications of facial recognition within soccer
and running.

In this section we will discuss the different methods and how they
can influence the impact on athletes.

The machine learning approach proposed by Zedan et al. seems
very promising. Over multiple experiments the accuracy was between
87.7% and 88.6%, and ultimately, when decreasing the size of the im-
ages used, the accuracy was increased to 88.9%.

In contrast to the machine learning approach, we consider a Deep
Learning method by Benamara et al. The accuracy for this approach
is significantly lower than the machine learning method. The accuracy
ranges between 65% and 70%, by alternating between having label
smoothing or not, and applying an ensemble model. By looking only
at the accuracy of both methods, one might suggest using the machine
learning approach, since that one seems to be much more precise.
However, there is another factor that must be considered: the number
of emotions recognized by each program. The emotional recognition
which makes use of machine learning, is only able to recognize two
types of emotions: either smiling or non-smiling. On the other hand,
the deep learning approach can recognize up to seven types of emo-
tions: happiness, surprise, neutral, disgust, sadness, fear and anger.

In order to make a decision about the best method for applying fa-
cial recognition to sports, we first need to take another look at what im-
pact it could have on athletes. The results of the two methods showed
that a correlation could be detected between an athlete’s emotions and
their performance. For soccer players, there was a clear link between
the emotions anger/happiness and the goal difference of the competing
teams. In addition to that, for runners a connection could be made to
their running economy and perceived effort.

The facial expressions and emotions used in both papers included
smiling, frowning, consciously relaxing, normal attentional focus for
runners and anger, happiness, surprise, disgust, sadness and fright for
the soccer players. Because of the many emotions used in both studies,
the deep learning approach is most appropriate to apply, since it can
be used to analyze a greater number of emotions.

5 CONCLUSION

In this paper we have looked at two different methods for facial recog-
nition. In addition, we have looked at how they might be used to detect
the psychological or emotional state of athletes.

Although the machine learning approach proposed by Zedan et al.
has greater accuracy, the deep learning approach can be used if a more
specific assessment of an athlete’s emotional state is required. This is
since it can be used to analyze a greater number of emotions.

By employing emotion recognition on athletes, new possibilities are
opened up. If a soccer team where the players are happy is predicted
to perform better, then it would make sense to use this information to
improve team morale. In case one or more players are frequently ex-
hibiting emotions that can be considered negative, it could be worth
looking into the underlying causes. This, in turn, would improve gen-
eral team morale and might lead to improved performance.

It can therefore be concluded that facial expression recognition has,
indirectly, a positive impact on athletes’ performance.

5.1 Future Work
For future work it would be useful to take a look at a greater number
of approaches, in order to possibly find an even better solution.

Furthermore, it would be useful to see if the machine learning ap-
proach can be adapted to support a greater width of emotions and facial
expressions.

ACKNOWLEDGEMENTS

The authors wish to thank Dr. G. Azzopardi for proposing the topic
and providing a list of source papers.

REFERENCES

[1] Bagging and Random Forest Ensemble Algorithms for Machine Learn-
ing, Dec 2020. Accessed March 16th, 2021.

[2] D. Anguita, L. Ghelardoni, A. Ghio, L. Oneto, and S. Ridella. The’k’in
k-fold cross validation. In ESANN, pages 441–446, 2012.

[3] N. K. Benamara, M. Val-Calvo, J. R. Álvarez-Sánchez, A. Dı́az-Morcillo,
J. M. Ferrández-Vicente, E. Fernández-Jover, and T. B. Stambouli. Real-
time facial expression recognition using smoothed deep neural network
ensemble. Integrated Computer-Aided Engineering, (Preprint):1–15,
2020.

[4] N. E. Brick, M. J. McElhinney, and R. S. Metcalfe. The effects of fa-
cial expression and relaxation cues on movement economy, physiologi-
cal, and perceptual responses during running. Psychology of Sport and
Exercise, 34:20–28, 2018.

[5] freepik. Character showing emotions free vector. image: Freepik.com.
[6] A. Hopfensitz and C. Mantilla. Emotional expressions by sports teams:

An analysis of world cup soccer player portraits. Journal of Economic
Psychology, 75:102071, 2019.

[7] H. Kandan. Bagging the skill of Bagging(Bootstrap aggregating).
Medium, Jan 2019. Accessed March 16th, 2021.

[8] rec.sport.soccer. The rec.sport.soccer statistics foundation.
http://www.rsssf.com/.

Facial Expression Recognition and its Impact on Athletes’ Performance – Klaas Tilman and Robert Monden

72

[9] M. Valueva, N. Nagornov, P. Lyakhov, G. Valuev, and N. Chervyakov.
Application of the residue number system to reduce hardware costs of the
convolutional neural network implementation. Mathematics and Comput-
ers in Simulation, 177:232–243, 2020.

[10] P. Viola and M. Jones. Rapid object detection using a boosted cascade
of simple features. In Proceedings of the 2001 IEEE computer society
conference on computer vision and pattern recognition. CVPR 2001, vol-
ume 1, pages I–I. IEEE, 2001.

[11] M. J. Zedan, A. I. Abduljabbar, F. L. Malallah, and M. G. Saeed. Con-
trolling embedded systems remotely via internet-of-things based on emo-
tional recognition. Advances in Human-Computer Interaction, 2020,
2020.

SC@RUG 2021 proceedings

73

Consistency Trade-offs in Distributed Systems

R.J.M. van Beckhoven, R.M.Sommer

Abstract—Distributed systems have been become an extremely commercially interesting way of deploying software systems due to
their intrinsic advantages. Distributing a system over multiple computers has advantages for reliability, high-availability, and performance.
In this paper we address the implications of distributed systems and what trade-offs are made in recently developed systems. We focus
on the implementation of the Amazon S3 and ZooKeeper distributed systems and relate these to the CAP-theorem. We find that both
systems forfeit the consistency property, but do guarantee eventual consistency. Both systems embrace properties that maximize the
data-centric consistency and provide consistency guarantees from a client-centric point of view.

Index Terms—Consistency, Distributed computing, CAP, S3, ZooKeeper

1 INTRODUCTION

Due to the ever-growing nature of the internet and the shift towards
cloud computing, distributed system have gained in popularity rapidly.
A distributed system is a software system, which consists of multiple
components that are located on different networked computers [12].
Given that the resources are available, a distributed system has
the advantage that it is relatively straightforward to achieve high
availability, high performance and scalability.

However, problems can arise with designing models that organize and
manage the data. For example, modern day social media applications
generate an enormous amount of data. Users expect that the data
is available at any given moment and that the data they receive is
up-to-date. However, in a distributed network, this is hard to achieve. It
is a challenge to have a database which is highly available, consistent,
and partition tolerant. Historically, the ACID principle is used to
ensure a reliable database, focusing on consistency. More recently,
the BASE model has been introduced as an alternative. This model
aims at providing more flexibility in data management, focusing on
availability over consistency. What both these principles lack is any
notion regarding partition tolerance. Inspired by these principles, the
CAP theorem was introduced by Brewer in 2000 [3] and later proven
by Gilbert and Lynch [7]. The theorem addresses the problem of a
distributed system having the properties Consistency, Availability,
and Partition tolerance. More recently, Brewer elaborated on a novel
interpretation on the claims in the CAP theorem [4]. The idea is
that a partition is always a possibility in a distributed system, which
should be managed. Therefore optimizing the consistency-availability
trade-off is the desirable choice to make.

In this paper we revisit the database principles ACID and BASE in
Section 2. We relate these principles to the original CAP theorem and
the novel interpretations of the CAP theorem. Afterwards, we examine
this new interpretation of the CAP theorem by doing a case study of
two distributed database implementations in section 3: Amazon S3 [2]
and ZooKeeper [8]. We look at how they are implemented and how
they tackle the availability-consistency compromise. Afterwards, we
discuss our findings in section 4 and present our conclusions in Section
5. Finally, we provide potential future work in the field in section 6.

2 BACKGROUND

Traditional approaches for database systems, such as RDBMSs, provide
ACID properties to guarantee a certain reliability of a database to the

• R.J.M. van Beckhoven, MSc Student Computing Science at UG. E-mail:
r.j.m.van.beckhoven@student.rug.nl

• R. M. Sommer, MSc Student Computing Science at UG. E-mail:
r.m.sommer@student.rug.nl.

user. With NoSQL databases, these ACID rules are hard to enforce
and would resolve in an enormous impact on performance if they
were enforced. Instead, these database systems opt for more lenient
approaches towards reliability, which follow principles such as BASE
and CAP.

2.1 ACID

A system that enforces ACID rules, has the following four guarantees:

• Atomicity

• Consistency

• Isolation

• Durability

Atomicity implies that all operations are atomic; each transaction is
considered as a single unit and either the entire transaction is commit-
ted, or the transaction is discarded upon failure. This prevents partial
updates of the system which could result in incorrect states of the sys-
tem. Consistency ensures that the database has a valid state at any given
point in time. No transaction can alter state in such a way that invari-
ants are violated. Isolation ensures that, when concurrent transactions
occur, the final state of the database system will be similar to the state
if these transactions had occurred in sequence. Durability ensures that
committed data will remain persisted, even when failures or outages
occur.

2.2 BASE

For systems that do not require these strict guarantees on data reliability,
ACID transactions impose limits on the scalability of the system. A
more loose approach to consistency is introduced by the concept of
BASE:

• Basically Available

• Soft state

• Eventually consistent

Basic availability is an approach in which the data appears to be avail-
able most of the time. This can be achieved by using a distributed
approach to database management, where data is spread over multiple
systems. Soft state discards the entire consistency guarantee of ACID;
consistency is not guaranteed after writes and is not imposed on all
replicas of the data. However, consistency is achieved by eventual
consistency, which implies that the database management system will
ensure that data is consistent at some point in the future.

74

2.3 CAP-theorem
The CAP-theorem [3] states that any distributed storage system can
only employ two out of three properties:

• Consistency

• (High) Availability

• Partition tolerance

This theorem originated in the year 2000 and was mainly aimed at
making system designers aware of the trade-offs imposed by distributed
systems.

The definition of a partition is a combination of expected time-bounds
and consistency; a partition occurs when consistency cannot be
guaranteed after an expected time-bound. This time-bound is
determined by system designers based on target response times. When
a network partition occurs, subsystems of a distributed system are
unable to communicate to each other. This results in failing to achieve
this consistency. When the system enters a partition, it has to opt for
either availability or consistency. This can be done by cancelling the
operation or by proceeding with the operation respectively. Proceeding
imposes a risk where data becomes inconsistent and cancelling
decreases availability.

This theorem results in three different models which can be employed:
Consistency and Partition tolerance (CP), Availability and Partition
tolerance (AP) and Consistency and Availability (CA).

CP implies that, when a partition occurs, the system forfeits availability.
The system ensures that the state of the system remains consistent,
potentially by shutting down parts of the system.

AP implies that, when a partition occurs, the system forfeits consis-
tency. Eventual consistency is a model that follows AP, since it is not
consistent at any point in time, but it is highly available because of that.

CA implies that when a partition occurs, the system forfeits partition
tolerance. In theory, this means that no action is taken by the system.
However, in practice this often means that either availability or
consistency is forfeited. For example, if the system has a protocol such
as Paxos, which needs to ensure that all nodes have acknowledged the
write, the system would potentially not reach consensus. This, in turn,
results in the system being unavailable.

In distributed systems, the assumption is made that partitions can
always occur, because network switches may eventually fail. This
assumption also implies that one cannot simply forfeit partition
tolerance in a distributed system. When no action is taken upon a
partition, this eventually results in either a state that is inconsistent
or a system that is temporarily unavailable, thus forfeiting either
consistency or availability.

While the original CAP theorem suggests that system designers have to
opt for two out of three, the better approach is not to focus on just two,
but rather focus on optimizing consistency and availability [4]. With
the assumption that partitions rarely occur, the effect of a partition can
be minimized. However, this still means that the same trade-off has to
be made by the system at the event of a partition.

At the event of a partition, the two sides of the partition potentially
disagree about the state of the system. The system should handle
this partition by entering a partition mode after which both sides
agree about the state. There are several options to choose what to do
during the partition mode. For example, choices regarding maintaining
invariants can be made. Invariants can be maintained during the
partition, potentially affecting the availability of the system. Another
option would be to allow invariant violations during the partition mode
and fix these during the recovery. During this recovery, the two states

have to be merged into a state that is sound. This could be done in
a similar fashion to how merging works in git. However, this also
implies that merging should not cause conflicts. Achieving this can
be done by putting constraints on the system during the partition,
potentially restricting certain operations. Yet another option is to use
operations that are strictly commutative. Doing so ensures that all
operations can be merged safely after a partition. While this theory
sounds interesting, in practice it is not easy to implement. In order
to aid with this commutativity, Commutative Replicated Data Types
(CRDTs) can be used [10]. After recovery, the state of the system is
consistent and can therefore operate in a normal mode again.

2.4 Generic distributed database
A database can be distributed in two ways. The first is by fragmenting
the data, such that the data itself is spread over multiple nodes. The
second option is to replicate the full data over multiple nodes. We
define a primitive distributed database as a system in which data is
replicated over multiple nodes. Every node has a complete copy of the
data, such that every node is able to respond correctly to read requests.
Replication leads the database to be fault-tolerant and enhances the
availability of the system. The write requests are managed by a broad-
cast protocol, implemented using a master-slave architecture. Here the
master receives the request and ensure that each slave will update its
data-model. This results in consistent data over all replicas. We assume
a partition can occur within the system and the system continues to
operate when the partition occurs. This results in the system having
two options. The system can keep responding to read-requests and
accepting that the data is not up-to-data, thus forfeiting consistency.
Or the system can stop responding to read-requests and guarantee the
integrity of the data, thus forfeiting availability. In this generic model,
prioritizing different aspects can either lead to the system achieving
high availability or high consistency.

3 METHODS

In the following section, we will review two research papers on two dif-
ferent distributed systems, Amazon S3 [2] and Apache ZooKeeper [8].
We take a look at what the systems intend to achieve and how they have
implemented this. We relate these implementations to the novel CAP
theorem implementation.

3.1 Amazon S3
Amazon Simple Storage Service or S3 is a popular distributed database
service which is used in many applications such as IoT, Data lakes and
Machine Learning. Its internal structure is an object storage which
offers durability, availability, performance and other quality attributes.

3.1.1 Implementation
S3 uses key-value buckets to store objects. These buckets are logical
structures that can be created by the user. Objects in these buckets are
identified by a key and a version ID. This key is a unique key, of which
multiple versions are tracked within S3.

Up to December 2020, S3 used an eventual consistency model. This
model imposes a window in which data is inconsistent after a write.
By this design decision and following the CAP theorem models, S3
employs an AP model where it forfeits consistency. This model can be
seen in Figure 1.

This model has been pivoted to a strong consistency model [1]. In the
strong read-after write consistency model, S3 defines a set of actions
which can guarantee strong consistency. For PUTs and DELETEs of
objects, reading is guaranteed to provide the latest version of the object
(See Figure 2). This still means that certain operations are not guaran-
teed to provide strong consistency. For example, concurrent writing
causes non-deterministic behaviour and can therefore not guarantee
this. Instead S3 determines internally which write takes precedence,
based on the order of the writes. This does not necessarily imply that
the client observes the same precedence.

SC@RUG 2021 proceedings

75

Fig. 1. Timeline of events during two writes (PUT) and 4 reads (GET),
with an eventual consistent model of S3.

Fig. 2. Timeline of events during two writes (PUT) and 4 reads (GET),
with a strong consistent model of S3.

3.1.2 Terminology
In the research paper [2], the following terms are used to describe the
results:

Inconsistency window
The time it takes after a write, before the system is consistent again.
This consistency implies that every node of this distributed system
contains the same state.

Monotonic read consistency
Monotonic read consistency is a property which determines that no
following reads will return a stale value after a read returns a new value.

3.1.3 Research methods
Bermbach and Tai [2] consider two approaches: a data-centric and
a client-centric approach. The data-centric approach focuses on the
internal state of the system. It defines consistency when all replicas
of the system contain an identical state. The client-centric approach
measures the consistency guarantees from a client perspective, based
on stale data being returned. The data-centric approach provides more
useful insights for developers, whereas the client-centric approach is a
more useful approach for clients. The distributed system could have
measures which hide the eventual consistency for clients.

For the evaluation of S3, a client-centric approach is taken. A set of
EC21 instances is used to deploy a reader. Since data is spread over
multiple replicas, a single reader is unlikely to cover all replicas, thus
resulting in inaccurate measurements. To increase the accuracy of the
measurements, 12 readers are deployed over 3 availability zones. Each
reader then reads the S3 system with an interval of 10ms. With these
components, the inconsistency window and monotonic read consistency
can be determined.

3.1.4 Results
The results [2] show that there are actually two phases in which S3
operates: a phase in which the inconsistency window is stable and a
phase in which the inconsistency window follows an increasing pattern,
matching a sawtooth wave (referred to the paper by LOW and SAW re-
spectively). During this LOW phase, a median window length of 28ms
is measured. For the SAW phase, the window length ranges between 0
and 12s. While there are certain issues in this research, imposed mostly

1aws.amazon.com/ec2

by clock syncing strategies using NTP, there are no clear indications
that could explain the behaviour of the SAW phase. This behaviour is
unprecedented in any other distributed storage systems and can only be
explained by internal design choices from Amazon. Furthermore, the
monotonic read consistency is violated in 12% of the time.

3.1.5 Discussion
Since the paper from 2011, the consistency model of S3 has been up-
dated in December 2020. Instead of eventual consistency, it employs a
strong read-after-write model. This ensures that after a write (either a
PUT or DELETE), all consequent reads obtain the latest state. A reason
for this architectural change is that clients that require strong consis-
tency often resort to using a 3rd party implementation as a layer to
guarantee this, resulting in a significant decrease in performance.
By employing a strong read-after-write model, S3 is guaranteed to have
no more monotonic read violations. This should come with a trade-off
on availability or performance. However Amazon is not transparent
about how S3 is implemented, which results in only being able to guess
at this point. No research has been performed on S3 since this pivot.
In terms of which CAP theorem model is employed, S3 employs a CP
model nowadays. However, it is open for discussion whether this is
actually a CA model, since there is no clear indication what happens
during a partition.

3.2 ZooKeeper
ZooKeeper is a service with the primary goal of helping in the coordi-
nation of processes in a distributed system. Its design relies on ideas
proposed in previously introduced coordination services, fault-tolerant
systems, distributed algorithms, and file systems. Through its efficient
design and simple interface, ZooKeeper provides a reliable distributed
coordination service.

3.2.1 Terminology
In the research paper by Hunt et al. [8], the following terms are used to
describe the system:

Wait-free data object
A wait-free data object is determined as an object that is implemented
using non-blocking primitives, such that it can be accessed regardless
of other processes using it.

A-Linearizability
Asynchronous Linearizability, or A-linearizability, indicates the prece-
dence of (write) requests received by the system. An A-linearizable
system guarantees the order of execution of the requests when they are
processed asynchronously.

3.2.2 Implementation
The ZooKeeper service provides a wait-free coordination kernel, which
can be accessed via a simple API. The service makes use of an ensemble
of servers using replication. This setup enable ZooKeeper to achieve
high availability and high performance, while relaxing the consistency
guarantees.
ZooKeeper consists of three components in a pipelined architecture as
depicted in Figure 3. We provide a short overview of the components
within the system:

• Request Processor — The request processor is responsible for the
handling of write-request on the distributed file system.

• Atomic Broadcast — The atomic broadcast protocol ensures that
the state of all replicas of the database are updated in order. This
guarantees that each replica will update its state according to
an identical stream of write requests, hence local replicas do
not diverge. However, since at any point in time some servers
may have applied more state updates, it does not guarantee 100%
consistency.

• Replicated Database — The file system is replicated over servers,
each server handling read requests of its own collection of clients.

Consistency Trade-offs in Distributed Systems – R.J.M. van Beckhoven, R.M.Sommer

76

Request
Processor

Atomic
Broadcast

Replicated
Database

Write
Request

Read
Request

FollowersLeader

Fig. 3. Illustration of the components within the ZooKeeper service.

The database of ZooKeeper is implemented as an abstraction of a file
system. A set of data nodes (znodes) are organized according to a
hierarchical name space. The znodes are manipulated by clients via
write-request through the ZooKeeper API. Znodes can be either regular
or ephemeral. They are not designed for general data storage, but
map to abstractions of the client application. These abstractions often
contain metadata necessary for the coordination process.

Write operations
Whenever a server receives a request requiring coordination between
servers this request gets forwarded to a single server, the leader.
Subsequently, the ZooKeeper servers that have replicated database
(followers) will be updated via the atomic broadcast protocol using
two-phase commit. This guarantees A-linearizability. All requests that
update the database are serializable and respect precedence.

Read operations
Read requests are processed locally in ZooKeeper ensuring good
read-performance. The read operation is a simple in-memory operation
on the replica, having no disk operations or agreement protocols. The
drawback of the fast read is that it does not guarantee precedence
order and may return outdated values. ZooKeeper implements a cache
on the client side via a watch-mechanism. Whenever a ZooKeeper
client sends a read request to the server it can set the watch-flag. The
watch-flag is a one-time trigger ensuring the client will be notified
whenever the resource is updated. This prevents continuous polling to
the server and hence enhances fast reads.

Each read request is tagged with an id which indicates the state of the
replica the client is connected to. The id ensures that whenever the
client reads a value for the second time, the returned value will be as
least as recent as the value returned in the first request.

For read requests, ZooKeeper provides the option of sync. This imple-
ments the functionality of waiting for all write-requests to complete
before returning the response on the read request.

3.2.3 Research methods

During the evaluation of the ZooKeeper service, there are a number
of things which are investigated. First and foremost is the through-
put of the read- and write-requests. ZooKeeper intends to maximize
availability and aims at keeping a high throughput, despite failing parts
within the system. For the evaluation of ZooKeeper various parts of the
system are simulated to fail. During this evaluation, a varying number
of servers are examined in addition to varying read:write workload
ratios. The throughput of the individual components is measured in
addition to the complete system.
The latency of the ZooKeeper service is measured by executing a
synchronous create request with 1K of data to the Service and after-

wards deleting asynchronously. These create-requests are a form of a
write-request. The latency of requests is expressed as the number of
completed request per second. The similar Chubby [6] system is used
as reference.

3.2.4 Results
For the throughput in the complete system, extreme read-write
ratios are explored for a varying number of servers. Hunt et al. [8],
show that the number of servers has a negative impact on the write
performance, while having a positive effect on the read performance.
This is because the read-workload can be distributed over the multiple
servers. However, the write-requests go through the atomic broadcast
component, which needs to coordinate the update of the data-models
on all servers.

By forcing clients to send requests to the leader of the cluster, the read-
and write-performance both decrease. For reads this is expected, as
they do not take advantage of the distribution of the data-model. This
distribution is possible, because of the relaxed consistency guarantees.
For writes, the decrease in performance is possibly due to the extra
CPU and network load.

Hunt et al. [8], examined the throughput of the ZooKeeper service
while simulating various failures within the service. Failures of several
followers and the leader are simulated. With failing followers, the
service is able to sustain a high throughput. The throughput for a
failing follower roughly decreases by the write-requests processed
by the failing follower. When the follower recovers, the throughput
is increased again. This happens slowly, as clients only switch to
a new follower whenever the connection to the previous follower
is broken. When the leader fails, the system elects a new leader
in approximately 200ms. Its A-linearizable operations allow for
quick reconfiguration of the system. During the election of a new
leader, the system does not process requests. However, a throughput
of zero is not observed, as the sampling period is in the order of seconds.

Latency
The latency of ZooKeeper is also measured by Hunt et al. [8] and is
compared to a similar coordination system [6]. Distributing the system
over multiple servers has a negative impact on the latency of requests,
while increasing the number of followers in the system has a positive
effect on the latency. The results show that the latency of the system is
on average 1.2ms for 3 servers and 1.4ms for 9 servers. Even though the
requests used in the evaluation of Chubby are smaller, the throughput
of ZooKeeper is more than 3 times higher compared to the throughput
of Chubby.

3.2.5 Discussion
ZooKeeper’s distributed data-model design leads to the service having
a high-availability. In the results, great throughput is sustained for read-
and write-requests while simulating failures in the system. A positive
influence on availability of having a distributed replicated data-model
is shown.

ZooKeeper implements eventual consistency as it allows the replicas of
the data-model to diverge. The writes go through an atomic broadcast
protocol, which is responsible for keeping all data-models up-to-date.
This gives no guarantee of all replicates being in the exact same
state at any time.It is probable that servers do not process the request
simultaneously. When nodes/servers fail they are efficiently restarted
by the leader using snapshots of a previous state that have been
saved on disk. After restoring the snapshot state-changing events that
happened after the snapshot are replayed to guarantee all write-requests
on the data-model will be executed on the replica.

In terms of which CAP theorem model is employed, both CP
and AP can be argued for. Whenever a partition occurs within the
system two group arise: the majority partition and the minority
partition. ZooKeeper uses majority quorums [13], meaning the the

SC@RUG 2021 proceedings

77

majority is required to elect a new leader. When the leader is in the
majority partition, this partition will continue operating. Otherwise, the
majority partition will elect a new leader and will proceed operating.
In the minority partition the servers will shut down and revert to leader
election. The system will fail to elect a leader and shutdown. Initially
the system aims at providing up-to-date information and stops the
disconnected server from responding to read requests. The server
informs the clients of the unavailability by providing a disconnected
error message to the client. ZooKeeper, however, provides the option
to connect in read-only mode to the disconnected server.

Combining the partition behaviour to the eventual consistency model
ZooKeeper utilizes, we observe that ZooKeeper can be used both as
an AP model and as a CP model. An AP model using eventual con-
sistency can be configured by clients using a read-only connection to
disconnected servers. One could argue this is not an available system
as update operations are cannot be issued. ZooKeeper implements
eventual consistency, which counteracts the CP model. Even though
consistent reads are not guaranteed, ZooKeeper implements methods
that benefit consistency in the case of a partition.

4 DISCUSSION

Amazon claims that by employing strong read-after write consistency,
there is no impact on performance [1]. However, this seems unlikely,
since there has to be a trade-off to guarantee consistency. In an
ideal situation where no partitions occur, it makes sense that there
is no trade-off between availability and consistency. In the case that
a partition occurs, a decision has to be made between availability
and consistency. Google’s Spanner [5] imposes a similar strong
consistent model, which also claims to be both consistent and highly
available. While the system itself has major internal differences, there
is an explanation why the assumption of having both consistency as
availability can be made. Partitions occur extremely rarely, due to it
running in a private global network. In the case of a partition, Paxos
groups in combination with two-phase commit, strong consistency
is still ensured. In the case that Paxos fails due to this partition, the
system becomes unavailable. Amazon S3 has to make a similar
decision during a partition, where it either forfeits consistency or
availability. Since it employs a strong consistent model, it is most
likely that it forfeits availability. However, it is unclear whether that is
done by restricting operations or other means.

The applications of a distributed system have a major impact on design
decisions regarding trade-offs between consistency and availability. A
large variety of NoSQL databases exist, which employ a large scala
of trade-offs. By researching similar systems to S3 or ZooKeeper,
potential overlapping design decisions could be found which result
from similar drivers.

The research field of distributed systems is an ever-evolving field,
where practices can be outdated or obsolete in a matter of years. The
research performed on Amazon S3 turned out to be outdated because
of an internal architectural change in S3. Nevertheless, the paper
proposed interesting methods and concepts which are generic enough
to be used in other contexts. In addition to this research turning out to
be outdated, the lack of transparency from Amazon did not make it
easier to link the findings to architectural decisions. Due to this missing
information, S3 essentially becomes a black-box system, which could
affect the accuracy of the research.

5 CONCLUSION

In this paper we discussed how the BASE model is different from the
traditional ACID model. We related these models to the original CAP
theorem and have examined nuances of the CAP theorem. We have
examined this new interpretation of the CAP theorem by doing a case
study of two data models: Amazon S3 and ZooKeeper.

Both the Amazon S3 and the ZooKeeper service provide dis-
tributed databases with relaxed consistency guarantees. Both services
use an eventual consistency model, partially forfeiting the consistency
in the CAP theorem. Consistency is guaranteed after a period of
no additional writes. In the Amazon S3 paper this is referred to as
the inconsistency window. At the end of this window, all replicated
instances of the database have processed the write-requests. The same
happens within the ZooKeeper service. Write-request are processed
via an atomic broadcast protocol leading to consistency whenever
all write-requests going through the atomic broadcast protocol are
processed.

In both systems we can see the trade-off at work. A replicated
database where each replica is kept up-to-date via a write processing
engine gives relaxed consistency guarantees, but does guarantee a
high availability as the failure of one server results in clients being
accommodated at different servers. We found that the Amazon S3
service employs an AP model where it forfeits consistency. However
the new S3 model implements a strong consistency model, prioritizing
the consistency over availability. As there are no mentions of what
happens during a partition we cannot define with certainty whether
the model is a CP model or a CA model. For the ZooKeeper service
there are arguments for it to be an AP model or a CP model. In the
case of a partition, requests are blocked by the disconnected servers,
indicating that ZooKeeper prioritizes consistency over availability.
However, as the model implements an eventual consistency model, no
100% consistency is guaranteed.

In the new interpretation of the CAP theorem, the vision was
that one should not abandon the third property all together. Both
systems are partition tolerant, but handle the availability-consistency
trade-off differently. Amazon S3 and ZooKeeper both use an eventual
consistency model. In this model S3 prioritizes availability, while
ZooKeeper offers more consistency guarantees.

6 FUTURE WORK

A potential extension to this research would be to explore what
the differences are between the research on S3 in 2011 and the
current implementation of S3. Because of aforementioned assertions
made by Amazon regarding the consistency and availability of
the system, it appears that the negative aspects of an eventual
consistent model have been completely negated. This implies that
there is no trade-off to begin with, which voids the whole CAP theorem.

Another extension to this research would be to compare more than two
distributed systems. In contrast to S3, ZooKeeper has not switched
models and is unchanged in its approach to the consistency-availability
trade-off. Since its introduction, ZooKeeper has been adopted by a
plethora of Apache applications, due to its proven stability [11]. Etcd
is a similar system to ZooKeeper and it would be interesting to see
whether the system developed a different consistency-availability
trade-off. Another well-known key-value storage system is Redis.
Redis has similar challenges regarding the properties of the CAP
theorem, like any distributed system. Redis offers multiple distributions
which have different perspectives on these properties. For example,
it has an implementation called CRDB, which revolves around using
CRDTs to improve conflict resolution [9]. This approach of using
CRDTs is a novel way of resolving some of the challenges imposed by
the CAP theorem.

REFERENCES

[1] J. Barr. Amazon s3 update – strong read-after-write consis-
tency. Available at https://aws.amazon.com/blogs/aws/
amazon-s3-update-strong-read-after-write-consistency/,
Last visited in March 2021.

[2] D. Bermbach and S. Tai. Eventual consistency: How soon is eventual? an
evaluation of amazon s3’s consistency behavior. In Proceedings of the 6th
Workshop on Middleware for Service Oriented Computing, MW4SOC ’11.

Consistency Trade-offs in Distributed Systems – R.J.M. van Beckhoven, R.M.Sommer

78

Association for Computing Machinery, New York, NY, USA, 2011. doi:
10.1145/2093185.2093186

[3] E. Brewer. Towards robust distributed systems. p. 7, 01 2000. doi: 10.
1145/343477.343502

[4] E. Brewer. Cap twelve years later: How the ”rules” have changed. Com-
puter, 45(2):23–29, 2012. doi: 10.1109/MC.2012.37

[5] E. Brewer. Spanner, truetime and the cap theorem. Technical report, 2017.
Available at https://research.google.com/pubs/pub45855.html,
Last visisted in March 2021.

[6] M. Burrows. The chubby lock service for loosely-coupled distributed
systems. In 7th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2006.

[7] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services. SIGACT News,
33(2):51–59, June 2002. doi: 10.1145/564585.564601

[8] P. Hunt, M. Konar, Y. Grid, F. Junqueira, B. Reed, and Y. Research.
Zookeeper: Wait-free coordination for internet-scale systems. ATC.
USENIX, 8, 06 2010.

[9] R. Labs. Active-active geo-distribution (crdts-based) — redis
labs. https://redislabs.com/redis-enterprise/technology/
active-active-geo-distribution/. Last visisted in March 2021.

[10] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. Conflict-free
replicated data types. vol. 6976, pp. 386–400, 07 2011. doi: 10.1007/978
-3-642-24550-3 29

[11] I. Sudasingha. A comparison between distributed coordina-
tion giants etcd3 and apache zookeeper. https://imesha.me/

apache-curator-vs-etcd3-9c1362600b26, July 2017. Last visisted
in March 2021.

[12] A. Tanenbaum and M. van Steen. Distributed Systems: Principles and
Paradigms. Pearson Prentice Hall, 2007.

[13] ZooKeeper. Zookeeper internals documentation. https://zookeeper.
apache.org/doc/r3.2.2/zookeeperInternals.pdf, 2008. Last vi-
sisted in March 2021.

SC@RUG 2021 proceedings

79

A review of Distributed Machine Learning Algorithms

Bedir Chaushi (S4309588)

Abstract—Most machine learning algorithms currently in development, rely on different architectures and ecosystems. The need for
performing scalable, reliable, robust computations has led several ML (Machine Learning) algorithms to switch to distributed machine
learning architectures. Different software systems that use ML have unique, and different characteristics, such that: time complexity,
heterogeneity of systems, and fault tolerance. Various machine learning systems adapt to these needs and perform several tasks. In
this article we will discuss for federated Learning and parameter server architecture.
The parameter server architecture is introduced as a milestone for distributed ML. In this model, the parameter server distributes
data to worker (slave) nodes and commands the learning process via a master node. Workers run computations locally and send
back feedback to the server that aggregates. The Federated Learning (FL) approach gains insight on edge devices that each owns
private data, without enforcing any movement of the data (unlike with the parameter server). The devices collaboratively train a model,
which is hosted on a centralized server. The server decides which of the devices should participate in the learning round through
random selection. Selected devices send their updates to the server after several learning iterations over their private data. Both
of the mentioned architectures distribute the system among multiple nodes, although the biggest difference between them is that
federated learning trains particular algorithm across multiple edge devices, where parameter server architectures gives its contribute
by allocating data among shared data. Federated learning, unlike paramater server, keeps data disestablished, thus it has privacy
concerning advantage in comparison with parameter server.
This article gives a general view of mentioned distributed machine learning systems and algorithms. It addresses how distributing
machine learning algorithms solve problems derived from the current state-of-art machine learning algorithms and systems from both
centralized and distributed approach.

Index Terms—Distributed Machine Learning, ML algorithms, federated learning, parameter server.

1 INTRODUCTION

Machine learning is the key for observing valuable data, identifying
various patterns, making predictions and handling variety and huge
amount of data. However, in order to achieve high performance and to
increase the quality of aforementioned factors, high volume of train-
ing data and computational power is needed. Since large amount of
processing this data has been difficult to handle from locally central-
ized machines, there is a need for distributing the machine learning
workload across multiple machines and turning the centralized system
into a distributed one. Thus, Distributed optimization and implication
is becoming a requirement for solving large scale machine learning
problems. These distributed machine learning frameworks and algo-
rithms present new challenges as different systems hold range of re-
quirements, in which distributed machine learning manner must adapt
to it. Different frameworks, architectures, and algorithms, such as fed-
erated learning, parameter server approach, are used for achieving dis-
tributed manner of solving machine learning problems. These systems
typically are designed to improve performance, increase accuracy, and
scale to larger input data sizes. Increasing the input data size for many
algorithms can significantly reduce the learning error and can often be
more effective than using more complex methods [4].

Parameter server maintains the current model and regularly dis-
tributes it to the workers who in turn, they make all necessary cal-
culations and send it back to the server. The server then applies all
the updates to the central model. This is repeated until the model opti-
mizes and get in desired conditions.

In federated learning, this framework is improved to minimize com-
munication between the server and the workers. Federated learning
leaves the training data distributed on the mobile devices and learns
a shared model by aggregating locally computed updates, and com-
pression techniques can be applied when uploading the updates to the
server.

This paper is intended to give an idea to the reader about how dis-
tributed machine learning approach solves current state-of-art issues of

• Bedir Chaushi is with University of Groningen, E-mail:
b.chaushi@student.rug.nl.

Fig. 1. General Overview of Machine Learning. During the training
phase a ML model is optimized using training data and by tuning hyper
parameters. Then the trained model is deployed to provide predictions
for new data fed into the system [13]

centralized approach of implementing machine learning algorithms,
pros and cons between different approaches (federated learning and
parameter server), and their advantages.

In the beginning, the reader should expect a brief overview of ma-
chine learning and distributed machine learning. In the beginning of
following section the current state-of-art problem is defined and after,
how parameter server solves the problem. Similar structure applies
to the following section where the paper gives insight for federated
learning. After that, a brief comparison between two mentioned archi-
tectures is given, pros and cons between them and gossip learning is
introduced as a solution to both parameter server and federated learn-
ing. In after-coming section, a comparative study is introduced; cur-
rent state-of-art of distributing generative adversarial networks using
parameter server and how distributing it with federated learning has
advantages over previous one. At final section, a conclusion is pro-
vided and further research is suggested.

80

2 BACKGROUND

In order to provide a better understanding of the subject, we will briefly
discuss the following.

2.1 Machine Learning

Machine Learning (ML) algorithms are increasingly being used to
analyse datasets and build decision making systems for which an ordi-
nary solution is nearly impossible due to the complexity of the prob-
lem. Examples include controlling self-driving cars [1] or predicting
consumer behaviour [6] and various other topics.

These systems automatically learn models from training data, and
typically consist of three components: feature extraction, the objective
function, and learning. Feature extraction processes the raw training
data, such as documents, images, and user query logs, to obtain feature
vectors, where each feature captures an attribute of the training data.[3]
In addition, In ML hyper-parameter serve an important role where its
value is used to control the learning process, see fig. 1.

2.2 Distributed machine learning

The parameter server architecture [7] was a milestone for distributed
ML, significantly increased speed the computation over a single cen-
tralized process. In this model, the parameter server allocates data
(also called batches) to workers and coordinates the learning process.
Workers run computations locally and send back their errors to the
server that accumulates. In turn, workers pull the up–to–date model
from the server and iterate until the convergence of the global model
is reached. The Federated Learning (FL) [10] approach has a great im-
pact on edge devices that each owns private data, without imposing any
movement of the data (unlike with the parameter server). The devices
collaboratively train a global model, which is hosted on a centralized
server. The server decides which subset of the devices should partic-
ipate in a learning round through random selection. Selected devices,
in turn, send their updates to the server after a number of learning iter-
ations over their private data.

3 PARAMETER SERVER

The current state-of-art of almost every centralized machine learning
problems rely on large amounts of data for training and then for imple-
mentation models from it. Terabytes or petabytes of data are trained
every day to gain insights and leverage big companies. Trained data
consists models of weights that will optimize for error in conclusion
for most cases. The number of weights run is in order of billions to
trillions. In such big models, both learning and implementation on a
single machine is not possible. Since parameters need to be shared and
then updated across multiple nodes using which these nodes perform
and perfect their computations, these large numbers can be become
bottleneck when it comes to sharing. Sharing is expensive in terms of
bandwidth, synchronization for sequential ML algorithms, fault toler-
ance on commodity machines that can have high failure rates up to
10% [7]. Parameter sever proposes a new framework for addressing
these challenges of the current state-of-art and building distributed ma-
chine learning algorithms.

3.1 Design Ideas

In order to give a solution to challenges mentioned above, Parameter
Server proposes the following design requirements:

Efficient communication: The asynchronous communication model
does not block computation (unless requested). It is optimized for
machine learning tasks to reduce network traffic and overhead.

Flexible consistency models: Consistency helps with reducing the
cost of synchronization. It also allows developers to choose between
algorithmic convergence and system performance.

Elasticity for adding resources: Allows for adding more capacity
without restarting the whole computation.

Efficient Fault tolerance: Given high rate of failures and large
amounts of data, allow for quick recovery of tasks in a second or so -
if the machine failures are not catastrophic.

Ease of use: Structure the API to support ML constructs such as
sparse vectors, matrices, or tensors.1[7]

When solving distributed data analysis problems, the issue of read-
ing and updating parameters shared between different worker nodes is
a must. The parameter server framework provides an efficient mecha-
nism for aggregating and synchronizing model parameters and statis-
tics between workers.

Two key challenges occur in constructing a high-performance pa-
rameter server system:

Communication. The paradigm of updating parameters as key value
stores is inefficient. Values are typically small (floats or integers), and
the overhead of sending each update as a key value operation is high.
As many learning algorithms represent parameters as structured math-
ematical objects, such as vectors, matrices, or tensors, we can improve
the mentioned idea. At each iteration, typically a part of the object is
updated. Workers usually send a segment of a vector, or an entire row
of the matrix. This provides an opportunity to automatically batch
both the communication of updates and their processing on the pa-
rameter server and allows the consistency tracking to be implemented
efficiently.

Fault tolerance. as noted earlier, is critical at scale, and for efficient
operation, it must not require a full restart of a long-running compu-
tation. Live replication of parameters between servers supports hot
failover. Failover and self-repair in turn support dynamic scaling by
treating machine removal or addition as failure or repair respectively.

The parameter server is designed to simplify developing distributed
machine learning. The shared parameters are presented as (key, value)
vectors to perform linear algebra operations. They are distributed
across a group of server nodes. Any node can both push out its lo-
cal parameters and pull parameters from remote nodes. By default,
workloads, or tasks, are executed by worker nodes; however, they can
also be assigned to server nodes via user defined functions. Tasks are
asynchronous and run in parallel [13].

Fig. 2. Architecture of a parameter server communicating with several
groups of workers[7]

Parameter Server consists of server groups to facilitate running of
multiple algorithms in the system. Parameter server nodes are grouped
into a server group and several worker groups as in Fig. 2 and 3. Each
server node in the server group is responsible for a partition of the pa-
rameter/data. Server nodes communicate with each other to replicate
and/or to migrate parameters for reliability and scaling. A server man-
ager is responsible for maintaining the stable view of the server groups.
It performs real time checks and assigns ownership of parameters to
each server node. Each worker group runs an application. A worker
typically stores locally a portion of the training data to compute local

1https://medium.com/coinmonks/parameter-server-for-distributed-
machine-learning-fd79d99f84c3.

SC@RUG 2021 proceedings

81

statistics such as gradients. Workers communicate only with the server
nodes (not among themselves), updating and retrieving the shared pa-
rameters. There is a scheduler node for each worker group. It assigns
tasks to workers and monitors their progress. If workers are added or
removed, it reschedules unfinished tasks. The parameter server sup-
ports independent parameter namespaces. Parameter namespaces can
be used for parallelizing work further among multiple worker groups
[13]. In addition, same parameter namespace can be shared among
multiple groups: a typical example being one group supporting the
real-time assumptions, while other worker groups can support the de-
velopment of the model and updating of shared parameters.

Fig. 3. Each worker only caches the working set of w rather than all
parameters[7]

3.2 Key-value parameters

Most common parameter server systems use key-value pairs for com-
municating the shared parameters. An example of this would be
feature-id and its weights. For LDA2, the pair is a combination of the
word ID and topic ID, and a count. The important insight is that values
are mostly some linear algebra primitives such as vectors or matrices
and it is useful to be able to optimize operations on these constructs.
Typical operations are dot product, matrix multiplication, L-2 norms
etc. So, keeping the key-value semantics and providing values as vec-
tors, matrices is useful for optimizing most common ML operations.

Weights pulled from the server nodes and gradients are pushed to
the server node. Supporting a range-based push and pull would op-
timize for the network bandwidth usage. Hence the system supports
w.push(R, destination), w.pull(R, destination) for pulling the data. In
both cases, values corresponding to keys in range R are pushed and
pulled from the destination node. Setting R to a single key, gives the
simple key-value read-write semantics. Since gradients g share the
same keys as that of w, w.push(R, g, destination) can be used for push-
ing local gradients to the destination (fig 3).

3.3 Sparse Logistic Regression

As a use case to parameter server, this section, provides a machine
learning algorithm suited in this architecture, Sparse Logistic Regres-
sion taken from [7]. Sparse logistic regression is one of the most pop-
ular algorithms for large scale risk minimization [2]. By using this
algorithm in parameter server architecture, network traffic is reduced
and by implementing the desired algorithm to this architecture, faster
result is gained.

2https://sebastianraschka.com/Articles/2014pythonlda.html

3.3.1 Problem definition and data

There are collected an ad click prediction dataset with 170 billion ex-
amples and 65 billion unique features. This dataset is 636 TB un-
compressed (141 TB compressed). The parameter server is run on
1000 machines, each with 16 physical cores, 192GB DRAM, and con-
nected by 10 Gb Ethernet. 800 machines act as workers, and 200 are
parameter servers [8].

In the example a distributed regression algorithm [8][9] is used. In
this approach only a block of parameters is updated in an iteration.
After that, the workers compute both gradients and the diagonal part
of the second derivative on this block. Then, the parameter servers
themselves must perform complex computation: the servers update
the model by solving a proximal operator based on the aggregated lo-
cal gradients. Fourth, there is used a bounded-delay model over it-
erations and use a “KKT” (Karush-Kuhn-Tucker)3 filter to suppress
transmission of parts of the generated gradient update that are small
enough that their effect is likely to be negligible. Both Systems A and
B consist of more than 10K lines of code. The parameter server only
requires 300 lines of code for the same functionality as System B. The
parameter server successfully moves most of the system complexity
from the algorithmic implementation into a reusable generalized com-
ponent

3.3.2 Results

Three systems are compared while using same objective value. A bet-
ter system achieves a lower objective in less time. System B outper-
forms system A because it uses a better algorithm.

Fig. 4. Convergence of sparse logistic regression[8].

Fig. 5. Time per worker spent on computation and waiting during sparse
logistic regression[9]

3Karush-Kuhn-Tucker conditions. https://www.cs.cmu.edu/ ggordon/10725-
F12/slides/16-kkt.pdf

A review of Distributed Machine Learning Algorithms – Bedir Chaushi

82

The parameter server outperforms System B while using the same
algorithm. It does so because of the efficacy of reducing the network
traffic and the relaxed consistency model. Workers can begin process-
ing the next block without waiting for the previous one to finish, hiding
the delay. Workers in System A are 32% idle, and in system B, they are
53% idle, while waiting for the barrier in each block. The parameter
server reduces this cost to under 2%. This is not entirely free: the pa-
rameter server uses more CPU than System B for two reasons. System
B optimizes its gradient calculations by careful data pre-processing.
Next, asynchronous updates with the parameter server require more
iterations to achieve the same objective value. Due to the significantly
reduced communication cost, the parameter server reduces in half the
total time. Also, there is significant growth in network reduction per
component. 50% traffic of traffic is saved when senders and receivers
to cache the keys. This is because both key (int64) and value (double)
are of the same size, and the key set is not changed during optimization
(see fig. 4 and 5). In addition, data compression is effective for com-
pressing the values for both servers (20x) and workers when applying
the KKT filter (6x).[7]

4 FEDERATED LEARNING

The need of user end data, especially the one derived from devices like
tablets and mobile phones, is inevitable [10]. Collecting such data at a
central location has become serious issue due to data protection rule.
For this reason, there is an increasing interest in methods to improve
the current state-of-art, and build a system that leaves the raw data on
the device and process it from the device without access to sensitive
data.

Fig. 6. Phone personalizes the model locally, based on your usage (A).
Many users’ updates are aggregated (B) to form a consensus change
(C) to the shared model, after which the procedure is repeated. From
google AI blog.

Federated Learning enables mobile phones to collaboratively learn
a shared prediction model while keeping all the training data on de-
vice, eviting the ability to do machine learning from the need to store
the data in the cloud. This goes beyond the use of local models that
make predictions on mobile devices by bringing model training to the
device as well. Federated Learning allows for smarter models, lower
latency, and less power consumption, all while ensuring privacy. And
this approach has another immediate benefit: in addition to providing
an update to the shared model, the improved model on your phone can
also be used immediately, powering experiences personalized by the
way you use your phone.4

4.1 Benefits and optimization
Federated learning is key for optimizing and giving a solution to sev-
eral problems:

Training on real-world data from mobile devices provides a distinct
advantage over training on proxy data that is generally available in the
data center.

This data is privacy sensitive or large in size (compared to the size
of the model), so it is preferable not to log it to the data center purely

4https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

for the purpose of model training (in service of the focused collection
principle).

For supervised tasks, labels on the data can be inferred naturally
from user interaction [10].

Federated learning has major privacy advantages compared to data
center training data. The information transmitted for federated learn-
ing, even the minimal update is necessary to improve a particular
model. The updates themselves can and should be temporary. They
will never contain more information than the raw training data. Fur-
ther, the source of the updates is not needed by the aggregation al-
gorithm, so updates can be transmitted without identifying meta-data
over a mix network. Federated optimization has several key proper-
ties that differentiate it from a typical distributed optimization problem
and must be considered as challenges to achieve through implement-
ing such an architecture:

Non-IID. The training data on a given client is typically based on
the usage of the mobile device by a particular user, hence any user’s
local dataset will not be representative of the population distribution.

Unbalanced Some users will make much heavier use of the service
or app than others, leading to varying amounts of local training data.

Massively distributed The number of clients participating in an op-
timization can much larger than the average number of examples per
client.

Limited communication Mobile devices are frequently offline or on
slow or expensive connections [10].

4.2 Federated Averaging algorithm (FedAvg)

The server aggregates the changes (i.e., weights) received from all the
devices. Using a new algorithm called the federated averaging algo-
rithm, the devices train the generic neural network model using the
gradient descent algorithm5, and the trained weights are sent back to
the server. The server then takes the average of all such updates to
return the final weights. The following pseudocode shows how the
federated averaging algorithm works.

A typical round of learning consists of the following sequence. A
random subset of members of the Federation (known as clients) is se-
lected to receive the global model synchronously from the server. Each
selected client computes an updated model using its local data. The
model updates are sent from the selected clients to the server. The
server aggregates these models (typically by averaging) to construct
an improved global model. Of course, the subset selection step was
necessitated by the context in which Google originally applied fed-

5https://towardsdatascience.com/gradient-descent-algorithm-and-its-
variants-10f652806a3

SC@RUG 2021 proceedings

83

erated learning: on data collected through millions of handsets in its
Android ecosystem.6.

4.2.1 Experimental results
In the article [10] is demonstrated an experiment on a large-scale next-
word prediction task to demonstrate the effectiveness of the approach
on a real-world problem. The training dataset consists of 10 million
public posts from a large social network, grouped on posts by author,
for a total of over 500,000 clients. This dataset is a realistic alterna-
tive for the type of text entry data that would be present on a user’s
mobile device. Limited are each client dataset to at most 5000 words,
and report accuracy (the fraction of the data where the highest pre-
dicted probability was on the correct next word, out of 10000 possibil-
ities) on a test set of 1e5 posts from different (non-training) authors.
These experiments required significant computational resources and.
All runs trained on 200 clients per round; FedAvg used B=8 and E=1.
Explored are variety of learning rates for FedAvg and the baseline Fed-
erative Stochastic gradient descent (FedSGD). FedSGD with n= 18.0
required 820 rounds to reach 10.5% accuracy, while FedAvg with n=
9.0 reached an accuracy of 10.5% in only 35 communication rounds
(23× fewer then FedSGD).

5 PARAMETER SERVER VS FEDERATED LEARNING

As it is shown so far, both parameter server architecture and feder-
ated learning have huge improvements by introducing a decentralized
approach to solving complex issues and building large distributed sys-
tems.

The parameter server approach distributes workload among several
nodes by synchronizing and controlling them via a master or server
node. It does not involve a highly complex architecture and is easy to
implement. Whilst this system has an advantage because it has a much
simpler setup, its biggest problem arises here. What if data comes from
end-users and thus privacy issues must be taken into consideration? As
a comparison to parameter server, federated learning comes in handy
to answer the aforementioned question.

Federated learning has such architecture where the worker nodes
stay at the end device and perform calculations, gain insights into the
data without exposing it to the master node, therefore it does not share
sensitive data. The server in this situation is responsible to give train-
ing models to the workers and workers only give insight from data to
the server without exposing the entire sensitive data. As it is explained,
the biggest disadvantage of federated learning is that it is a much more
complex system to be implemented in comparison with a parameter
server. It also involves several computations for resolving which end-
user to be taken into consideration. Another disadvantage is that this
model needs more communications with the server and this results in
network overload and bottleneck. This issue is not happening as often
in parameter server as in federated learning.

5.1 Gossip Learning
Another approach where there is minimal infrastructure costs, where
data privacy is in high performance and communication is minimal
with another node, would be ideal on solving problems related to state-
of-art of federated learning and parameter server. These problems are
tried to solve using Gossip Learning.

As discussed, performing data mining over data collected by edge
devices, most importantly, mobile phones, is of very high interest. A
possible solution to this challenge is federated learning. In addition to
federated learning, gossip learning has also been proposed to address
the same challenge. Gossip learning supports decentralized approach
where parameter server is not needed. Nodes exchange and aggregate
models directly. The biggest advantage of gossip learning, that favors
it against federated learning is that no infrastructure is needed, thus it is
significantly cheaper, robust, and both data storing computation giving
training model is performed on end device. A key question, however,
is how the two approaches compare in terms of performance.

6An Overview of Federated Learning.https://medium.datadriveninvestor.com/an-
overview-of-federated-learning-8a1a62b0600d

The results of several comparisons done outside the scope of this
paper, shows that gossip learning is in general comparable to the cen-
trally coordinated federated learning approach, and in many scenarios,
gossip learning outperforms federated learning [5].

6 COMPARATIVE STUDY: DISTRIBUTING GAN OVER FEGAN
So far in this paper, two distributed machine learning systems have
been discussed and how they solve current state-of-art problems of
centralized systems. In this section, a comparative study will be shown
and how federated learning solves current state-of-art problems of pa-
rameter server in particular system, generative adversarial networks.

Generative Adversarial Networks (GANs) have had a huge success
since they were introduced. GANs belong to the set of generative
models. It means that they can produce new content7. GANs enable
learning the statistical distribution of a target dataset and generating
new samples from that dataset. This feature can be used in a wide
range of applications such as generating pictures from text descrip-
tions, producing videos from still images, or increasing at will an im-
age resolution.

In simple terms, GANs consists of two main parts: a generator and
discriminator. To illustrate, I will take a simple example: in a system
that the aim is to generate sample images from a base image, discrim-
inator will produce new sample point from random selected points of
an image. After that, discriminator will opt to distinguish real values
from derived values. This will loop several times and, in each iter-
ation, sample points derived from generator will be close similar to
the original ones as shown in fig. 7. This process will continue until
discriminator will not differentiate between sample and derived points
and sample images will be produced according to.

Fig. 7. Taken from [12]

6.1 Distributing GANs
MD-GAN is state-of-art of applying distributed system over GANs.
MDGAN controls a single generator, at a central location, and dis-
tributes the discriminator across multiple devices. Such an architecture
follows the parameter server model, where the server is the generator
and the workers are discriminators.

Distributing the training significantly improves the system through-
put, but in the other hand, due to the fact that there is only one cen-
tralized discriminator, the architecture does not scale, which means
adding devices will not improve throughput.

As a solution to the current state-of-art, another architecture for dis-
tributed training is Federated Learning (FL), in which training happens
on the edge devices that own private data, assisted by a central server.
Combining GAN training with this architecture can generate impres-
sive applications on edge devices including text-to image translation.
This combination will be named as FeGan [3].

FeGAN reexamines the general Federated Learning (FL) paradigm
which has a central server holding global model and a set of comput-
ing. Fig. 8 describes the FeGAN architecture. The training model is

7https://towardsdatascience.com/understanding-generative-adversarial-
networks-gans-cd6e4651a29

A review of Distributed Machine Learning Algorithms – Bedir Chaushi

84

Fig. 8. FeGAN architecture taken from [3]

composed of two neural networks: the generator G and the discrim-
inator D. The server orchestrates the communication load by select-
ing which devices should contribute to updating the model at a given
round. Each device owns a GAN locally, composed of a local genera-
tor and a local discriminator. Data stored on each device remains local;
only the output of the local computation is sent to the server. Given
its local nature, data might be unbalanced and possibly not identically
nor independently distributed (non-iid) across devices. FeGAN and
MD-GAN are two distributive alternatives to GAN; in paper [3] they
are discussed intensely. FeGAN’s careful design allows for scaling
the training of GANs. While MD-GAN provides better throughput
at a small scale (up to 32 devices), FeGAN achieves improvement in
throughput with the number of devices (experimented with up to 176
devices) with even a lower bandwidth consumption. FeGAN systems
can avoid GAN specific issues that a MD like deployment can en-
counter. It utilizes the variety of information released by the devices
at the beginning of the learning, with regards to their local data.

7 CONCLUSION AND FUTURE WORK

In this paper we discussed for several advantages of distributed ma-
chine learning systems and algorithms. In a world that the importance
of data is inexcusable, scaling, improving, and gaining insights of data
is a must. Distributed ML is a key factor on better computation. Two
key systems discussed such that parameter server and federated learn-
ing. There is no absolute winner in context of comparison, but these
architectures come to ease in specific platforms and systems. Some
systems may need abstraction to data and not imposing it. Federating
learning is the best choice in this case. Other systems may need key
value storing and a distribution between workers and master nodes. In
this case parameter server in inevitable.

The contribution of this paper is to give the reader a better knowl-
edge on how distributed machine learning solves or improves current
state-of-art problems derived from centralized and distributed machine
learning approaches. As future work, I would propose to implement
another system, named “Lambda Architecture”. This system focuses
on scaling large incoming data and making computations, running ma-
chine learning algorithms without significant loss of time, by express-
ing three layers: speed layer, where streams of data are computed;
batch layer, where batch works are implemented to compute complex
computation over huge amount of data, and serving layer, where two
aforementioned layers are merged and a final result is given.

ACKNOWLEDGEMENTS

I would like to thank the reviewer, Mr. Majid Lotfian Delouee for their
valuable feedbacks.

REFERENCES

[1] M. Bojarski, D. D. Testa, D. Dworakowski, Bernhar, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang,
J. Zhao, , and K. Zieba. End to end learning for self-
driving cars. In CoRR abs/1604.07316 (2016). arXiv:1604.07316
http://arxiv.org/abs/1604.07316, Nov. 2016.

[2] K. Canini and Sibyl. A system for large scale supervised machine learn-
ing. In Technical Talk, 2012.

[3] R. Guerraoui, A. Guirguis, A.-M. Kermarrec, and E. L. Merrer. Fe-
gan: Scaling distributed gans. In Proceedings of Middleware 2020. ACM,
2020.

[4] A. Halevy, P. Norwig, and F. Pereira. The unreasonable effectiveness
of data. In Computer Graphics (Proceedings of ACM SIGGRAPH 87),
volume 13, pages 1–7, Oct. 1979.

[5] S. Hegedűs, G. Danner, and M. Jelasity. Gossip learning as a decen-
tralized alternative to federated learning. In Proceedings of Distributed
Applications and Interoperable Systems, pages 74–90, 2019.

[6] A. E. Khandani, A. J. Kim, and A. W. Lo. Consumer credit-risk mod-
els via machine-learning algorithms. In Journal of Banking Finance,
volume 34, pages 2767–2787, Nov. 2010.

[7] M. Li, Andersen, J. W. S. D. G. Park, A. J. Ahmed, A. Josifovski, V. Long,
J. Shekita, E. J., and S. B.-Y. Scaling distributed machine learning with
the parameter server. In OSDI, 2014.

[8] M. Li, D. G. Andersen, and A. J. Smola. Distributed delayed proxi-
mal gradient methods. In NIPS Workshop on Optimization for Machine
Learning, 2013.

[9] M. Li, D. G. Andersen, and A. J. Smola. Communication efficient dis-
tributed machine learning with the parameter server. In Neural Informa-
tion Processing Systems, 2014.

[10] H. B. McMahan, M. E., and R. D. H. S. Ar-cas. A communication-
efficient learning of deep networks from decentralized data. In Proceed-
ings of AISTATS, 2017.

[11] F. A. Narudin, A. F. andNor Badrul Anuar, and A. Gani. Evaluation of
machine learning classifiers for mobile malware detection learning. In
Soft Comput, pages 343–357, 206.

[12] J. Rocca. Understanding generative adversarial networks (gans). In
https://towardsdatascience.com/understanding-generative-adversarial-
networks-gans-cd6e4651a29, 2019.

[13] J. Verbraeken, M. Wolting, J. Katzy, and J.Klopenburgs. A survey on
distributed machine learning. 2020.

SC@RUG 2021 proceedings

85

Comparison of Workflow Management Tools for Distributed Data
Science Applications

Job Heersink and Sytse Oegema

Abstract—With the enormous increase of value and quantity of data, most non-distributed data analytics method will no longer be
able to satisfy the needs of the average data scientist. Most of these non-distributed data analytics methods do not scale and will
not be able to handle enormous amounts of data in a reasonable amount of time. Therefore, distributed methods for data science
applications increase in popularity. Many workflow management tools have been created for the purpose of providing a distributed
data science method which is easy to use. The choice between which workflow management tool to use can be quite hard and it is
not always apparent what use case fits what tool best. Our goal with this paper is to make this choice easier. In this paper, we will
evaluate Dagster, Apache Airflow and Luigi and determine their optimal use case in the field of data science.

Index Terms—data science pipeline, data analysis, big data, software containers, container orchestration

1 INTRODUCTION

It is no mystery that data and data analytics play an important role
in our society. The quantity of data produced is increasing by the
year and it does not seem to be dimming down any time soon. It was
recently predicted that in 2020, each individual human being would
generate around 1.7 megabytes of new information every second and
the total amount of the accumulated digital universe of data would
reach a stunning 44 zettabytes [1] .

This tendency can also be referred to as big data and it poses a
real challenge within the field of data science. The application of
machine learning on big data-sets can require an enormous amount of
resources, which most computers are not able to provide alone. That
is why there is a significant need for a distributed and scalable data
analysis workflow.

One of the main challenges is that this workflow should be able to
be distributed over multiple machines, possibly in different locations,
to be able to provide the resources necessary for the machine learning
algorithms. If necessary, more machines can be added without the
need of changing the core of the code.

Another challenge is effective transition between different environ-
ments. In some cases, it might be necessary to move the application
to another, possibly bigger, cluster to do its work on. Since machine
learning technologies can suffer from technical debt and quick
changes to its code and structure, it is very hard to predict how
the machine learning implementation will perform across multiple
machines. We will therefore need a consistent distributed machine
learning workflow.

It might sometimes be necessary to analyse and process large
amounts of data in real time. In some cases, it might even be disas-
trous if this continuous process is interrupted by a system fault. Take
for example the continuous analysis of stock market data: If the stock
prediction system is down, the company will not make any profit. That
is why the distributed Machine Learning workflow needs to be fault
tolerant as well.

• Job Heersink is from the Rijks University of Groningen, E-mail:
j.g.heersink@student.rug.nl.

• Sytse Oegema from the Rijks University of Groningen, E-mail:
s.oegema@student.rug.nl.

reviewed 17 March 2021; accepted 29 March 2021;
For information on obtaining reprints of this article, please send an
e-mail to: j.g.heersink@student.rug.nl or an
e-mail to: s.oegema@student.rug.nl .

A popular means of introducing scalability and consistency across
multiple machines in software engineering is currently the use of con-
tainers. Such a container can be seen as a software encapsulation of an
operating system process which allows a process to work with private
resources including memory and CPU [2]. Data science pipelines can
benefit from containers by splitting the pipeline in separate processing
steps. Each processing step can be implemented as a container and
be distributed over different machines thereby realizing scalability
and redundancy. Container orchestration platforms that have been
developed for this purpose can manage the different container of the
data science pipeline. [2].

However, data scientists should not have to deal with the extra
complexity of containers and container orchestration frameworks.
Therefore, workflow management tools have been created as an
alternative. These tools help data scientists to focus on the data
science by abstracting away from the complexity of distributed
computing[3]. They provide a platform to specify workflows that can
be executed in a distributed fashion over multiple machines. A data
science pipeline can be constructed on the platform of a workflow
management tool and the scaling and redundancy is handled by the
container orchestration framework.

In this paper, we compare three workflow management tools, cre-
ated specifically for data science applications. The workflow manage-
ment tools also use containers and container orchestration to achieve
the distributed execution of workflows. We evaluate the workflow
management tools on four criteria: complexity, clarity, implementa-
tion and scope. We compare these platforms with themselves and
one platform that was evaluated by Andrea De Lucia and Evi Xh-
elo[4]. The rest of this paper is structured as follows: First, in sec-
tion 2, we will discuss the related research to our work. Second, in
section 3, we will discuss some background information on the data-
science pipeline, containers, container orchestration platforms and the
3 workflow management tools we will be comparing. Third, in sec-
tion 4 and section 5, we will evaluate these tools on the 4 criteria and
compare them. Finally, in section 6, we will conclude our paper and
discuss possible future work.

2 RELATED WORK

A great number of studies focus on the general application of con-
tainer orchestration. The article by Asif Khan: Key Characteristics
of a Container Orchestration Platform to Enable a Modern Appli-
cation [2] presents a set of capabilities that a container orchestration
platform needs to satisfy in order to perform optimally. The article
on Container-based Cluster Orchestration Systems: A Taxonomy
and Future Directions by Maria Rodriguez et al. [5] presents similar
characteristics and elements of importance to container orchestration

86

frameworks. On top of that, Rodriguez et al. compare a set of con-
tainer orchestration frameworks based on the defined characteristics.
Other research of Emiliano Casalicchio: Container Orchestration:
A Survey [6] presents a survey of the state of the art in container
orchestration technologies, which among other things indicates
wide adaptation of container orchestration technologies not only in
enterprise applications but also in other areas like data analytics.

The scalability of data science pipelines is a common research
topic. The most common programming model for big data analyses
is MapReduce which was originally developed by Google[7]. In
the MapReduce model data is represented by key-value pairs. Map
functions can modify or map the data to a new key-value data format
and reduce functions can reduce the number of values per key thus
creating a smaller data set[8]. Popular distributed processing frame-
works such as Hadoop and Spark use the MapReduce programming
model for distributed data analysis. Multiple studies research the
possibilities of the MapReduce paradigm in relation to big data
processing with the help of these frameworks[9, 10, 11]. However, the
usage of containerization in data scinece pipelines is a less frequently
researched topic.

In their paper: Approaches for containerized scientific workflows
in cloud environments with applications in life science [12], Spjuth
et al. present 7 scientific workflow frameworks that use container or-
chestration framework Kubernetes. Only 3 of their 7 frameworks are
natively build on top of a container orchestration framework while the
others now support a container orchestration framework. De Lucia and
Xhelo provide a better comparison between 3 native container orches-
tration solutions in their Data Science Pipeline Containerization [4]
paper. They compare Kubeflow, Cloudflow, and OpenWhisk on the
criteria; complexity, clarity, implementation, and scope. OpenWhisk,
a serverless platfrom that executes function on occurence of events, is
not designed specifically for data science pipelines.

In this paper, we would like to extend their research to include 3 new
technologies that are specifically designed for data pipeline workflows
and compare it with the ones present in the paper by Andrea De Lucia
and Evi Xhelo.

3 BACKGROUND

Distributed data processing emerged over the last year due to the con-
tinuously growing demand for data processing and amount of data.
This increased usage of distributed data processing raised the neces-
sity of management and orchestration frameworks for data science
pipelines. In this section we will provide some background informa-
tion on data science pipelines, containers, and container orchestration
platforms.

Fig. 1. data-driven analysis steps

3.1 Data Science Pipeline

A data science pipeline simply presents the data processing steps in a
data analysis process. While the steps in a data analysis process vary
per process, all data analysis process follow a similar pipeline that is
graphically represented in figure 1. The steps in figure 1 can be read
as follows:

1. Data Acquisition - the data is either collected from one or multi-
ple sources, or continuously generating data.

2. Data Processing - the data quality is improved either by replacing
or deleting missing and invalid values.

3. Data Integration - the data is combined and modified to obtain a
data format that can be used in the analytical model.

4. Analytical Modeling - the data is processed by an analytical
model that produces results. Analytical models can have vari-
ous purposes such as filtering, predicting, or clustering.

5. Validation - the analytical result is validated based on model or
process specific rules.

6. Presentation - the analytical results are presented in human inter-
pretable format.

There are several problems to be tackled before obtaining valuable
data science pipeline. The first problem that needs to be tackled is
that data should be gathered for the analysis. Moreover, the right data
needs to be collected and the data format needs to fit requirements
of the specific pipeline. The most important requirement is that the
data format should fit the analytical model. Valuable results are only
obtained when an analytical model fits the situation. All in all, after
a valuable data science pipeline is constructed, designers do not need
to worry about compatibility issues when executing the pipeline in the
production environment and scalability issues for handling big data.

3.2 Container
A container is a package of software that contains source code to-
gether with the dependencies to execute that source code. Containers
do not replace virtual machines. Containers share the operating
system kernel with the host machine and those are often hosted
as a virtual machine[14]. Container images also are significantly
smaller then virtual machine images due to their sharing kernel
behavior[4]. Additionally, containers provide a private namespace
or computing environment in the host kernel, which is particularly
useful for handling software dependencies. Furthermore, containers
can specify computational resource limits for the software in terms
of CPU and memory usage. Multiple publicly open source available
containerization software exists. Some examples are Docker[15],
Linux Containers(LXC)[16], and containerd[17]. Docker is the most
popular container solution available today[18].

Containers are ideally suited for microservices or microservice ar-
chitectures, because of the small container image size. Microservice
architectures aim to distribute a piece of software over modules of mi-
crosverices, where a microservice is a ”cohesive, independent process
interacting via messages”[19]. The processing steps in a data science
pipeline can very well be constructed as separate microservices, be-
cause each processing step performs an independent operation and
is only connected to the other steps by the input and output of data.
Processing steps can be developed as independent microservices that
can be executed in their own container. A microservice data science
pipeline then consists of a directed input output pipeline of containers.

3.3 Container Orchestration
A simple microservice based software application can easily be
managed manually as long as the number of containers remains small.
However, manually orchestrating greater numbers of containers
becomes quite tedious quite fast. Container orchestration frameworks
offer a more sustainable solution, especially for software applications
that require scaling based on processing load. Container orchestration
frameworks offer numerous features to automate container manage-
ment and orchestration like; state management, container scheduling,
fault tolerance, security, networking, service discovery, continuous
deployment, and monitoring[2].

There a number of container orchestration frameworks available
today which can either be used on-premise or in the cloud. Kuber-
netes[20], Apache Mesos[21], and Docker Swarm[22] are examples
of open source container orchestration frameworks that can be run
on-premise. Cloud providers like Google, Amazon, and Microsoft
provide their own container orchestration frameworks. Even though,
Kubernetes has originally been developed by Google and is still
greatly influenced by Google, big cloud providers support Kubernetes
as well[23].

SC@RUG 2021 proceedings

87

Fig. 2. An example of the UI of apache Airflows[13]

Container orchestration frameworks facilitate a production environ-
ment for container based microservice architectures. They provide
simple functionality to horizontally scale applications over a large
number of resources. Combining this powerful scaling with cloud re-
source enables software developers to create software that can handle
big scale workloads. Data scientists can utilize these features to pro-
cess large amount of data or big data in parallel. Each individual pro-
cess step in a data science pipeline can be scaled horizontally if the
pipeline is designed according to the microservice principles. Mean-
ing that, a computationally more expensive process step can be scaled
more than simple process steps.

A microservice architecture in combination with container orches-
tration frameworks empower data scientist to use horizontal scaling for
each individual process step in the data science pipeline. In a data sci-
ence pipeline, the analytical modeling process step is computationally
more expensive than the data integration process step. More parallel
containers can be used for the analytical modeling, for example 4 con-
tainers, than for the data integration where for example 2 containers
can process the same amount of data. Figure 3, shows an example of
how each process step in the pipeline can individually scale.

Fig. 3. Data science pipeline example that scales horizontally per pro-
cessing step

3.4 Workflow Management Tools
workflow management tools are responsible for managing and main-
taining fault-tolerant pipelines in a distributed environment. They can
be utilized with container orchestration platforms and are able to run
the pipeline on the actual environment of the orchestration platforms.

Here, we present some of the popular workflow management tools
that can be useful for data science applications. We look at Apache
Airflow, Dagster and Luigi, and briefly describe their architecture and
implementation. We use similar requirements as Andrea De Lucia
and Evi Xhelo used in their paper Data Science Pipeline Container-
ization[4]. However, we extend their 3 requirements with a fourth
requirement. That gives us the following platform selection criteria:

1. open source software
2. compatibility with containers
3. compatibility with Kubernetes

4. specifically data science pipeline oriented

We add this final criteria to limit the scope of our research. The aim
of this analysis is to compare frameworks that abstract away from the
bare level container orchestration by providing data science pipeline
specific tools. Andrea De Lucia and Evi Xhelo analyse 3 frameworks
in their paper of which only Kubeflow[24] satisfies our 4 criteria. We
will take this into account in our comparison of frameworks as well in
section 5.

3.4.1 Apache Airflow
Apache Airflow[25] is a platform which allows for the manufacturing,
scheduling and monitoring of workflows programmatically using a
combination of their own user interface and Python[26]. Here, a
workflow is a sequence of processing steps that processes a set of
data. Scheduling in Apache Airflow is the planning, controlling and
optimizing of the processing steps. Airflow allows the user to create
a Directed Acyclic Graph (DAG), a directed graph with no directed
cycles, representing the workflow with the help of Python scripts.
This graph will show each task’s relationships and dependencies.
Additionally, graphs provide the linking of concurrent processing
steps of the particular data science pipeline. An example of the di-
rected acyclic graphs created by Apache Airflow can be seen in figure
2. Each node represents a specific processing step and each edge
represents a dependency. For instance, before create_entry_gcs
can be executed, create_entry_group needs to have finished
first. Tasks without dependencies to one-another can execute in
parallel or distributed over multiple machines.

Fig. 4. Basic Airflow architecture

The basic architecture of Airflow, which can be seen in figure 4,
consists of the following components: First, we have the DAGs, which
contain the Python code and represents the data pipeline to be run by

omparison of Workflow Management Tools for Distributed Data Science . . . – Job Heersink and Sytse Oegema

88

Airflow. These files are stored in the location specified by the con-
fig file Airflow.cfg. The user interface facilitates the creation
and execution of the DAGs and connects to the web service to com-
municate with the other components of the system. Then the sched-
uler monitors the DAGs and triggers the tasks whose dependencies
have been met. It continuously checks the metadata database, which
contains the status of all tasks, to see which task can be executed
next. Finally, the executors are responsible for executing the different
tasks. They interact with the scheduler to retrieve information on the
resources that are needed to run the task. There are many available
sorts of executors. Some may run locally, like the Sequential Executor
and the Local Executor, but some can also be run distributed, like the
Kubernetes Executor.

3.4.2 Dagster
Dagster[27] is a data orchestrator designed for machine learning,
analytics and ”Extract, Transform, Load”(ETL) [28]. Dagster is quite
similar to Airflow, it also uses a Directed Acyclic Graph to represent
the pipeline of an application and it uses Python to define the func-
tionality of the pipeline. Dagster’s terms for a workflow is a pipeline
and their processing steps which contain the actual functionality with
defined input and output are called solids. An important quality of
Dagster that makes it different from other workflow systems is how
it defines the dependencies between solids. Namely, dependencies
are defined as (”solid A requires a particular output from solid B”)
and not just (”solid A runs after solid B”). An example of such a
dependency can be seen in figure 5. This allows for the dependency
on data rather than the termination of other solids.

Fig. 5. Dagster pipeline example[27]

Dagsters architecture is relatively straightforward. A solid runs in
isolation and continuously streams data-aware events to the Dagster
infrastructure, which contains the core of Dagster, the database and
the event log. This instance in turn communicates with the Dagster
assets manager and Dagster’s live monitoring to give the user insight
into how the execution is going. An sketch of this architecture can be
seen in figure 6.

Fig. 6. Dagster architecture[29]

The system itself supports a large variety of deployments. ranging
from local, Celery and Docker to large scale clusters like Kubernetes.
It also allows for the deployment of the pipeline on Airflow by com-
piling the pipeline to a format that can be understood by a third-party
scheduling system.

3.4.3 Luigi
Luigi [30] is a Python package that allows for the building of complex
pipelines of batch jobs[31]. It handles dependency resolution, visual-
ization, workflow management, handling failures and command line
integration. It works much the same way as Apache Airflow and Dag-
ster, and also utilizes a dependency graph to know what task to execute
next. The main difference between Luigi and other systems is the size
of Luigi itself. It is quite small and offers just a bit more than the ba-
sics to create a pipeline for data science applications. It does not have
a fancy UI, it is just a web page with a simple node graph that shows
the execution status.

Fig. 7. Luigi architecture

The main architecture of Luigi consists of Tasks and Targets. A
target is usually a file outputted by a task and a task is the executed
Python code that consumes targets generated by other tasks. So, it
is as simple as a task that generates a target, and when that target
is available, another task start working with it. In figure 7, you
can see an example of the workings of Luigi. Here, the targets can
be anything, ranging from a .csv file, and SQL table or a file on a
distributed file system.

Luigi does have the shortcoming of not being able to be applied
on near real-time pipelines or continuously running processes, since
the focus is on batch processing. It is also not as scalable as other
alternatives. Although it can be used with Kubernetes, the creators did
mention that Luigi is not meant to be scaled beyond more than tens of
thousands of jobs [30].

4 ANALYSIS

In this section, we evaluate the different workflow management tools.
We use the same evaluation criteria as presented by Andrea De Lu-
cia and Evi Xhelo in their paper Data Science Pipeline Containeriza-
tion[4] to be able to compare our evaluated systems with theirs. They
evaluated the systems using the following criteria:

• Complexity: Represents to what extend the system is easy to use
from the start and practical in the field of data science.

– key factors: Documentation, community and learning
curve

• Clarity: Represents to what extend the application created with
the platform is easy to understand, debug and reproduce.

– key factors: UI and architecture

• Implementation: Represents to what extend development is
made easier and how powerfull the tool can be.

– key factors: type of programming languages. implemented
technologies and scalability

• Scope: Represents to what extend the system supports different
frameworks, programming languages and operating systems.

– key factors: available plugins and support for external
technologies.

We will summarize the evaluation of each workflow management
tool in a table by assigning a value to each criteria. These values can
be ’- -’, ’-’, ’+’ and ’++’, meaning terrible, poor, good and great re-
spectively.

SC@RUG 2021 proceedings

89

4.1 Apache Airflow
Here, we evaluate the Apache Airflow platform with respect to data
science applications. We evaluate this system on complexity, clarity,
implementation and scope.

• Complexity: Although Airflow is a very powerful tool, it has
a very steep learning curve. In addition to that, it seems that
the documentation is a bit lacking. For example, there is hardly
any information on how to setup your Kubernetes environment to
work with Airflow. However, the documentation of the schedul-
ing of DAG runs for instance is very clear[32]. The documen-
tation emphasizes that scheduled jobs are executed for the first
time only after the scheduled interval has elapsed[13].

Also, Airflow does have a very active community. If you are
experiencing a specific problem, chances are that someone has
posted a solution online that can help you out.

• Clarity: Although the documentation is not as extensive as one
could have hoped, the UI is rather simple and understandable. It
gives a good overview of the underlying pipeline, which makes
debugging easier.

• Implementation: Airflow uses Python to define workflows[26].
This is lowers the learning curve seeing that Python is a regularly
used language by data scientists.

• Scope: Airflow has a wide variety of execution modes that make
use of other technologies like Celery, Kubernetes and Mesos. It
also supports a number of plugins, which adds functionality to
the UI, and operators, which introduces a wide range of connec-
tors to external systems like databases, execution engines, and
cloud providers.

4.2 Dagster
Here, we evaluate the Dagster platform with respect to data science
applications. We evaluate this system on complexity, clarity, imple-
mentation and scope.

• Complexity: Dagster is a very powerful tool, but can be quite
complex to work with. The software is quite new, the documen-
tation[27] is not detailed and it is also not as popular as some
other alternatives. This makes it more difficult to find solutions
to problems you might encounter while working with this sys-
tem.

• Clarity: Dagster does come with a UI[29] to give an overview
of the execution of the program, however due to the powerful
nature of Dagster the UI is not as simple to work with as other
alternatives.

• Implementation: The fact that Dagster uses Python to define your
workflow is very beneficial to data scientist, because this lan-
guage is very popular in that field. In addition to that, Dagster
creates dependencies between processing steps based on neces-
sary data instead of process termination. Processing steps start
processing data as soon as the first data arrives from the previous
processing step.

• Scope: Dagster provides support for a large number of exter-
nal systems. The main ones are of course Celery, Docker and
Kubernetes, but Dagster also provides support for working with
Airlfow, Amazon Web Services (AWS) and Google Computing
Services.

4.3 Luigi
Here, we will evaluate the Luigi data orchestration library with respect
to data science applications. We will evaluate this system on complex-
ity, clarity, implementation and scope.

• Complexity: Luigi is simple and relatively easy to use. The doc-
umentation[30], although not very extensive, should tell you ev-
erything you need to know. Because Luigi is not used as much
as alternatives, the community is not as active as other systems.
This makes it hard to find solutions to problems you might en-
counter while working with this library.

• Clarity: Luigi does come with a UI, but it is nowhere near as
sophisticated as others. As depicted in the documentation[30],
the dependency graph itself is just a plain webpage with a colored
nodes and the visualiser page can be a bit of a hassle to work with
as well. Luigi can however, because of its simplicity, provide a
decent CLI tool to work with.

• Implementation: Similar to Airflow, Luigi uses Python to define
workflows. Thus, lowering the learning curve for data scien-
tists that have used Python before. Although Luigi can be used
in combination with Kubernetes, one of its main drawbacks is
the scalability of Luigi. Namely: Luigi cannot be used in a dis-
tributed manner. Luigi works well with small batch jobs, but
when the quantity of tasks reach a certain point, Luigi will be-
gin to struggle. As mentioned in the documentation[30]: ”While
you can probably schedule a few thousand jobs, it’s not meant to
scale beyond tens of thousands”.

• Scope: Luigi provides support for an average number of external
systems. The main technologies in the field of distributed data-
science, like Python, Docker and Kubernetes, are supported and
Luigi seems to provide some libraries for Spark and Hadoop as
well[30].

5 COMPARISON

The frameworks discussed in this paper: Airflow, Dagster, and Luigi
do not provide an exhaustive list of available frameworks that satisfy
our research criteria. Nevertheless, we find it important to present a
clear and structured comparison of these frameworks. We select the
best framework for each of the evaluation criteria:

• Complexity: Luigi offers a very minimal and straight to the point
user interface. This makes Luigi simpler and easier to use than
the other frameworks.

• Clarity: Dagster provides a very powerful user interface. It pro-
vides detailed overviews of the pipeline execution. On top of
that, Dagster provides numerous example setups in their docu-
mentation.

• Implementation: Dagster combines code with drag and drop
functionality in their user interface to create a data science
pipeline. Their powerful user interface shows detailed overviews
of the pipeline execution and clearly indicates dependencies be-
tween pipeline execution steps.

• Scope: Airflow is the most feature rich framework in this paper.
It supports a lot of different technologies and systems and its
pipeline can even be converted to other orchestration platforms.
In addition to that, in Airflow more complex structures can be
created due to the direct interaction with Kubernetes.

Luigi is the simplest of the 3 frameworks analysed in this paper,
while Airflow and Dagster offer more complex options. Because
Luigi is relatively simple, it is ideal for data scientists starting to look
into containerization of their data pipeline or people that are new in
this area. Luigi should however not be used in large applications,
since Luigi provides very limited scalabe capabilities. In any case,
Airflow or Dagster are more suitable for more experienced data
scientists and more complex data science pipelines. People that want
to consider all the operating settings of their pipeline might benefit
from Airflow, where people that can work with generic settings might
benefit from Dagster.

omparison of Workflow Management Tools for Distributed Data Science . . . – Job Heersink and Sytse Oegema

90

Since, the same evaluation criteria were used in this paper as in the
paper of Andrea De Lucia and Evi Xhelo [4], we also compare our
results with theirs. However, we cannot compare the results directly
because we introduced a fourth criteria on the frameworks. In this
paper, only frameworks that are specifically data science oriented are
considered. Only one out of the three frameworks evaluated by De Lu-
cia and Xhelo, Kubeflow, satisfies this criteria. Kubeflow similarly to
Airflow directly orchestrates the data science pipeline on Kubernetes
and abstracts away from the containerization details. Naturally, the ar-
chitecture and impelementation of Kubeflow differs from Airflow, but
in terms of functionality they seem comparable. Therefore, we tied the
best score of Airflow with Kubeflow as displayed in table 1.

Complexity Clarity Implementation Scope
Airflow - ++ + ++
Dagster - - + ++ +
Luigi ++ - - - +

Kubeflow - + ++ -

Table 1. Comparison of the platforms

6 CONCLUSION

In conclusion, we have shown and evaluated 3 frameworks on their
complexity, clarity, implementation and scope. Although there is no
definitive winner, we have pointed out some of the aspects of each
platform that would be very beneficial in some use-cases. We have
shown that, Airflow or Dagster are more suitable for large and complex
applications where more experienced data scientists are needed. In
addition to that, we have shown that Luigi is not designed for large
scale applications, but because of its simplicity, is a good candidate
for relatively inexperienced data scientists. We also shortly discussed
kubeflow, one of the platforms evaluated by Andrea De Lucia and Evi
Xhelo[4], and included that in the summary of the evaluation.

6.1 Future Work
Future work into containerization frameworks for data science
pipelines can look into multiple directions. More containerization
framework specifically oriented towards data science pipelines can be
evaluated based on similar criteria as used in this paper. Also, a clearer
distinction could be made between frameworks that directly use an
container orchestration framework for their pipeline, and frameworks
that export their pipeline to another pipeline framework. Finally, fu-
ture research could executing the same pipeline on different frame-
works to evaluate the performance of the workflow management tools.

ACKNOWLEDGEMENTS

The authors wish to thank Mostafa Hadadian for reviewing this paper.

REFERENCES

[1] Femi Osinubi. Data the new Smart. PricewaterhouseCoopers
Limited. 2018.

[2] A. Khan. “Key Characteristics of a Container Orchestration
Platform to Enable a Modern Application”. In: IEEE Cloud
Computing 4.5 (2017), pp. 42–48.

[3] Rafael Ferreira da Silva et al. “A characterization of workflow
management systems for extreme-scale applications”. In: Fu-
ture Generation Computer Systems 75 (2017), pp. 228–238.

[4] Andrea De Lucia and Evi Xhelo. “Data Science Pipeline Con-
tainerization”. In: p. 39.

[5] Maria A. Rodriguez and Rajkumar Buyya. Container-based
Cluster Orchestration Systems: A Taxonomy and Future Direc-
tions. 2018.

[6] Emiliano Casalicchio. “Container Orchestration: A Survey”.
In: Systems Modeling: Methodologies and Tools. Ed. by An-
tonio Puliafito and Kishor S. Trivedi. Cham: Springer Interna-
tional Publishing, 2019, pp. 221–235. ISBN: 978-3-319-92378-
9.

[7] Kyong-Ha Lee et al. “Parallel data processing with MapRe-
duce: a survey”. In: AcM sIGMoD Record 40.4 (2012), pp. 11–
20.

[8] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified
data processing on large clusters”. In: Communications of the
ACM 51.1 (2008), pp. 107–113.

[9] Jyoti Nandimath et al. “Big data analysis using Apache
Hadoop”. In: 2013 IEEE 14th International Conference on In-
formation Reuse & Integration (IRI). IEEE. 2013, pp. 700–703.

[10] Harshawardhan S Bhosale and Devendra P Gadekar. “A review
paper on big data and hadoop”. In: International Journal of Sci-
entific and Research Publications 4.10 (2014), pp. 1–7.

[11] Matei Zaharia et al. “Fast and interactive analytics over Hadoop
data with Spark”. In: Usenix Login 37.4 (2012), pp. 45–51.

[12] Ola Spjuth et al. “Approaches for containerized scientific work-
flows in cloud environments with applications in life science”.
In: (2020).

[13] apache. Apache airflow newcomer docs. URL: https : / /
airflow.apache.org/blog/apache- airflow-
for-newcomers/ (visited on 02/18/2021).

[14] Carl Boettiger. “An introduction to Docker for reproducible
research”. In: ACM SIGOPS Operating Systems Review 49.1
(2015), pp. 71–79.

[15] Adrian Mouat. “Using Docker: Developing and Deploying
Software with Containers”. In: 2015.

[16] Shashank Mohan Jain. Linux Containers and Virtualization: A
Kernel Perspective. Apress, October 2020.

[17] H. C. Lee G. N. Schenker H. Saito and K. C. Hsu. Getting
Started with Containerization. Packt Publishing, March 2019.

[18] Claus Pahl. “Containerization and the paas cloud”. In: IEEE
Cloud Computing 2.3 (2015), pp. 24–31.

[19] Nicola Dragoni et al. “Microservices: yesterday, today, and to-
morrow”. In: Present and ulterior software engineering (2017),
pp. 195–216.

[20] Joe Beda Brendan Burns and Kelsey Hightower. Kubernetes:
Up and Running: Dive Into the Future of Infrastructure.
O’reilly, September 2017.

[21] Dharmesh Kakadia. Apache Mesos Essentials. Packt Publish-
ing, June 2015.

[22] Fabrizio Soppelsa and Chanwit Kaewkasi. Native Docker Clus-
tering with Swarm. Packt Publishing, December 2016.

[23] David Bernstein. “Containers and cloud: From lxc to docker to
kubernetes”. In: IEEE Cloud Computing 1.3 (2014), pp. 81–84.

[24] 2018-2021 The Kubeflow Authors. Kubeflow. URL: https:
//www.kubeflow.org/ (visited on 02/20/2021).

[25] apache. Apache airflow. URL: https : / / airflow .
apache.org/ (visited on 02/18/2021).

[26] Bas P. Harenslak and Julian Rutger de Ruiter. Data Pipelines
with Apache Airflow. Manning publications, 2021.

[27] dagster-io. dagster. URL: https://dagster.io/ (visited
on 02/19/2021).

[28] Software Engineering Daily. Dagster with Nick Schrock [tran-
script]. 2019.

[29] Nick Schrock. Dagster: The Data Orchestrator. URL: https:
//medium.com/dagster-io/dagster-the-data-
orchestrator-5fe5cadb0dfb (visited on 02/19/2021).

[30] The Luigi Authors Revision. Luigi. URL: https://luigi.
readthedocs.io/en/stable/ (visited on 02/19/2021).

[31] Anuj Kumar. Architecting Data-Intensive Applications. Packt
Publishing, July 2018.

[32] Apache Airflow. Scheduler. URL: https : / / airflow .
apache . org / docs / apache - airflow / stable /
scheduler.html.

SC@RUG 2021 proceedings

91

Visual Object Detection

Pooja Gowda S4410963, Ajay Krishnan S4618165

Abstract — Visual object detection is a class of computer vision and image recognition. The urge to identify an object accurately

with less computational time offers several methods. Hence, a class of neural networks that uses a region-based convolution neural

network (R-CNN), Fast R-CNN, Faster R-CNN, and Single Shot Multibox Detector (SSD) are proposed. Every new proposal is an

upgraded version from the existing method that provides its challenges and optimized solutions. Further on, You Only Look Once

(YOLO) is proposed for accurate real-time detection and followed by the upgraded versions of YOLO to the state-of-art object

detectors like YOLOv4 and PP-YOLO. This paper intends to discuss every method proposed in detail, and throwing some light on

future enhancements.

Index Terms — Paddle Paddle-YOLO.

1 INTRODUCTION

The objective of this research divides into two branches. The first is
to understand the existing and proposed methods approaches. Another
being to know the domain that requires attention in each system and
the future enhancements required. The first improvised version of the
convolutional neural network is R-CNN [1]. The CNN features
combine with region proposals to boost the stagnant performance from
several years. This method requires training a limited amount of
labelled data and localizing objects with a deep neural network. To
achieve this, it works within a paradigm “recognition using regions"
introduced by Gu et al. in [12]. The model here uses unsupervised pre-
training due to the deficit amount of labelled data. This method
proposes to show an efficient paradigm that learns higher capacity
CNNs when the data is less. This method successfully manages to
increase mean average precision (mAP) to 58.5% from 30.5% on
PASCAL VOC 2007 [7]. The mAP score is the mean average
precision values of all the classes and Intersection-over-Union (IoU)
thresholds. Later, an improvised approach is proposed with the name
Fast R-CNN [2]. As the name suggests, the intended method provides
faster and better object detection. How is this achieved?

Fast R-CNN uses a single-stage algorithm to train. The
classification of object proposals and refining of spatial locations
occur at one step.

This model uses a combination of R-CNN and Spatial Pooling
Pyramid network (SPPnet) [13]. Hence, helping in performing the
detection in one single stage. This method achieves mAP 65.7% on
VOC 2010 and 2012, mAP 66.9% on VOC 2007 [7]. Surprisingly, the
Faster R-CNN [4] accomplishes to get mAP 73.2% on VOC 2007 and
70.4% on VOC 2012 [14]. Where did the previous method lack?

In Fast R-CNN, the congestion point was in a network that
generates regional proposals. The time taken in this stage was similar
to the classifying network. To work on this area Region Proposal
Network (RPN) is used. In this approach, an image loads as input and
generates a collection of rectangular object proposals as an output with
an objectness score.

The mentioned methods have rapid improvements in terms of
accuracy and speed. It is highly computationally exhaustive while
working on embedded systems and high-end hardware. SSD does not
continuously re-sample features for bounding box predictions. This
method gains mAP 74.3% from 73.2% of Faster R-CNN on VOC
2007 [7]. The removal of the stage where the bounding box proposals
and the following features are re-sampled creates a significant
improvement.

All methods discussed above process an image regressively to
detect the objects. In the case of YOLO [5], the system needs to look
at the image just once and generates the bounding boxes necessary for
object detection in real-time. The high confidence score of a bounding
box denotes the presence of an object defined within. Even YOLO
comes with few limitations and the primary one being is, the method
can detect only a single object inside one grid cell. YOLOv2 [6] and
YOLOv3 [9] are proposed to improve the accuracy and speed of the
existing method. In the present stage, YOLOv4 [10] and PP-YOLO
[11] are considered state-of-the-art object detection methods.
YOLOv4 is provided with supplementary assistance by the Darknet.
This method obtains 43.5 % of AP on the COCO dataset [10] with a
speed of 65 FPS (frames per second) on Tesla V100(GPU). Lastly,
PP-YOLO is proposed recently with a tremendous improvement in
mAP of 45.2% from 43.5% of YOLOv4 on the COCO data set [11].
This is the quickest and most accurate method in the present.

The results exceed all the existing methods accuracy and speed.
All these methods worked in different features while improving one
constituent of a model at one proposal. Each improvised model
worked on the previous method drawbacks and created an efficiently
performing state-of-the-art.

2 VISUAL OBJECT DETECTION METHODS

Visual object detection is a methodology introduced to identify the

objects within the image that can be stored or streamed in real-time.

This process uses a class of neural networks called Convolutional

Neural Network (CNN) to detect the objects. In “Return of the Devil

in the Details: Delving Deep into Convolutional Nets” [8] by K.

Chatfield et al. The three strategies used to understand the flow of the

detection are discussed in detail. It concludes with a remark that the

fine-tuning using deep representation and linear SVM of the input will

improve the performance further. Hence, improvised versions of

object detection methods were introduced.

• Ajay Krishnan is a student at Rijksuniversiteit Groningen,
• E-Mail: a.krishnan.2@student.rug.nl
• Pooja Gowda is a student at Rijksuniversiteit Groningen,
• E-Mail: p.gowda@student.rug.nl

92

2.1 R-CNN

Detecting an object method that was in use, the Convolutional Neural

Network (CNN) failed to improve its overall performance in the past

few years. Better performing models proposed included ensemble

systems with multiple low-level features of an image having high-

level context. Several methods proposals came to light to increase

existing mean average precision. One of them was R-CNN (Regional

Convolutional Neural Networks), a region with CNN features [1]. The

recognition happens in several stages downstream. Hence, this

suggests that there is a presence of hierarchical processes to compute

features for classifying the objects. CNN was in high requirement in

the 1990s, then the usage gradually decreased. Krizhevsky et al.

reintroduced CNNs in 2012, and this time with improved accuracy on

ImageNET Large Scale Visual Recognition Challenge (ILSVRC)

[15].

 To improve the performance, localizing the objects and training the

model with higher capacity was required. A sliding window detector

as an alternative has been in the presence for less than two decades or

so. This method is constrained to objects such as faces, pedestrians.

To sustain high spatial resolution, CNN has two pooling and

convolutional layers. But here the CNN localizes the objects by

operating within the paradigm instead. While testing, this method

produces approx. 2000 category-independent region proposals for

each input image, fetches a fixed-length feature vector produced by

the proposal, and finally classifies every region proposal using a CNN

using a linear Support Vector Machine (SVMs). The lacking of

labelled data caused a challenging situation. The proposed solution is

to use unsupervised pre-training and accompanied by supervised fine-

tuning. The following sections consist of this information in detail.

Figure 1: Warped training samples present in bounding box [1].

As per Figure 1, this whole process consists of three components. The

first one is about the generation of category-independent region

proposals. Then, a feature vector of a constant length is extracted per

region. Lastly, this is a set of class-specific linear SVMs.

2.1.1 Designing the Components:

1) Region Proposals: The selective search method helped to generate

region proposals. Hence, enabling a measured comparison with the

previous detection results.

2) Feature Extraction: From every region proposal, around a 4096-

dimensional feature vector is extracted. Further, The RGB and a mean

subtracted image of dimension 227 x 227 is propagated forwardly

through five convolutional layers and two consecutive layers. Initially,

the image data in that region gets converted into a form that fits with

the CNN having a pixel size of 227 x 227. Further, All the pixels are

closely warped within a boundary box irrespective of their size and

aspect ratio of the candidate region.

2.1.2 Detection during the Testing:

While testing the method, the selective search runs over the input

image by extracting approximately 2000 region proposals. Each

proposal warped and forward propagate it using CNN, resulting in

reading the features from selective layers. Score each class concerning

each extracted feature by SVM. Lastly, greedy non-maximum

suppression is applied. Here, a selected region is removed when

Intersection-over-Union (IoU) overlaps with an area consisting of a

higher score with respect to the learned threshold.

2.1.3 Training:

In supervised pre-training, CNN is separately pre-trained on an extra

data set (ILSVRC 2012) [16,17] with image-level annotations or

bounding box labels.

 In domain-specific fine-tuning, Stochastic gradient descent (SGD)

is applied to train the CNN parameters using just the warped region

proposals from VOC. All the region proposals are considered >= 0.5

IoU [16,17] overlap with a ground-truth box as positives for a selected

box class keeping the rest are negative.

2.1.4 Object category classifiers:

If an image region consisting of an object is a positive example. While

a background region that has no object at all is considered as a

negative example. When the region of an image with objects partially

present within the bounding box, it is difficult to label such images.

The challenge faced here is resolved using an IoU overlap threshold,

values under this threshold are set to negative.

2.2 FAST R-CNN

Fast Region-based Convolutional Network (Fast R-CNN) is a

proposed object detection method [2]. This method is an upgraded

form of R-CNN intending to have better accuracy and speed. The

challenges faced are always at two stages of object detection: 1) A

large number of proposals is processed 2) These candidates give

approximate localization this should be refined further on. In this

method, the refined spatial locations are classified along with object

proposals in a single-stage algorithm.

 This method results in training a deep detection network faster than

SPPnet by obtaining high accuracy when compared on PASCAL VOC

2012 resulting in a 66% mAP value [2]. R-CNN and SPPnet both have

their disadvantages e.g. training in R-CNN is multistage, expensive in

terms of space and time, Object detection takes a longer time than

expected. In SPPnet, the fine-tuning algorithm fails to update the

convolutional coming before the spatial pyramid pooling.

 In Fast R-CNN, the network takes a complete image as an input and

a set of object proposals. Further, A Region of Interest pooling (RoI)

layer extracts a constant length feature vector of a feature map per

object proposal. Then, the feature is connected with a series of fully

connected (fc) layers, this gets divided into two more branches, one

estimates softmax probability with respect to K objects and

background classes and the other produces four numerical real-values

for every K number of object classes [2].

 Fast R-CNN architecture consists of four sections as following: 1)

ROI pooling layer 2) Initialization from pre-trained network 3) Fine-

tuning for detection 4) Scale invariance.

 As per Figure 2, every section runs sequentially. Firstly, in the ROI

pooling layer, the features from a valid region are converted to a tiny

feature map with a set spatial range of H x W (e.g., 7 x7), H and W are

layer hyper-parameters which is free of any specific RoI. Then with

three pre-trained ImageNet models, this method is executed. Here

each model consists of five max-pooling layers, while around five to

13 convolutional layers.

 While fine-tuning, this method uses stochastic gradient descent

(SGD), where the batches are hierarchical in nature, it then uses a

streamlined training process. In the first stage of fine-tuning, softmax

SC@RUG 2021 proceedings

93

and bounding box regressors are optimized rather than training a

softmax classifier.

Figure 2: Fast R-CNN Architecture [2], .

 Finally, in scale invariance object detection, two ways are traversed:

1) Brute force learning and 2) Using image pyramids. The first

approach processes each image at a pre-defined pixel size during

training and testing. In the second one, the image pyramid is utilized

to nearly scale-normalize every object proposal received. Once the

network is fine-tuned, detection takes place. Here, the network takes

an image as input and a list of object proposals R to calculate the score.

R is considered around 45k while testing. When the image pyramid is

used, each RoI is closest to 224 sq pixels in area. The results obtained

are compared on VOC 2007, 2010, and 2012. On all of them, Fast

RCNN obtains high results 65.7% on VOC 2010 and 2012, while on

VOC 2007 mAP increases to 68.1% [2].

2.3 FASTER R-CNN

As discussed above, recent advances were made to improve the overall

object detection accuracy. Due to the Fast R-CNN method, the

computational expenses drastically decreased, but the time consumed

while generating region proposals was higher. Hence, the region

proposals become the computational congestion in the object

detection systems.

Figure 3: Region Proposal Network (RPN) [3].

 The Faster R-CNN proposes to change the algorithm by computing

the proposals with a deep net [3]. This approach results in a solution

to the above bottleneck situation. Here, Region Proposal Networks

(RPNs) are introduced to assign convolutional layers among object

detection networks.

 Hence, it reduces the expense in terms of time and space for

computing proposals. The Region-based detectors use the

convolutional feature maps to increase the computational speed. The

RPNs proposed here is a fully-convolutional network and be trained

end-to-end, especially the network that detects the region proposals.

A Region Proposal Network fetches an image as input and generates

a set of rectangular object proposals with their corresponding object

score.

 The minimal size of the network slides over the convolutional

feature map output generated by the previously distributed

convolutional layer. Further, a lower-dimensional vector is outlined

per sliding window (256-d for ZF and 512-d for VGG) [3]. The vector

resulted is fed into the branched fully-connected layers: a box-

classification layer and a box regression layer.

 In Figure 3, each sliding-window location k region proposals are

predicted. The classification layer generates 2k scores which evaluate

the possibility of an object or not an object corresponding to each

proposal. Here, the values of k proposals are taken relative to k

reference boxes, called anchors. A significant approach called

translation-invariant is used. Here, in terms of functions and anchors,

the generation of proposals is relative to the anchors.

2.3.1 Loss function:

Each anchor is identified with a binary class. Every anchor is assigned

with a positive or negative label based on the IoU value overlapped

over any ground-truth box. The highest valued and the value higher

than 0.7, the anchor is marked as positive. When the value is lower

than 0.3, the anchor is considered negative. The rest is not included as

a contribution for training purposes.

So, the loss function formulated as follows [3]:

L({pi}, {ti}) =
1

𝑁𝑐𝑙𝑠
∑ (𝑝𝑖 , 𝑝𝑖

∗)𝑖
𝐿𝑐𝑙𝑠 + 𝜆

1

𝑁𝑟𝑒𝑔
∑ 𝑝𝑖

∗
𝑖 𝐿 𝑟𝑒𝑔(𝑡𝑖 , 𝑡𝑖

∗).

Here,

i- the indexed value of an anchor.

𝑝𝑖- predicted probability of an anchor.

𝑝𝑖
∗ - 1, an anchor is positive.

𝑝𝑖
∗ - 0, an anchor is negative.

𝑡𝑖- vector describing the 4 parameterized coordinates of the bounding

box predicted.

 𝑡𝑖
∗ - vector describing the 4 parametrized coordinates of the ground-

truth box of a positive anchor.

Lcls = log loss over classes

(object/not an object)

Lreg (ti, ti*) = R(ti-ti*), R is robust loss function [3].

𝑝𝑖* Lreg - regression loss for a positive anchor (pi*=1).

Ncls and Nreg - the Normalization functions respectively.

𝜆 - balancing weight.

 Table 1: Detection Results observed on VOC 2007 test set [3].

 To optimize the training "image-centric" sampling strategy is

adapted. Here, 256 random anchors per image are examined to

estimate the loss function. A mini-batch with positive samples lesser

than 128 is filled with negative ones. All current layers are set with a

value of the standard deviation of 0.01 obtained by a zero-mean

Gaussian distribution. The values initialized for the rest layers were

determined by pre-training a model for the classification of ImageNet.

Method #proposals data mAP (%) time (ms)

SS

SS

2k

2k

07

07+12

66.9

70.0

1830

1830

RPN +

VGG,

unshared

300

07

68.5

342

RPN+

VGG,

shared

300

07

69.9

198

RPN+

VGG,

shared

300

07+12

73.2

198

Visual Object Detection – Pooja Gowda and Ajay Krishnan

94

This method is evaluated on VOC 2007 and VOC 2012. The Table 1

shows the results respectively.

2.4 SSD

Single Shot Multibox Detector (SSD) is a proposed framework that

uses an individual deep neural network. Here, the bounding box

adjusts automatically irrespective of the size and aspect ratio of an

object defined. The results obtained are compared with results

obtained on PASCAL VOC, ILSVRC, and COCO detection [4]The

time taken to detect is estimated in seconds per frame (SPF), where

the faster R-CNN runs at seven frames per second. The approach used

here is on basis of a convolutional network that is feed-forward and

generates a constant sized set of scores and bounding boxes for

identifying the instances of object classes present within the boxes.

Further, a non-maximum step is applied which produces the resultant

detections. An auxiliary formation is combined with the network. This

results in generating detections that consist the features that are multi-

scaled, convolutional predictors, and with default box size or aspect

ratio. Refer to the Figure 4, to understand the method in brief.

 Training involves several categories matching strategy, knowing

the training objective, Scale selection and an aspect ratio for default

boxes, hard negative mining, and finally, data augmentation. After

training, the results are compared against Fast R-CNN and Faster R-

CNN on PASCAL VOC 2007.

Figure 4: SSD framework. (a) for each object training an input

image and ground-truth boxes is needed. (b) and (c) Evaluation of

default boxes at each location that are of different scales 8 x 8 and

4 x 4 feature map [4].

 The mAP obtained is 81.6% by SSD512 which is higher than fast

R-CNN and faster R-CNN. For a more suitable understanding of SSD,

a controlled evaluation is carried out to discover the individual

component performance. Data augmentation, here Fast and Faster R-

CNN employs horizontal flip and an image to train. Like YOLO, a

comprehensive strategy of sampling is applied. Also, the Higher

amount of default box shapes results in better performance. Even the

faster atrous and different resolutions of multiple output layers add to

the overall performance percentage. This method is evaluated on

PASCAL VOC2012, COCO, and ILSRVC.

2.5 YOLO

Compared to previously discussed region proposal classification

networks like Fast R-CNN which performs detection on various

region proposals and thus ends up performing multiple predictions for

various regions in an image, YOLO (You Only Look Once)

architecture is more like F-CNN (Fully Convolutional Neural

Network).

 In this architecture, the input image is split in the (mxm) grid in

which the individual grid produces 2 bounding boxes and class

probabilities for those bounding boxes. YOLO only needs to look at

the image once to detect all the objects, hence the name YOLO, is a

faster model compared to other models discussed above. An

individual neural network predicts class probabilities and bounding

boxes straight from the input images in a single look at the image.

End-to-end optimization can be done for the execution of object

identification since the complete pipeline is a singular system. While

frame detection is been performed as a regression problem, there is no

need for a complex pipeline. The background is mistaken as patches

in several images for objects in the Fast R-CNN method because it

neglects to see the broader context. [5]

 YOLO splits an input image into grids and if the grid cell contains

the center of an object fall into a grid cell, then that grid cell will be

accountable for identifying that object. Bounding boxes describes a

rectangle that encloses these cells that have detected an object. YOLO

then outputs a confidence score that tells how certain it is, that a

bounding box encloses some object. The confidence scores reflect

how confident is the model about a box containing an object. By doing

this score, this can stop the model from identifying backgrounds, so if

no object subsists in the cell, the confidence scores will be zero.

 The bounding boxes predict if a significant object is present and

also the class of the object, which was trained on the PASCAL VOC

dataset. The confidence score for the bounding box along with the

class predictions is combined into one final score that tells the

probability that this bounding box contains a specific type of object.

Since the final output of the image will have a lot of bounding boxes,

the bounding boxes with a confidence score higher than a particular

threshold will only be considered

Figure 5: Identification of an object with bounding boxes using

YOLO [5].

The image that is inputted is classified into an S × S grid. Individual

grid cell predicts B bounding boxes and confidence scores for the

boxes. Each grid cell also predicts C conditional class probabilities for

the grid cells containing an object. This is described as a tensor

prediction [5],

S × S × (B ∗ 5 + C)

 YOLO is a precise object detector and is quick, making it absolute

to connect to a camera and help in real-time object detection. It takes

minimum time to retrieve outputs from the camera device and identify

the objects. This makes it helpful for computer vision applications for

tracing and identifying objects as they travel around. [5]

 The limitation of YOLO is that, since the object can be detected by

classification and localization network, it means that any grid cell can

detect only one object. If a grid cell includes more than one object the

model will not be able to recognize all of them. Hence, close object

detection is the area where YOLO faces an extreme amount of

challenge. If the grid is a 7x7 and each grid can detect only one object,

that is the maximum number of objects the model can detect is 7x7 =

49 objects. [5] YOLO also struggles to detect objects in different or

unexpected aspect ratios or configurations as it predicts bounding

boxes from the data. [5]

2.6 YOLOv2 / YOLO 9000

The real-time object detection YOLO introduced at the CVPR

(Computer vision and pattern recognition, 2016) [6] shows that it is

faster than other visual object detection methods for a variety of

detection fields. YOLO 9000 is considered to be better, faster, and

stronger and thus has numerous improvements over YOLOv1.

YOLO9000 is a real-time framework for the discovery of more than

SC@RUG 2021 proceedings

95

9000 object classifications by collectively optimizing detection and

classification.

 Pascal 2007 mAP Speed

DPM v5 33.7 .07 FPS | 14 s/img

R-CNN 66.0 .05 FPS | 20 s/img

Fast R-CNN 70.0 .5 FPS | 2 s/img

Faster R-CNN 73.2 7 FPS | 140 ms/img

YOLO 63.4 45 FPS| 22 ms/img

Table 2: YOLO object detection Speed Comparison [6]

 On each of the convolutional layers, batch normalizations are

applied in YOLOv2. By adding so, YOLO helps the mAP value to

have a 2% improvement [6]. This leads to vital advancements while

rejecting the need for other sorts of regularization.

 In the case of the primary YOLO, the classifier network was trained

at 224×224 and the resolution was then raised to 448 for object

detection. As a result, when shifting to detection, a shift to learning

object detection has to be done by the network and adapt to the current

input resolution. While for YOLOv2, the model on the images is

initially trained at 224×224, which are then fine tuned at the full

448×448 resolution on ImageNet before training for detection. A 4%

improvement in mAP value is accomplished by this high-resolution

classification network. [6]

In the case of Faster R-CNN, the bounding boxes are predicted using

anchor boxes or handpicked priors. Predicting offsets instead of

coordinates, make the problem simple, thus makes it simpler for the

neural network to learn. Based on this, YOLOv2 uses these anchor

boxes to predict bounding boxes by rejecting a fully connected layer.

While using the anchor box, predicting class and objectness for each

bounding box instead of a grid cell means one grid cell can contain

multiple class confidence.

 Multiscale training is implemented in YOLOv2. Here instead of

fixing the input size, it is been trained at different resolutions to predict

with different dimensions given as input. The network operates

rapidly at smaller sizes, which in results offers an easy tradeoff

between precision and pace for the YOLOv2 detection method [6].

2.7 YOLOv3

YOLO 9000 was the fastest, and also one of the most accurate

algorithms, but a couple of years down the line, however, it no longer

the most accurate with the algorithms like RetinaNet [19], and SSD

exceeding it in terms of accuracy. It still, however, was one of the

fastest. But that speed has been traded off for boosts inaccuracy in

YOLOv3. YOLOv3 is an improvement over preceding YOLO

detection networks. Compared to previous versions, it emphasizes

multi-scale detection, a stronger feature extractor network, and some

changes in the loss function.

 The former YOLO versions have utilized Darknet-19 as a feature

extractor that consists of 19 layers. YOLOv2 added 11 more layers to

Darknet-19 [6] making it a total of 30-layer architecture. The

algorithm still faced a challenge while detecting small objects due to

the down sampling of the input image and losing fine-grained features.

 YOLOv3 came up with a better architecture where the feature

extractor used was a hybrid of YOLOv2, Darknet-53[20] (a network

trained on the ImageNet), and on the residual networks (ResNet) that

manages 53 convolution layers, hence the name Darknet-53. This

network is developed with consecutive 3x3 and 1x1 convolution

layers supported by a skip connection (organized by ResNet to help

the activations scatter through deeper layers without gradient

diminishing).

 The 53 layers of the Darknet are then accumulated with 53 more

layers for the development of the detection head, thus making

YOLOv3 a total of 106 layers. This commences to a large architecture

making it slow-paced compared to YOLOv2, although improving the

accuracy at the same time. Compared to YOLO and YOLOv2, which

predict the output at the end layer, YOLOv3 predicts boxes at 3

different scales. At every scale, YOLOv3 uses 3 anchor boxes and

predicts 3 boxes for each grid cell. Each object is assigned to only one

grid cell in one detection tensor [9].

2.8 State of the Art (YOLOv4 and PP-YOLO)

The below section addresses the present state-of-the-art object

detecting methods, which are YOLOv4 and PP-YOLO.

2.8.1 YOLOv4

The 4th generation of YOLO was released in April 2020, by Alexey

Bochkovskiy et. al, Chien-Yao Wang et. al, Hong-Yuan Mark Liao et.

al, introduced via a paper titled "YOLOv4: Optimal Speed and

Accuracy of Object Detection". YOLOv4 has additionally supported

the Darknet and has obtained an AP value of 43.5 percent on the

COCO dataset together with a real-time speed of 65 FPS [10]on the

Tesla V100, which beat the foremost precise and quickest detectors in

terms of both pace and precision. To make the designed detector

perform on a single GPU, additional design improvements were made.

One was that, the modern system of data augmentation where

developed, which are Mosaic and Self-Adversarial Training (SAT).

The following was choosing optimal hyper-parameters while

involving genetic algorithms.

 This version of YOLO is trained and performed on a standard GPU

of 8-16GB Video RAM. YOLOv4 takes the influence of state of art

BoF (bag of freebies) and many other BoS (bag of specials) [21]. The

BoF improves the accuracy of the detector, without increasing the

inference time. They only increase the training cost. The BoS raise the

inference cost by a bit amount though they significantly enhance the

precision of object detection.

Figure 6: Comparison of FPS versus AP for the State-of-the-Art

object detectors and proposed YOLOv4 [10].

2.8.2 PP-YOLO

Three months after the release of YOLOv4, PP-YOLO was introduced

via a paper titled "PPYOLO: An Effective and Efficient

Implementation of Object Detector", by Xiang Long et al [11]. PP-

YOLO is based on an open-source deep-learning program which is

known as Paddle-Paddle. This method proposes a model that starts

from YOLOv3 object detector. Instead of using the original backbone

which is the Darknet53 model, the proposed model uses ResNet50-

vd-dcn [22].

Visual Object Detection – Pooja Gowda and Ajay Krishnan

96

Figure 7: Comparison of FPS versus mAP for the State-of-the-Art

object detectors and proposed PP-YOLO [11].

 Various techniques are used in the paper to improve efficiency.

Firstly, a large batch size is used that improves the stability of training

and produces better results by the model. EMA (Exponential moving

average) is also implemented, where the moving averages of the

trained parameters during the interference produce better results. Drop

block which is a form of structured dropout is also implemented in PP-

YOLO, where the units in a continuous region are dropped together,

which is applied only on the detection head because adding to the

backbone architecture decreased the performance of the model.

According to the paper, the PP-YOLO can achieve a mAP of 45.2%

COCO dataset which exceeds the 43.5% of YOLOv4 [11].h

3 CONCLUSION

This paper presents several proposed object detection methodologies

and their unique approaches chosen for optimizing the accuracy and

speed of object detection. While R-CNN consists of two major

components, first to apply a highly compatible convolutional neural

network to localize and classify the objects. Secondly, setting a sample

to train large CNNs having limited training labeled data. The

combinational classification tools from computer vision and deep

learning gives the result. The Fast R-CNN method is a clean and faster

update to R-CNN and SPPnet. This paper concludes that sparse object

proposals seem to increase the detector quality.

 The Faster R-CNN introduces Region Proposal Networks (RPNs)

for a better performing region proposal computation. This is achieved

by distributing the convolutional features with the detection network

that is downstream. The proposed step reduces the computational time

taken while generating a regional proposal. It improves the accuracy

of the whole object detection method.

 However, the Single-shot Multibox detector (SSD) method

achieves to generate a combined network with multiple features

mapped on the top of it by using a multi-scale convolutional bounding

box. Here validation of training strategies and bounding boxes leads

to enhanced execution. SSD model performs with a minimum amount

of quantity higher predictions of the box than any other methods. It is

shown that SSD successfully achieves high speed and accuracy than

the previous object detection methods. It performs better than Fast R-

CNN and Faster R-CNN on COCO and PASCAL VOC. The speed of

the real-time SSD300 model is around 59 FPS. The You Only Look

Once (YOLO) method detects objects in real-time with precision and

in the quickest manner. YOLOv4 and PP-YOLO are the present state-

of-the-art object detectors, which is the most accurate and fastest

method proposed to date. With this, we conclude our research by

noting that every method has limitations and improvements. Also,

every improvised version has a unique way of dealing with the

previous method limitation.

4 REFERENCES

[1] Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature

hierarchies for accurate object detection and semantic segmentation.

[2] Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international

conference on computer vision (pp. 1440-1448).
[3] Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards

real-time object detection with region proposal networks. In Advances in

neural information processing systems (pp. 91-99).
[4] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., &

Berg, A. C. (2016, October). Ssd: Single shot multibox detector. In

European conference on computer vision (pp. 21-37). Springer, Cham.

[5] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only

look once: Unified, real-time object detection. In Proceedings of the

IEEE conference on computer vision and pattern recognition (pp. 779-

788).

[6] Redmon, J., & Farhadi, A. (2017). YOLO9000: better, faster, stronger.

In Proceedings of the IEEE conference on computer vision and pattern

recognition (pp. 7263-7271).

[7] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A.

Zisserman. The PASCAL Visual Object Classes Challenge 2007

(VOC2007) Results, 2007.

[8] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the

devil in the details: Delving deep into convolutional nets. In BMVC,

2014.

[9] YOLOv3: An Incremental Improvement Joseph Redmon Ali Farhadi

2018

[10] YOLOv4: Optimal Speed and Accuracy of Object Detection Alexey

Bochkovskiy, Chien-Yao Wang, Hong-Yuan Mark Liao 2020

[11] PP-YOLO: An Effective and Efficient Implementation of Object

Detector Xiang Long, Kaipeng Deng, Guanzhong Wang, Yang Zhang,

Qingqing Dang, Yuan Gao, Hui Shen, Jianguo Ren, Shumin Han, Errui

Ding, Shilei Wen 2020

[12] C. Gu, J. J. Lim, P. Arbelaez, and J. Malik. Recognition using re- ´ gions.

In CVPR, 2009.

[13] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep

convolutional networks for visual recognition. In ECCV, 2014.

[14] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A.

Zisserman. The PASCAL Visual Object Classes (VOC) Challenge. IJCV,

2010

[15] A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with

deep convolutional neural networks. In NIPS, 2012.

[16] J. Deng, A. Berg, S. Satheesh, H. Su, A. Khosla, and L. Fei-Fei. ImageNet

Large Scale Visual Recognition Competition 2012 (ILSVRC2012).

http://www.image-net.org/ challenges/LSVRC/2012/.

[17]] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet:

A large-scale hierarchical image database. In CVPR, 2009.

[18] J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu. Semantic

segmentation with second-order pooling. In ECCV, 2012

[19] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar. ´Focal loss for

dense object detection. arXiv preprint arXiv:1708.02002, 2017.

[20] J. Redmon. Darknet: Open source neural networks in c.

http://pjreddie.com/darknet/, 2013–2016

[21] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Beyond bags of

features: Spatial pyramid matching for recognizing natural scene

categories. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), volume 2, pages 2169–2178. IEEE,

2006.

[22] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

SC@RUG 2021 proceedings

97

Benefits of Provenance-Based Templates in Data Science and
Data Visualization

Nitin Paul, Merijn Schröder

Abstract— Data is touted as the ‘new oil’ in the Information Age. Comprehensive and accurate collection, storage and analysis of
the colossal amount of data generated by the global systems has began to fuel fields such as research, governance and economics.
With utilization of insights from data playing such a crucial role in the modern world, data provenance has begun to emerge as
both a critical requirement for validity of insights, such as in research and policy making, and a topic of continued research and
development. Multiple studies focus on the generation of provenance in particular. In this paper we discuss PROV-TEMPLATE, one
of the existing methods for provenance tracking using provenance-based templates, which provide a standardized, inter-operable
format for collecting provenance information. The advantages and limitations of using templates are covered, both in data science in
general and in data visualization in particular. We also discuss how provenance data collected in visualization workflow can be used
to suggest related visualizations and even partially automate the process of making changes to existing visualizations.

Index Terms— Data provenance, provenance-based template, data visualization

1 INTRODUCTION

Data provenance is information tied to a record outlining its origin and
relevance, along with methodologies and tools used in its acquisition,
processing and storage. The quality of provenance data is increasingly
becoming a necessary factor in determining the usability and validity
of available data. This holds especially true in the area of research,
where provenance of research data is critical for reproducibility and
legitimacy of scientific results. Availability of provenance records be-
comes a necessary and often a legal requirement in the domains of re-
search such as climate and Earth sciences where the insights gained
from the analysis of research data are intended to aid policy mak-
ing and governance [11]. Data provenance also plays an important
role outside academia, for example in a corporate environment where
provenance data and system status information is used for preemptive
network security measures and causality analysis after an attack on the
network [21]. A Decision Support System (DSS) is also an example
in which data provenance can be valuable [5]. Despite the rapid in-
crease in accuracy and reliability of DSSs, the wider acceptance has
been much slower. The main reason for that is the perceived lack of
transparency caused by the generation of recommendations by a black
box. Potentially, data provenance can clarify the reasons why recom-
mendations are made by the system which, in turn, can speed up the
adoption of DDSs.

In view of this rising importance of having an effective prove-
nance strategy across myriad domains of modern society, a signifi-
cant amount of progress has been made in designing standards and
tools for recording provenance. However, the heterogeneous nature
of infrastructure and methodologies employed in collection, analysis
and storage of data has hampered widespread adoption of provenance
tools. This poses a challenge for effective provenance tracking, since
end-to-end integration of provenance in the data analysis workflow is
necessary to generate usable provenance tracking data, and supporting
domain specific tools and workflows is difficult. Scientific workflow
management systems like Kepler [1] have integrated provenance fea-
tures as core functionality into their product, but the onus is now on the
end-user to work within the confines of this system, which is not al-
ways feasible or practical. The focus therefore has been to devise gen-
eral solutions that either can be integrated into existing infrastructure
or used to generate retrospective provenance data using existing logs
or output. Undertakings like the ENVRIplus project were tasked with

• Nitin Paul, Student number: S4420098, E-mail: n.paul@student.rug.nl.
• Merijn Schröder, Student number: S3328481,

E-mail: m.l.schroder@student.rug.nl.

development of generic tools and services to help build inter-operable
Research Infrastructure (RI) for climate and Earth science research in
Europe [11].

The most widely-used and referred standard for provenance is
W3C’s PROV recommendation [13], which evolved from the Open
Provenance Model (OPM) [17]. The fundamental units of the PROV
ontology are known as Starting Point terms consisting of 3 primary
classes:

1. prov:Entity which represents resources

2. prov:Activity representing an action performed over an
Entity

3. prov:Agent which represents persons or machines responsi-
ble for some Action over an Entity

Figure 1 illustrates a typical network of the three primary classes of
objects in a PROV document and the correlation between them, indi-
cated by the labelled arrows connecting the entities to each other and
themselves. The most important relationships are: used (an activity
used an artefact), wasAssociatedWith (an agent is linked to an activ-
ity), wasGeneratedBy (an activity generated an entity), wasDerived-
From (an entity was derived from another entity), wasAttributedTo (an
entity was attributed to an agent), actedOnBehalfOf (an agent acted
on behalf of another agent) and wasInformedBy (an activity used an
entity generated by another activity). The PROV standard is designed
to describe retrospective provenance (r-PROV), which is analogous
to timestamped logs of the steps executed to reach the current state of
the data. This makes PROV relatively easy and less disruptive to in-
tegrate with existing Research Infrastructure for storing, manipulating
and visualizing data. The barrier to the adoption of PROV is further
lowered by an ecosystem of tools such as online tools that support
the PROV standard1, a public repository for provenance data known
as ProvStore [7], packages such as ProvToolbox2 for Java that enables
users to manipulate provenance descriptions and convert PROV doc-
uments to related standards such as RDF, PROV-XML, PROV-N, and
PROV-JSON. Similar functionalities are also provided by the PROV
Python Package3

Availability of robust standards such as the PROV standard and the
tools built around it should help make the adoption of provenance
tracking more prevalent across domains, however many substantial

1https://openprovenance.org/, https://provenance.ecs.soton.ac.uk/
2https://github.com/lucmoreau/ProvToolbox
3https://github.com/trungdong/prov

98

problems need to be solved before it becomes an ubiquitous compo-
nent of data analysis workflows. Two prominent cases where collec-
tion of provenance data has been difficult to integrate are systems in-
volving large-scale sensor networks that are highly automated, often
running on proprietary software environments which makes it diffi-
cult to modify the underlying source code or architecture to integrate
provenance data collection, and smaller-scale semi-automated systems
that incorporate human sampling of data and observation along with
machine operations. The latter often have heterogeneous workflows
that combine both machine and human operations on data, such as
collecting door-to-door citizen data by municipalities employing vol-
unteers or workers who might not have the required domain knowl-
edge to reliably collect provenance data. Tools such as handheld ap-
plications developed by Urbanopoly Project [2] can help streamline
manual provenance tracking. Adopting the PROV standard for both
highly-automated and semi-automated workflows is a reasonable and
minimally disruptive step to incorporate provenance tracking in the
analysis process. Specially annotated scripts can be used to gener-
ate both retrospective provenance, by using tools such as NoWork-
flow system [19], and prospective provenance, using tools such as the
YesWorkflow system [12], which can be easily integrated to main-
stream tools such as Jupyter Notebook. Retrospective provenance can
also be generated by employing the ‘Passive Monitoring’ methodol-
ogy, which involves making use of the existing outputs to generate
provenance, without making modifications to the existing setup.

One of the approaches for generating provenance in a retrospective
manner is by making use of provenance-based templates, as described
by Moreau et al. in their paper titled A Templating System to Gen-
erate Provenance [14], which is our primary focus in this paper. We
investigate the benefits and limitations of this approach for generating
provenance data and use of templates in data visualization.

We summarize the topic of provenance-based templates by search-
ing for related literature in Section 2. After clarifying the underlying
concepts, we investigate the use-cases where provenance-based tem-
plates are useful and can provide adequate value. We proceed by inves-
tigating the application of templates in data visualization in Section 3.
Finally, in Sections 4 and 5 we summarise our findings and answer our
research questions.

2 PROVENANCE-BASED TEMPLATE

A template is defined as a pattern which can be used to produce results
which are similar. A template is defined as anything that serves as a
pattern on which the properties of a product can be based. For instance,
this document can be reduced to a template for scientific papers by
removing the text and only keeping the information about the positions
and formatting of different elements, such as the title and the list of
authors. The main advantages of such a template is the consistency
over different products and the assurance of validity. Another paper
written based on the same template will have the same formatting as
this paper has. Besides, if the information of the template is valid,
using the template will result in reusing the same valid information,
which makes the new product less prone to errors.

This idea of a template can be applied to the generation of prove-
nance. As mentioned in Section 1, there are some challenges with
collecting provenance data for applications. We briefly touched upon
some efforts which focus on finding the best approaches for facing
these challenges. Using templates is one of these approaches. An
implementation of a templating system to generate provenance is in-
troduced by Moreau et al. in [14]. Data provenance is generated in a
retrospective manner, rather than when an application is run or when
its source code is compiled. First, a template provenance file is created
by a designer. This template contains the shape of the provenance data
to be generated, but without the actual provenance data. Instead, at the
places where the values have to be filled in, placeholders are added.
These placeholders act as variables - a mechanism injects the actual
values into the placeholders by assigning the values to the correspond-
ing variables. This approach results in a provenance document in one
of the standardized representations. The architecture of this approach
is shown in Figure 2, adopted from W3C Recommendation [14].

Fig. 1. PROV-O starting point, adopted from W3C Recommendation

We will proceed to discuss the benefits of using provenance-based
templates for collecting provenance data, including an overview of its
advantages such as the inherent separation of responsibilities, ease of
maintenance, ability to integrate automated checks into the process of
data provenance collection and the ease of consumption of standard-
ized provenance data, followed by the limitations.

2.1 Benefits
Moreau et al. have developed applications [14] that generate prove-
nance data directly. This means that the generation of provenance data
was implemented in the same code base as the actual features of the
application, which shifts the responsibility of provenance data gen-
eration to the software developers. The authors did this comparison
between the more traditional approach and the templating approach in
order to find the differences in the workflow of implementing it. In
this section we go over four of these benefits: the separation of re-
sponsibilities introduced by the templating approach, less and easier
maintenance because of the use of template, the possibility for checks
during run-time, and a more efficient consumption of provenance gen-
erated by the same application.

2.1.1 Separation of Responsibilities
One workflow which is used is the Provenance Challenge work-
flow [15]. This workflow is a series of procedures which are performed
by a system. The key point of this approach is that these procedures
have to be implemented in the same code base as the application of
which provenance data has to be generated. As a result, the software
developers need to have a thorough understanding of the generation
of data provenance in order to implement it correctly. Besides that,
the code for generating provenance and the code of the application it-
self are not properly separated. One could argue that this leads to the
violation of the principle of separating responsibilities in applications.
PROV-TEMPLATE eliminates this issue since the generation of

provenance is not implemented in the application itself, but rather in
a retrospective manner. Because of this, software developers need to
have very little knowledge about the way data provenance is handled
and there is a clear separation of responsibilities.

2.1.2 Maintenance
The Python library ProvPy 4 was tested by the authors as well. With
this approach, the number of lines written to implement the genera-
tion of provenance is between the 2.5% and 20.0% of the lines of code
written for the Provenance Challenge workflow. This reduces the time
and effort required for the maintenance of provenance data generation
code alongside the development of application features. However, a
drawback to this approach is that when specifications are revised, non-
trivial work has to be done by the developer. The authors have shown
that a small change, e.g. changing a type, affected 60 lines of code
in their application. While using the templating approach, no change

4https://pypi.org/project/provpy/

SC@RUG 2021 proceedings

99

had to be made to the actual application at all. One of the benefits
of the templating approach is the reduction in time spent on mainte-
nance compared to using the ProvPy library. Using templates, minor
revisions to the shape of the provenance data can be made without in-
troducing the need for changes in the application, rather only in the
template.

A number of basic modifications to a template can be made without
changing anything in the application itself. Examples of these changes
are: changing a constant, adding or dropping an attribute, and adding
or dropping a node. Larger modifications to templates do however in-
troduce the need for changes in the application, like renaming a tem-
plate, adding or dropping a template, or merging or splitting templates.
Also when adding and dropping variables in a template some modifi-
cations have to be done within the application itself.

A subset of possible modifications to a provenance-based template
is listed in Table 1 including whether the bindings remain correct (X),
the bindings become potentially incomplete (I), the bindings become
superfluous (S), or the change in the template can be detected and
solved at compile-time (C), or at run-time (R).

Another benefit of the templating approach is that a library of tem-
plates for the complete application is maintained in one location. This
makes the maintenance less cumbersome, as demonstrated by Lenz
et al [10].

2.1.3 Checks

Additionally, using templates allows for the possibility to introduce
safety checks during run-time. These checks can for instance be used
to make sure that the used bindings in an application are compatible
with the corresponding template.

Not only the communication between the application and the tem-
plate should be valid. The template itself should be valid as well.
Essentially, a template is a provenance document, without any mean-
ingful values filled in. There already exist several provenance valida-
tors, such as [16], which is introduced by the same authors who also
introduced the templating approach.

Manual checking remains an important aspect as well. The use of
templates makes this easier because of the relatively small number and
size of templates which have to be checked. For instance, detecting the
presence of a loop or detecting the absence of attributes are done most
easily manually. When provenance data is generated by an application
without using templates, these problems are much harder to spot.

2.1.4 Provenance Consumption

An application which consumes the provenance data it has generated,
traditionally has to perform graph queries and post-processing on the
provenance data. This is needed because of the lack of information
about the structure of the provenance data in the application itself. This
information becomes available with the introduction of templates. The
bindings, which are used by the application to submit the right infor-
mation to the template, can also be used to consume the provenance
data directly.

2.2 Limitations

The use of templates for generating provenance also introduces chal-
lenges and has some limits. We outline the major challenges.

2.2.1 Granularity

By definition, templates are general. Therefore, the challenge faced by
the template designer is to make the template applicable on all possible
types of data and operations, and not leave out any relevant informa-
tion. For instance, provenance can be generated for a REST appli-
cation which processes invoices from multiple suppliers. It is likely
that suppliers will have different invoice structures, and therefore the
template for generating provenance has to accommodate all different
types. Ideally, the template should work when a new invoice is added.

Fig. 2. The architecture of the approach of generating provenance using
templates, adopted from [14]

2.2.2 Overlapping Responsibilities
As mentioned is Section 2.1, there is a separation of responsibilities
when working with templates. The developer has to develop the appli-
cation and has little knowledge about data provenance. A PROV expert
designs the template for the application and does not have an in-depth
knowledge about the logic within the application itself. However, de-
spite of this separation of responsibilities and knowledge, there is still
some overlap. For the PROV expert to design a template, he has to
know exactly what set of bindings is submitted by the application so
that he can include these in the template.

The design of the template is the first development phase. In the
second phase the integration of the application and the template is
completed. This requires both knowledge about the application, in
order to develop it, and knowledge about data provenance and the de-
signed template, to make sure the integration is done properly. To
successfully complete the integration, pair-programming is regarded
as the best solution [14].

Pair-programming has its benefits and limits [6]. In this case, how-
ever, the limits seem to outweigh the benefits. The major benefits of
pair-programming are the potential different views on a problem and
the sharing of knowledge. However, when using pair-programming for
integrating the application and the provenance template, the (required)
knowledge and field of expertise differs a lot between the programmer
and the PROV expert. Essentially, they solve different problems. This
eliminates the benefit of having different views on a problem. Fur-
thermore, because of the difference in field of expertise, the benefit of
conveying knowledge is limited.

The main challenges of pair-programming are not posed by the task
at hand, but rather the ability of the programmers working on the task
to work together cohesively. The programmers have to form a good
pair, both socially and with regards to their workflow. If these require-
ments are not met, it is likely integrating will either fail or will be done
in a poor manner.

Additionally, for both developing the application and designing the
template, knowledge about the domain is a necessity [5], which adds
a third dimension to the difficulty faced in integrating provenance data
generation to the software development workflow.

3 PROVENANCE-BASED TEMPLATES IN DATA VISUALIZATION

Data visualization is an essential component of data analysis that en-
ables engineers, researchers, lawmakers, managers and consumers to
harness key insights from data. As a result, visualization research has
grown into a well-established research area with well-defined agendas.

Benefits of Provenance-Based Templates in Data Science and Data Visualization – Nitin Paul and Merijn Schröder

100

A
bs

tr
ac

tB
in

di
ng

s

C
on

cr
et

e
B

in
di

ng
s

Ta
bu

la
rD

at
a

B
in

di
ng

s
Fr

ag
m

en
t

Te
m

pl
at

e
C

om
pi

la
tio

n

Rename template I/S I/S I/S I/S C/R
Add template I I I I I
Drop template S S S S C
Split template I I I I C
Merge template S S S S C
Modify template

Change constant X X X X X
Add attribute X X X X X
Drop attribute X X X X X
Add relation X X X X X
Drop relation X X X X X
Add node X X X X X
Drop node X X X X X
Add variable I I I I R
Drop variable S S S S C

Table 1. Consequences of modifications in a template, adopted
from [14]

However, building visualization pipelines is a major bottleneck in data
exploration, especially with complex data [18]. Multiple collections of
related visualization pipelines are often created while exploring expan-
sive or complex data sets, in order to fine tune the various parameters
or implement different visualization algorithms using a trial-and-error
process [23] which often results in a majority of visualization not be-
ing used in the final analysis. Although the final visualizations may
be different, the underlying pipelines often have common parameters
such as a shared data source. Tracking modifications to data pipelines
and related parameters facilitates generation of provenance informa-
tion [4], which can be used to switch between different iterations of a
visualization and the corresponding pipelines to simplify the laborious
task of analyzing complex data. The provenance data can also be used
to simplify and partially automate the process of generating related vi-
sualizations, eliminating the need for reinventing the pipeline again,
and making it possible to expand upon or adapt existing work. This
approach of using provenance data to assist in the process of generat-
ing visualizations will enable any user, even without adequate domain
knowledge related to the data being explored, to generate visualiza-
tions of comparable quality to a user with extensive domain knowl-
edge.

The proposed framework consists of two key components: an in-
terface for querying data flows and a visualizations by analogy mech-
anism to semi-automatically generate visualizations [20]. The query
interface makes use of the same interface which was used to create the
pipelines, making it intuitive to use. The interface supports both sim-
ple keyword-based queries (for example, looking up pipelines created
by a specified user) as well as complex and highly specific structure-
based queries (for example, finding visualizations that implement a
smoothing function before computing an isosurface for irregular grid
data, along with the related pipelines and sub-pipelines). A reference
implementation is illustrated in Figure 3. The visualizations by anal-
ogy component allows reusing existing pipelines to generate related
visualizations without requiring users to manually modify the data
flow specifications. This is implemented by calculating the difference
between two comparable pipelines and applying it to a third pipeline.

The framework proposed in [20] can work with established visual-
ization systems such as AVS Explorer [22] and IBM’s Data Explorer5.

5https://www.research.ibm.com/dx

The framework can also work in tandem with existing provenance-
enabled scientific workflow management tools that record provenance
data for both data products as well as metadata for the workflow
used for data processing [3]. Encouraging research such as a novel
mechanism for tracking parameters in visual data mining proposed by
Kreuseler et al. [9] and a formal calculus for parameter changes pro-
posed by Jankun-Kelly et al. [8] pave the way for adoption of contin-
ued refinement of strategies proposed in [20].

3.1 Pipeline Operations
A visualization system is a system that lets users display a graphical
representation of data, based on a set of specified rules. These pro-
grammatic rules for a given visualization constitute its pipeline. The
pipeline is made of modules, that define an operation or functional-
ity, and connections that define the data flow between modules. The
state of a module is represented by module parameters.. The set of all
visualization pipelines is denoted by V.

3.1.1 Pipeline Differences
In any visualization workflow involving moderately complex data, of-
ten multiple visualization pipelines are created iteratively and refined
to generate the required visualization. To understand the workflow, it
is imperative to understand the difference between two given pipelines.
To illustrate the operation, a function δ is defined, which is function
that takes two pipelines pa and pb and returns a function that trans-
forms pa to pb. This can be expressed as:

δab = ∆(pa, pb) (1)

We can say that δab is the sequence of transformation required to
derive pb from pa. The domain context D of δab is defined as the set
of all module parameters that must exist in pa for δab to be applicable.
The range context R of δab is defined as the set of all transformations
that must be applied to pa to transform it into pb. δ can fail if one
module in D(δ) does not exist. Any pipeline pa can be transformed
by finding δ (pa). Similarly, if we know that a pipeline pb was derived
from pa, we can derive pa from pb by finding δ−1

ab

3.1.2 Matching Pipelines
Another important operation relevant to working with pipelines is find-
ing similar pipelines. This operation can either yield a binary re-
sult (two pipelines either match or not) or a mapping of similarities
based on various metrics. Such a mapping function can be defined
as map : V ×V → (D→ D), which takes two pipelines pa and pb as
inputs and returns a mapping from the domain context of pa to the
domain context of pb. To construct the mapping, the problem is for-
mulated as a weighted graph matching problem. Let Ga = (Va,Ea)
be the graph corresponding to pa where Va represents the modules in
pa and Ea is the set of connections in pa. To calculate the similarity
between the vertices of the graph, which represent the modules, we
define a scoring function s such that s : Va×Vb→ [0.0,1.0]. The value
of s will be 1.0 if two modules are exactly the same. The matching
operation can be represented as:

∑
(va,vb)∈M

s(va,vb) (2)

where va and vb are modules of pa and pb respectively, and M is the
set of all modules in pa and pb. A matching is good when (2) is
maximized.

The operations described are theoretically hard to compute and
therefore the framework makes use of heuristics. The information
stored in δ is used to reduce the search space and increase the ef-
fectiveness of these heuristics.

3.2 Query-By-Example
In a visualization workflow involving multiple data sets, different vi-
sualization algorithms and corresponding pipeline parameters, it be-
comes impractical to search through the large sets of pipelines to locate

SC@RUG 2021 proceedings

101

Fig. 3. Query by Example interface implemented in VisTrails, adopted from [20]. The user specifies a sub-pipeline and a search query (the string
”4877” in this example) and the system returns all pipelines with matching structure containing the supplied query string

a specific pipeline by manually examining each one of them. Query-
by-example is envisioned as an effective mechanism for navigating
and searching a large set of pipelines by visually building a pipeline
fragment containing the required parameters. The interface to build a
query is the same as the one used to build the pipeline, making it easy
for the user to work with the system, instead of having to learn a query
language.

The pipeline difference function δ can be used to optimize the
search function by reducing the search space. For example, for a query
pipeline pq and two candidate pipelines pa and pb, if pa matches the
search query and we know δab, we can check if domain context D(δab)
matches any module from pq or that any module in pa will be modified
in order to transform it to pb, then we can say that pb is not a match
for pq, since some of the modules in pb will now not match with pq.
We can thus iteratively reduce the search space by calculating the δ
for any matching pipelines.

3.3 Visualization by Analogy

Two pairs of ordered values are considered analogous if the relation-
ship between the first pair is the same as the relationship between the
second pair. This analogous reasoning can be used to update multiple
visualizations simultaneously by inferring the necessary changes be-
tween two pipelines as an analogy and applying it across all matching
pipelines. As an example, if an identical change must be made to a set
of related visualization pipelines without manually making the edits
(which might be repetitive and error-prone), the change can be made
only once on a pipeline and captured as an analogy. This analogy can
now be applied on a set of selected pipelines using Equation (2) for a
uniform transformation.

Analogies can also be captured for a specific pipeline update in a
workflow system and used like a macro operation. For example, given
a pipeline that reads protein data from a local file and creates a visu-
alization, an update analogy can be captured to integrate functionality
to read data from an online source instead. This analogy can now be
thought as a portable set of rules to modify the input module in a visu-
alization pipeline to enable it to read data from an online source, and
can now be used across projects and users. This provides a standard
way to make changes to a visualization pipelines without knowing the
underlying domain knowledge.

4 DISCUSSION

In this paper, we focused primarily on the benefits and limits of us-
ing provenance-based templates to generate provenance data, and how

provenance data can be leveraged to help simplify and partially au-
tomate the data visualization workflow. The next step is to make the
provenance data available to the users in an accessible form, ideally
embedded into the interface of the application they are using. For
example, data provenance is an important part of a decision support
system [5]. Based on this information, the users of the system decide
whether they trust and will act upon the suggestions provided by the
system. It is also crucial to present the provenance-data in an intuitive
form since the users of these systems may not possess expertise in the
field of data provenance to utilize the information in a raw or unstruc-
tured form. Future work might be necessary to find out how to achieve
these goals.

5 CONCLUSION

The last couple of years a number of approaches were proposed to
make the generation of data provenance easier and less error prone.
The use of templates is one of these approaches. We took an in-depth
look at the idea of using provenance-based templates for provenance
data generation, and the benefits and limitations of this approach. We
have found that using templates results in the separation of responsi-
bilities. This holds for both software and the people developing the
application. For the latter, the main distinction made is between the
software developer and the PROV expert. The integration of templates
with the application requires both persons from the different fields to
work together, however, which may lead to additional challenges.

In general, templates reduces the need for maintenance and make
maintaining the application easier and more efficient. Using templates
also enable application developers to add run-time checks. In some
circumstances using templates can make consuming the provenance
data generated by the same application more easy.

A challenge we found regarding templates is the trade-off between
making the template general and not leaving out any relevant informa-
tion.

We also discussed techniques to leverage provenance data to help
users navigate large sets of visualizations, effectively query visualiza-
tion pipelines using powerful visual interfaces and use analogies to
simultaneously manipulate multiple pipelines. A major challenge we
discussed is the considerable amount of work required to make ap-
plication development and template design work together cohesively.
Another significant challenge is to keep the templates general and
applicable across myriad domains and use-cases. Domain specific
knowledge remains key to improving widespread adoption of prove-
nance standards and integration of tools and methodologies into work-
flows. For example, using analogies to replicate changes across a set

Benefits of Provenance-Based Templates in Data Science and Data Visualization – Nitin Paul and Merijn Schröder

102

Fig. 4. Analogy based update implemented in VisTrails, adopted from [20]. The user searches for a query pipeline and updates multiple matching
pipelines using analogy by adding modules.

of pipelines operates by finding the difference between two pipelines
represented as graphs, and finding the distance between correspond-
ing nodes. These distances and weights may vary across domains and
the algorithm must be adjusted accommodate for such specific cases.
Further work on data provenance tools and methodologies must incor-
porate a wide array of domains, or designed to be extensible, in order
to be widely adopted.

ACKNOWLEDGEMENTS

We wish to thank Lorenzo Amabili helping us getting started in a new
research field by pointing us in the right direction and providing valu-
able feedback. We also wish to thank M. Biehl for sharing his own
experiences in writing papers with us. Finally, we would like to thank
Jeroen de Baat for reading our draft paper thoroughly and providing
us with rich feedback.

REFERENCES

[1] I. Altintas, O. Barney, and E. Jaeger-Frank. Provenance collection sup-
port in the kepler scientific workflow system. In L. Moreau and I. Foster,
editors, Provenance and Annotation of Data, pages 118–132, Berlin, Hei-
delberg, 2006. Springer Berlin Heidelberg.

[2] P. Buneman, A. Chapman, J. Cheney, and S. Vansummeren. A prove-
nance model for manually curated data. In L. Moreau and I. Foster, ed-
itors, Provenance and Annotation of Data, pages 162–170, Berlin, Hei-
delberg, 2006. Springer Berlin Heidelberg.

[3] S. Callahan, J. Freire, E. Santos, C. Scheidegger, C. Silva, and V. Huy.
Managing the evolution of dataflows with vistrails. 01 2006.

[4] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva, and
H. T. Vo. Vistrails: Visualization meets data management. In Proceed-
ings of the 2006 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’06, page 745–747, New York, NY, USA, 2006.
Association for Computing Machinery.

[5] V. Curcin, A. Fairweather, R. Danger, and D. Corrigan. Templates as
a method for implementing data provenance in decision support sytems.
Journal of Biomedical Informatics, 16:1–21, June 2016.

[6] B. Hanks, S. Fitzgerald, R. McCauley, L. Murphy, and C. Zander. Pair
programming in education: a literature review. Computer Science Edu-
cation, 21:135–173, June 2011.

[7] T. D. Huynh and L. Moreau. Provstore: A public provenance repository.
In B. Ludäscher and B. Plale, editors, Provenance and Annotation of Data
and Processes, pages 275–277, Cham, 2015. Springer International Pub-
lishing.

[8] T. J. Jankun-kelly, K. liu Ma, S. Member, M. Gertz, and I. C. Society. A
model and framework for visualization exploration. IEEE Transactions
on Visualization and Computer Graphics, 2007.

[9] M. Kreuseler, T. Nocke, and H. Schumann. A history mechanism for vi-
sual data mining. In Proceedings of the IEEE Symposium on Information

Visualization, INFOVIS ’04, page 49–56, USA, 2004. IEEE Computer
Society.

[10] M. Lenz, H. A. Schmid, and P. F. Wolf. Software reuse through building
blocks. IEEE Software, 4(4):34–42, 1987.

[11] B. Magagna, D. Goldfarb, P. Martin, M. Atkinson, S. Koulouzis, and
Z. Zhao. Data provenance. Towards Interoperable Research Infrastruc-
tures for Environmental and Earth Sciences, July 2020.

[12] T. M. McPhillips, T. Song, T. Kolisnik, S. Aulenbach, K. Belhajjame,
K. Bocinsky, Y. Cao, F. Chirigati, S. C. Dey, J. Freire, D. N. Huntzinger,
C. Jones, D. Koop, P. Missier, M. Schildhauer, C. R. Schwalm, Y. Wei,
J. Cheney, M. Bieda, and B. Ludäscher. Yesworkflow: A user-oriented,
language-independent tool for recovering workflow information from
scripts. CoRR, abs/1502.02403, 2015.

[13] P. Missier, K. Belhajjame, and J. Cheney. The w3c prov family of speci-
fications for modelling provenance metadata. 03 2013.

[14] L. Moreau, B. V. Baltajery, T. D. Huynh, D. Michaelides, and H. Packer.
A templating system to generate provenance. IEEE Transactions on Soft-
ware Engineering, 44(2):103–121, February 2018.

[15] L. Moreau et al. The first provenance challenge. Concurrency and Com-
putation: Practice and Experience, 20(5):409–418, April 2008.

[16] L. Moreau, T. D. Huynh, and D. Michaelides. An online validator for
provenance: Algorithmic design, testing, and api. 17th International
Conference, FASE 2014, Hels as Part of the European Joint Conferences
on Theory and Practice of Software, pages 291–305, April 2014.

[17] L. Moreau, N. Kwasnikowska, and J. Van den Bussche. The foundations
of the open provenance model. 04 2009.

[18] T. Munzner, C. Johnson, R. Moorhead, H. Pfister, P. Rheingans, and T. S.
Yoo. Nih-nsf visualization research challenges report summary. IEEE
Computer Graphics and Applications, 26(2):20–24, 2006.

[19] L. Murta, V. Braganholo, F. Chirigati, D. Koop, and J. Freire. nowork-
flow: Capturing and analyzing provenance of scripts. In B. Ludäscher
and B. Plale, editors, Provenance and Annotation of Data and Processes,
pages 71–83, Cham, 2015. Springer International Publishing.

[20] C. E. Scheidegger, H. T. Vo, D. Koop, J. Freire, and C. T. Silva. Querying
and creating visualizations by analogy. IEEE Transactions on Visual-
ization and Computer Graphics, 13(6):1560–1567, November/December
2007.

[21] Y. Tang, D. Li, Z. Li, M. Zhang, K. Jee, X. Xiao, Z. Wu, J. Rhee, F. Xu,
and Q. Li. Nodemerge: Template-based efficient data reduction for big-
data causality analysis. ACM SIGSAC Conference on Computer and Com-
munications Security (CCS ’18), October 2018.

[22] C. Upson, T. Jr, D. Kamins, D. Laidlaw, D. Schlegel, J. Vroom, R. Gur-
witz, and A. van Dam. The application visualization system: A compu-
tational environment for scientific visualization. Computer Graphics and
Applications, IEEE, 9:30 – 42, 08 1989.

[23] J. J. van Wijk. Views on visualization. IEEE Transactions on Visualiza-
tion and Computer Graphics, 12(4):421–432, 2006.

SC@RUG 2021 proceedings

103

An Overview of Communication Protocol Specifications
Bauke Risselada and Floris Westerman

Abstract— With many computers connected to the internet, the demand for safe, reliable and secure protocols is ever increasing. To be able to
validate such properties, several formalisms were developed in which the protocol in question can be expressed. In this paper, three of them are
compared to each other: Multiparty Session Types (MPST), High-level Message Sequence Charts (HMSC), and the Blindingly Simple Protocol
Language (BSPL). To serve as a base for this comparison, a toy protocol is designed and expressed in each of these formalisms.
The rationales between these formalisms vary greatly, and there is no ‘universal fit’ for any protocol. Instead, our comparison shows that the formalisms
complement each other and each focus on their own niche: formal analysis for MPST, visualisation and implementation guidance for HMSC, and
business processes for BSPL. Therefore, the choice of a suitable formalism is dependent on the design and purpose of the protocol under consideration.

Index Terms—Formalism, Protocol, Multiparty Session Types, Message Sequence Charts, Blindingly Simple Protocol Language.

1 Introduction
Over the past decade, increasingly many systems have been connected
to the internet. With the advent of the Internet of Things, this trend
will only accelerate. All these systems heavily rely on many layers
of communication protocols: fundamental ones such as those in the
seven layers of the OSI model [16], as well as many application-specific
ones. Furthermore, in recent years there have been increasingly many
data breaches, hacks, and system infiltrations. Therefore, there is an
ever-increasing need for a way to ensure the safety, reliability, and
correctness of communication protocols and their implementations.

While not trivial, it is possible to ensure these properties of protocols
and their implementations. Central in such analysis is a consistent,
precise, and unambiguous representation of a protocol: a so-called
formalism. Various formalisms have differing properties; while some
allow for formal correctness proofs, others focus on simplifying and
assisting implementation. Therefore, the choice of formalism for a
protocol highly influences its characteristics.

In recent years, multiple such formalisms have been developed. In this
paper, we will discuss three of these in particular: Multiparty Session
Types [4, 15], (High-level) Message Sequence Charts [2, 6, 7], and the
Blindingly Simple Protocol Language [12]. In sections 3 through 5 we
will first introduce these formalisms by means of expressing a single
‘toy’ protocol in each of them, after which we will compare and discuss
their use cases and applicability in different situations in sections 6 and
7. Finally, we will list some potential alternatives to the formalisms
described here in section 8.

2 Publication Protocol
The ‘toy’ protocol we will consider is designed in such a way as to
highlight the strengths and weaknesses of each approach. It concerns a
simplified view of the process of publishing a paper in academia. We
identify three roles: writer, publisher, and reviewer. The process works
as follows:

1. The writer will send their draft to a publisher.
2. The publisher will select a reviewer for the draft, and forward the

draft to the reviewer.
3. The reviewer will engage in an open review process with the writer.

The reviewer can choose to either accept or reject the paper, or
request revisions. After revision, the reviewer can again choose
from the same three options, any number of times.

4. If the paper has been accepted, the reviewer will inform the
publisher.

5. The publisher will determine a publication date of the final paper.

This protocol is fairly straightforward, but serves as a great example
for our purposes. A representation as a Multiparty Session Type can

• Bauke Risselada. E-mail: b.p.risselada@student.rug.nl.
• Floris Westerman. E-mail: f.p.westerman@student.rug.nl.

be found in Listing 1, the graphs of the Message Sequence Charts are
shown in Figure 2, and the representation in the Blindingly Simple
Protocol Language is found in Listing 2.

3 Multiparty Session Types
Multiparty Session Types (MPST) [4, 15] are a very formal and precise
approach to expressing a protocol we will discuss in this paper. They
are a generalisation of (binary) session types [14]: while binary session
types capture communications between two parties, MPST generalise
this to allow for any number of parties. We will discuss a slightly
simplified version of MPST that is sufficient for demonstration purposes,
as defined in [15].

The concept central to session types is types, as the name already
implies. A type captures a sequence of messages, in a very precise
mathematical form. In MPST, we distinguish between global types and
local types. Global types describe an entire protocol with all parties,
whereas local types describe the protocol only from the perspective of
a single party. Where global types specify messages between parties
and its order, a local type is only concerned with one other party and
whether a message is incoming or outgoing.

The description of such a type is closely related to the concept of
process calculi [1], their notations share a strong resemblance as
well. Essentially, the type puts constraints on the behaviour of a
program, while a calculus encodes this behaviour. An example of a
calculus relevant in the context of protocols would be the Calculus of
Communicating Systems (CCS) [8].

3.1 Global Types
Before formalising the notion of a global type, it is instructive to first look
at an example. Consider an elementary handshake protocol between
parties A and B. In this protocol, A will send a message init(void) to B,
after which B will reply with an acknowledgement ack(void) or deny
the connection with deny(void) . The global type for this protocol is
written as follows:
� = A→B : init(void) · B→A : { ack(void) · end, deny(void) · end },
where� is the global type, the · symbol represents sequencing, and end
denotes termination of the protocol. The brackets {} denote a choice
between messages, in this case between ack(void) and deny(void) .
Repetition can be expressed as well, by means of a ‘label-goto’ system:
we mark the start of the loop with `X, and at some later point we invoke
X to jump back.

The full specification of MPST [4] supports a number of features we
do not include here for brevity and clarity. These include concurrent
execution of processes, as well as the possibility to send types themselves,
in addition to sending values.

The precise formal specification is in accordance with [15], with some
minor changes to clarify the typography. As already indicated above,
every message consists of a label l8 and a value. These values have
some type S (boolean, number, etc.), which we will call a sort as to not
confuse them with the global and local types of a protocol.

104

Definition 1 Sorts are defined by the following simple grammar:
(F nat | int | bool | text | void | date. �

Definition 2 Global types are defined by the following grammar:

� F end | `X · � | X | p→q : { l8 (Si) · �8 }8∈� ,

where p ≠ q, � ≠ ∅, and l8 ≠ l 9 for all distinct 8, 9 ∈ �. Furthermore, X
cannot occur without a corresponding `X. �

The sorts text, void, and date are non-standard and are purely added
for ease of use when representing the publication protocol later on.
These do not influence the applicability of the theory, as void is
equivalent to a bool that is always true, date can be encoded as an
integer, and text can be encoded as a binary string in nat. The last
term in the global type represents the choice as introduced before,
denoted as a set of alternatives �. When there is only a single option,
we use the simplified notation p→q : l(S) · �.

Note that the choice described above only allows for choosing between
different message contents; the message will always have the same
sender and recipient. It is not possible to choose between sending a
message from p to q or r, for example. This prevents any confusion
at the other parties: for q it is not possible to determine whether the
message is simply late, or will not arrive at all. Furthermore, the labels
of each option must be different, as otherwise it would not be possible
to distinguish between the messages.

3.2 Local Types
Local types, as described before, are the representation of the protocol
(captured as �) from the perspective of one of the parties. In the case
of our handshake, we have two parties: A and B. From the perspective
of A, we first send a message and then receive one of two options:

)A = B!init(void) ·
(
B?ack(void) · end & B?deny(void) · end

)
,

where)A is the local type, and · and end are the same as for global
types. A sent message is denoted by !, while a received message is
denoted by ?. To further emphasise this difference we will write all sent
messages in blue and all received messages in red.

Repetition in local types is represented exactly the same as for global
types, but representing choice requires us to distinguish between
internal and external choice. Consider the global type message
p→q : { a(void) , b(void) }. Here, p is the party that has to choose
between messages a(void) and b(void) . For this party, this is an
internal choice, represented by the operator ⊕. On the other hand, q
will simply receive one of both messages and will deduce which choice
was made. Therefore, this is an external choice, represented by the
operator &.

Definition 3 Local types are defined by the following grammar:

) F end | &8∈� p?l8 (Si) ·)8 | ⊕8∈� q!l8 (Si) ·)8 | `X ·) | X,

where � ≠ ∅ and l8 ≠ l 9 for all distinct 8, 9 ∈ �. Furthermore, X cannot
occur without a corresponding `X. �

When omitting the party names p, q, the grammar for a local type
reduces to that of a binary session type [14]. We now introduce a way
to construct local types from a given global type, which we will call the
projection of a global type onto one of its participants. This translation
might seem intuitive and easy, but has some subtleties related to choices
in the global type that do not involve the participant under consideration.

In the easiest case, all continuations of the protocol after such a choice
are the same. Then, we can simply ignore this particular message as it
does not influence the remainder of the protocol. In more complicated
cases, we require some sort of ‘compatibility’ between the continuations
such that from the perspective of the outsider participant, the choice
can be represented as a (sequence of) external choices. We capture this
behaviour using the so-called merging operator [15], which we will not
discuss in formal detail.

Definition 4 The set of participants of a global type �, written pt{�}
is defined by the following inductive relation:

pt{end} = pt{X} = ∅
pt{`X · �} = pt{�}

pt{p→q : { l8 (Si) · �8 }8∈� } = {p, q} ∪ pt{�8 } for 8 ∈ � . �

Definition 5 The projection of a global type � onto a participant r,
written � � r, is defined by the following inductive relation:

end � r = end

X � r = X

(`X · �) � r =
{
`X · (� � r) for r ∈ pt{�}
end for r ∉ pt{�}

p→r : { l8 (Si) · �8 }8∈� � r = &8∈�
[
p?l8 (Si) · (�8 � r)

]
r→q : { l8 (Si) · �8 }8∈� � r = ⊕8∈�

[
q!l8 (Si) · (�8 � r)

]
p→q : { l8 (Si) · �8 }8∈� � r =

/
8∈�

(�8 � r) for p ≠ r ≠ q,

where
.

is the merging operator. The projection is undefined in other
cases that do not match this induction. �

It turns out that the inverse operation, combining several local types into
a global type, is not always possible. In fact, it can be proven that when
a given set of local types can be expressed as a global type, any correct
implementation of the protocol is guaranteed to terminate, and will
never ‘hang’ or ‘get stuck’ [15]. This property is a consequence of the
design of global and local types, encoded in their defining grammars.

3.3 Typing the Publication Protocol
With an initial understanding of MPST and its global and local types,
we can use it to express the publication protocol as outlined in
section 2. The full specification can be found in Listing 1. We
first define the global type of the entire protocol, �. We have
pt{�} = {Writer, Publisher, Reviewer}, as expected. After that,
we see the projections of � onto each participant.

With the indentation used, we can clearly see the flow of the protocol:
we start with a submission to the publisher, after which the publisher
sends the draft to the reviewer to start the review process. The review
process is started with a loop definition `X. Each loop iteration, the
reviewer will have three choices of messages to the writer: accept(void) ,
reject(text) , or review(void) . After a review message, the writer will
send a revision and the loop will start over. After rejection, the reviewer
will inform the publisher. After acceptation, the reviewer will inform
the publisher as well, which will then determine and communicate a
publication date.

In this setup we can immediately see a weakness of MPST: it is not
possible to define optional or conditional messages. For example, it
would have been more concise to define only the choices review(text)
and result(bool) , such that the publisher would only send a publication
date if the result is true. This is not possible in MPST; the only choice
possible is between message labels, as long as they are between the
same two parties.

In the projections of �, we can see how this behaviour manifests itself
in internal and external choices. Only the reviewer has a local choice in
this scenario; both the writer and the publisher only have an external
choice. In the projection of the publisher, we can see the merging
operator

.
in action: the message Reviewer→Writer : { . . . } in �

does not involve the publisher. The merging operator will look at all
possible continuations of this message, and combine them as an external
choice:

• In the accept(void) branch, the publisher will receive a mes-
sage accept(void) and should send a message pubDate(date) .
The projection of this branch is Reviewer?accept(void) ·
Writer!pubDate(date) · end.

SC@RUG 2021 proceedings

105

� = Writer→Publisher :submission(text) ·
Publisher→Reviewer :draft(text) ·
`X · Reviewer→Writer : {

accept(void) ·
Reviewer→Publisher :accept(void) ·
Publisher→Writer :pubDate(date) · end,

reject(void) ·
Reviewer→Publisher :reject(void) · end,

review(text) ·
Writer→Reviewer :revision(text) · X

}
� � Writer

= Publisher!submission(text) · `X · (
Reviewer?accept(void) · Publisher?pubDate(date) · end
& Reviewer?reject(void) · end
& Reviewer?review(text) · Reviewer!revision(text) · X

)
� � Reviewer

= Publisher?draft(text) · `X · (
Writer!accept(void) · Publisher!accept(void) · end
⊕ Writer!reject(void) · Publisher!reject(void) · end
⊕ Writer!review(text) · Writer?revision(text) · X

)
� � Publisher

= Writer?submission(text) · Reviewer!draft(C4GC) · (
Reviewer?accept(void) · Writer!pubDate(date) · end
& Reviewer?reject(void) · end

)

Listing 1. The publication protocol expressed as a Multiparty Session Type.
This listing includes both the global type and its projections on all participants.
Processes implementing the local types have not been specified.

• In the reject(void) branch, the publisher will receive a
message reject(void) . The projection of this branch is
Reviewer?reject(void) .

• In the review(void) branch, the publisher is no longer involved.
The projection is end.

4 (High-level) Message Sequence Charts
(High-level) Message Sequence Charts (MSCs) [2, 6, 7] are a graphical
approach to capturing protocols, and can be seen as a mere formalisation
of the drawings many of us already make when illustrating a protocol or
sequence of interactions. MPST can be directly mapped to (H)MSCs:
they have similar expressive power. MSCs have been around since
1992 [2], but are limited in their expressive power: they can not capture
loops or conditionals. Therefore, we will mainly discuss the extension
that is the High-level Message Sequence Chart as introduced in 1996 [6],
that allows for the composition of multiple MSCs [7].

4.1 Basic Message Sequence Charts
For clarity, we will call conventional MSCs basic. A basic MSC
is a graph representing a linear communication timeline between a
number of parties. It has three main components: instances, actions,
and messages. We start with a number of instances (parties) that are
represented by vertical lines. These lines represent the passage of time
downwards. Furthermore, we define actions to be processes local to an
instance. Lastly, we have messages between two instances with a label.

The MSC for the handshake protocol introduced before can be seen
in Figure 1a. We have two parties, A and B. First, A will perform
an action ‘Action’, after which it sends an init message to B. Then,
B sends ack back. Modelling a choice, for example to return either
ack or deny, is not immediately possible, but commonly requires two

A B

Action

init

ack

msc Handshake

a.

init

ack deny

hmsc Handshake

b.

Figure 1. Example diagrams of both an (a) MSC and an (b) HMSC for the
handshake.

separate diagrams illustrating both possible scenarios. Another way
this might be done is through drawing ‘regions’ (boxes) around some
interactions and marking them as alternatives. This same limitation
holds for modelling repetitions.

A big advantage of MSCs is that the time dimension has been made
explicit. This allows us to concretise delays and timeouts, and terminate
or introduce instances throughout the lifetime of the chart. Of course,
timing aspects are often implementation details rather than design
choices, but they do provide more insight to the end user or software
developer regarding the desired implementation.

4.2 High-level Additions
A high-level MSC makes up for the shortcomings of basic ones. They
allow us to combine multiple basic MSCs into a more complex frame-
work. The base elements in an HMSC are start and end symbols, 5
and 4, respectively, and references, essentially invocations of another
(H)MSC. This allows for more advanced compositions, as HMSCs do
allow repetition and branching.

The HMSC for the handshake protocol can be seen in Figure 1b. The
respective MSCs for the ‘init’, ‘ack’, and ‘deny’ references are omitted,
as they are only single messages. We see that the handshake protocol
starts with an ‘init’ reference, which would be an MSC with two parties,
A and B, exchanging the single ‘init’ message. After this, either ‘ack’
or ‘deny’ is invoked, but the HMSC makes no statements on how this is
determined (it might even be up to chance); the HMSC only states what
the possibilities are. After either of these two messages, the protocol
terminates.

Additionally, HMSCs allow us to construct loops, by simply connecting
an arrow from one reference to a previous one. To simplify notation,
a connector is introduced, denoted by ©. This is a node in the graph
that represents a connection from each incoming edge to each outgoing
edge.

4.3 Charting the Publication Protocol
As for MPST, we will express our publication protocol from section 2
into a set of (H)MSCs. The complete set of 2 HMSCs and 5 basic
MSCs can be found in Figure 2. In this setup, we have split off the
review interactions into its own HMSC, to keep the overview clear. The
entry point of the protocol is ‘hmsc Publication’.

The ‘root’ MSC is very straightforward: we start with paper submission,
and then we perform paper review. The submission is a short MSC,
where the writer will first perform a local action ‘Writing’, and then
submit the draft to the publisher. The subsequent review process is
slightly more complicated. We start with the ‘Draft’ MSC, that simply
represents the publisher sending the draft to the reviewer. Afterwards,
we connect with a connector, that allows us to go to either ‘Reject’,
‘Accept’, or ‘Revise’. These three are all simple MSCs representing the
messages as outlined before. After ‘Revise’, we connect back to the
connector, which allows us iterate.

4.4 Mapping an MPST
As indicated before, it is possible to directly map an MPST to a set of
(H)MSCs. A straightforward mapping from MPST to MSC would be

An Overview of Communication Protocol Specifications – Bauke Risselada and Floris Westerman

106

Submission

Review

hmsc Publication

Writer Publisher

Writing

submission

msc Submission

Publisher Reviewer

draft

msc Draft

Publisher Reviewer Writer

acceptaccept

pubDate

msc Accept

Draft

AcceptReject Revise

hmsc Review

Reviewer Writer

review

revision

msc Revise

Publisher Reviewer Writer

reject

reject

msc Reject

Figure 2. The publication protocol expressed in (High-level) Message Sequence Charts. The entry point of the protocol is ‘hmsc Publication’.

the following procedure. We start by creating a single HMSC with a
starting node 5, considering this our ‘current’ node. Then, we iterate
recursively over �:

• We map end to 4 and finish the current branch.

• We map `X to a connector node in the HMSC, and consider that
our current node.

• We map X by an arrow from the current node back to the respective
connector node, finishing the current branch.

• We map p→q : l(S) to a new MSC reference, and consider that
our current node. The MSC we refer to only contains this single
message.

• We map p→q : { l8 (Si) · �8 }8∈� to = different MSC references
(� having = elements), such that for each option in this choice
we obtain a branch in the HMSC. For each 8, we continue the
algorithm for �8 .

At the end, we go over our HMSC and merge MSC references where
possible and appropriate. We could extract a sub-HMSC if that makes
sense, dependent on the semantics of our protocol.

Unfortunately, the reverse operation is not as easy. Since MSCs put
very little to no constraints on the actual messages one puts in, it is easy
to design a protocol that would never work. While MPST can provide a
guarantee that a protocol will terminate, an MSC cannot.

5 Blindingly Simple Protocol Language
The Blindingly Simple Protocol Language (BSPL) [12] is a more recent
formalism, focused on capturing meaning, rather than details of the
operations of the protocol. While in a way MPST and MSC characterise
a protocol by the structure and sequence of its messages, BSPL leaves
structure and sequence implicit: the protocol is characterised by its
messages, their meaning, and the emergent behaviour produced by the
protocol.

Essentially, this is similar to the difference between an imperative
(MPST/MSC) and a declarative (BSPL) computer program. In an
imperative program, one states what actions need to be taken, in what
order, and in what way. In a declarative program, one only specifies the
unknowns to be computed, together with all relevant information such

as function definitions. The computer will then find out how to actually
compute the desired result.

What makes this approach simple and powerful, is that only two main
constructs are required: the definition of a protocol with messages, and
the composition of such protocols. The order of messages is purely
derived from the specifications in these protocols. BSPL upholds
several distinguishing principles [12]:

• Each protocol has two or more roles and one or more parameters.
A role represents one party in the protocol, and a parameter
represents a piece of information that is established and agreed
upon by all parties during execution.

• There are no hidden flows of information, and the order of
operations can be deduced from the specified information flows.

• No notion of state is necessary, as all relevant information is made
explicit in the protocol; a party’s business logic is irrelevant.

• Each protocol instance is unique, as some or all of the parameters
can together define a key, uniquely representing a single instance
of the protocol.

5.1 Defining a BSPL Protocol
We demonstrate the construction of a BSPL protocol, again using the
handshake. We will introduce the basic concepts: the protocol itself,
its public interface, and some basic messages.

The handshake expressed in BSPL.
1 Handshake {

2 role A, B

3 parameter out ID key, out result
4
5 A ^> B: init[out ID]
6
7 B ^> A: ack[in ID, out result]

8 B ^> A: deny[in ID, out result]

9 }

The protocol starts off with Handshake as the protocol name. Within the
public interface that follows, two roles are declared: A and B. Below
that, the parameters are given, of which at least one is a key. These
key parameters together define the unique instance of the protocol.

SC@RUG 2021 proceedings

107

Parameters can be preceded by either an in, out, or nil prefix. in

means that the parameter must be instantiated (by another protocol)
before the protocol can be executed, whereas out means that the
parameter will be instantiated during the execution. The use of nil is
crucial in some constructions, as it allows for a parameter to either be
in or out. Lastly, a parameter can be suffixed nilable, meaning that
it does not have to be instantiated during execution.

The roles and parameters are followed by one or more references, which
can be either a message or an invocation of another protocol. At least
one of the parameters of such a reference should be denoted as key in
the public interface of the source protocol, to allow linking the nested
protocol instance to the source protocol instance.

In this example, we have three messages. The first message, init[],
is sent from role A to role B. It produces an ID parameter to uniquely
identify the handshake. In the next step, B can choose to either ack[]
or deny[] the handshake. As out parameters can only be instantiated
once, exactly one of these messages can be sent within an instance of
the protocol: they are mutually exclusive. Once all out parameters
listed in the public interface are instantiated, a protocol instance can
terminate. In this case, this is when the out result parameter has
been instantiated using either ack[] or deny[].

Parameters that are not listed in the public interface, but are still used in
message definitions or protocol references, are called local parameters.
These parameters do not have to be instantiated during execution of a
protocol, only the parameters in the public interface impact termination.
Consequently, even if the intended final message in a protocol might
normally not carry any data, but would merely signal a result (such as
the ack[] or deny[] in the handshake), an arbitrary out parameter is
still required to ensure these messages will be executed. In this case,
the out result is only present to prevent early termination, but does
not carry any information.

A message might require an in parameter that is yielded as an out

parameter by another message. This is what enforces the order of
operations within the protocol, e.g. the ack[] or deny[] messages
cannot be sent before the init[] message is sent. This also allows for
composition of protocols: a protocol that lists a parameter as in in its
public interface can be included in another protocol that has a message
or other protocol instantiating this parameter.

5.2 Declaring the Publication Protocol
Listing 2 shows the BSPL representation of the publication protocol
from section 2. We first define the Review protocol, which is strictly
between the roles Reviewer and Writer. This process can play out in
two ways. The first way is that the Reviewer produces a review[],
telling the Writer to adjust their draft and sending along comments. The
Writer responds with a revision[] message which yields a newDraft.
While in our description we could loop back to the review[] step, this
setup in BSPL only allows for a single review round: after a review, the
parameter comments has been instantiated.

The reviewer then sends the Writer a result[] message, yielding a
boolean out accepted parameter indicating whether the draft has been
accepted or not. This message can just as well be sent immediately,
without the review[] and revision[] interactions, as designed. This
illustrates how choice can be implemented. Note that the revision[]
message is dependent on the out comments from review[]. However,
it would be possible for the reviewer to send a result[] message after
sending a review[], without waiting for the revision[]. In BSPL, it
is not possible to prevent this.

This Review protocol is used in the composed protocol Publication,
which plays out between a Reviewer, Writer, and Publisher. The Writer
sends a submission[] message with corresponding subNo and draft

to the Publisher, which the Publisher in turn sends to the Reviewer
along with a reviewId to allow for Review protocol instantiation.

At this point, the Review protocol plays out, in order to obtain the
accepted parameter. This parameter is only known to the Writer

1 Review {

2 # The review process only concerns interaction between

the reviewer and the writer↩→

3 role Reviewer, Writer
4
5 # The review process takes a reviewId identifying the

review session, and emits a boolean result↩→

6 parameter in reviewId key, out result
7
8 # The repetitive behaviour of this process cannot be

represented in BSPL. With this setup, only a

single review round can be done.

↩→

↩→

9 Reviewer ^> Writer: review[in reviewId, out comments]

10 Writer ^> Reviewer: revision[in reviewId, in comments,

out newDraft]↩→
11
12 # The reviewer can choose to either send a review or a

result to the writer↩→

13 Reviewer ^> Writer: result[in reviewId, out result]

14 }
15
16 Publication {

17 role Reviewer, Writer, Publisher

18 parameter out subNo key, out reviewId key, out result,

out terminated, out pubDate nilable↩→
19
20 # The publication process depends on the review

process, which can only be invoked once the review

message is sent

↩→

↩→

21 Review(Reviewer, Writer, in reviewId, out result)
22
23 # The writer produces a submission number by

submitting their draft↩→

24 Writer ^> Publisher: submission[out subNo, out draft]
25
26 Publisher ^> Reviewer: review[out reviewId, in draft]

27 Reviewer ^> Publisher: accepted[in reviewId, in

result]↩→

28 Reviewer ^> Publisher: rejected[in reviewId, in

result, out terminated]↩→

29 Publisher ^> Writer: pubDate[in subNo, out terminated,

out pubDate]↩→

30 }

Listing 2. The publication protocol expressed in the Blindingly Simple Protocol
Language, where the review process has been extracted as a smaller, indepen-
dent protocol.

and Reviewer, so we need an additional message to the Publisher.
This message cannot send in accepted, as then the message would
not be required. Therefore, we introduce the parameter out result,
containing the same information. In fact, we choose to introduce two
separate messages, one for accepted[] and one for rejected[]. The
latter contains an additional out terminated, allowing the protocol
to terminate, while the first does not and thus requires the pubDate[]
message to be sent before termination.

5.3 Working with BSPL Protocols
As already alluded to before, certain features or properties of BSPL can
at first be difficult to comprehend or interpret properly. Most of these
confusions seem to arise from the use of the in and out keywords, the
meaning of which might not be immediately obvious in this context.
Upon reading the statement A ^> B: message[in ID, out info],
it would not be out of the ordinary to think of message[] as some kind
of interaction between A and B, where A puts in an ID, and somehow
the info arises out of that interaction, similar to a function call in a
programming language.

However, that is of course not the case. The out keyword only describes
that A should come up with an appropriate value for this parameter. For
an external observer, the actual message exchanged between both parties
would be identical to one with in info. Essentially, the distinction

An Overview of Communication Protocol Specifications – Bauke Risselada and Floris Westerman

108

between in and out is only a vehicle to declare an implicit order
dependence between messages, and does not say anything about the
semantics of the messages.

This same detail manifests itself in the use of out parameters purely to
prevent early termination. When designing in BSPL, one will quickly
introduce many ‘control’ parameters that do not contribute to the flow of
information or the meaning of a protocol, but only serve to ensure proper
functionality. In the publication protocol, the parameters reviewId and
terminated serve such a role. This role can also be taken by otherwise
meaningful parameters, being included in other messages just to control
the flow, without contributing to the semantics of the messages. This
takes place in the Review protocol, where comments is sent back to the
Reviewer after revision, in order to ensure the order of these messages.

6 Comparative Analysis
Finally, we can compare the three formalisms we discussed above. We
will compare them on various points, highlighting the differences and
reiterating findings from expressing the publication protocol.

6.1 Imperative vs Declarative
The main identifying property of BSPL is its declarative approach,
whereas MPST and MSC use an imperative approach. In an imperative
approach, the protocol is defined by the structure of its messages. Such
an approach is excellent for a precise specification and rigorous analysis
of a protocol; it allows us to validate the correctness of implementations
of the protocol. This is crucial for foundational protocols such as TCP,
HTTPS, and IPv4.

However, such mathematical precision is not always required or even
desired. When designing more abstract protocols, such as the interaction
between a bank and a customer, we move away from a simple message
exchange, and rather talk about information that needs to be exchanged,
and what information should end up where. We would define ‘messages’
such as Sender^>Receiver: ship[^^.] [12], that encapsulate an
entire complex chain of interactions that can take place over multiple
days. We do not require that such a message succeeds; it is a business
operation and we would call the shipping company when a package
does not arrive.

For such a situation, a declarative approach might be better. In this case,
the distinction between protocol messages as pure pieces of information,
and the message composition as the behaviour of the protocol, is less
clear. The information to be sent also says something about how and
when it should be sent. While this can pose problems for protocols such
as TCP and HTTPS, it can be a good fit for business processes, where
the focus will likely be on the information flows in the bigger picture as
opposed to the technical (implementation) details of a protocol. The
uniqueness of each protocol instance by means of the key adds to this; a
BSPL protocol models a (unique) business process instead of a precise
sequence of messages.

A side-effect of the declarative approach is the use of a global state for
all parameters. This makes it very easy for the problem of non-local
choice [5] to emerge: it is perfectly legal in BSPL to let party B send a
message with a parameter that party A came up with, without sending it
to B. This is especially relevant in protocols with more than two roles.

6.2 Concurrency
Another important differentiating factor is concurrency. Especially
for larger protocols, it might be that multiple parties work together
in parallel, and messages might be exchanged simultaneously, before
‘synchronising’ again. Such behaviour is easy to encode in MSCs, and
full MPST supports this as well. However, the formal analysis of such
protocols is tedious [4, 7].

In principle, BSPL allows for concurrency as well, but only implicitly.
For example, two independent messages might be exchanged at the
same time, or an entire sequence of messages might be performed in
parallel. However, it is not possible to explicitly specify such behaviour;
it is up to the implementation to achieve any concurrency.

6.3 Visualisation
Clearly, MSC is the most visual formalism we discussed, as it is the
only one. The explicit inclusion of the concept of time makes MSC
very expressive, allowing a wide range of protocols and interactions
to be modelled. A graphical depiction is arguably clearer than a
textual representation such as BSPL and MPST. However, MSCs can
quickly become difficult to work with, as can already be seen in the
implementation of the publication protocol in Figure 2. For more
complicated protocols, the number of short MSCs will increase rapidly,
cluttering the overview gained by using MSCs to begin with.

Since MPST can easily be mapped to a set of MSCs, we consider it
to allow for decent visualisation as well. BSPL, on the other hand,
cannot easily be visualised. Due to the fact that the order of operations
is made implicit, it is hard to draw a diagram such as an MSC. This is
an inherent difficulty with declarative approaches that is not unique to
BSPL.

6.4 Expressive Power
A last point of differentiation between the formalisms is their expressive
power. The expressive power of a formalism determines what class
of protocols can be expressed with them, and is a deciding factor in
choosing a suitable formalism.

MPST is the least ‘free’ formalism: all interactions have to adhere to
strict rules and constraints. On the other hand, this does offer us great
options for analysis. Local types can be used to prove the correctness
of implementations, and can even help guarantee termination of our
protocol. Furthermore, MPST is the only formalism that does not have
the problem of non-local choice [5], as it prevents this by design of its
grammar - as long as the local projections for all parties are defined.

MSCs have a great expressive power, as there are almost no restrictions
on the charts. The explicit consideration of time allows expressing
implementation details of a protocol, such as timeouts, exponential
back-offs, and delays. Furthermore, they allow us to represent local
computation in ‘Actions’, no other formalism allows us to do so explicitly.
However, this lack of restrictions also allows us to make nonsensical
protocols. MSCs do not have inherent correctness properties.

Lastly, BSPL, too, has a large expressive power, but in a different
domain. It is fairly difficult to say a lot about individual messages
between parties, but of the three options, only BSPL allows us to express
the ‘meaning’ of a protocol, encoding not only single messages but
potentially entire business processes.

7 Conclusions
After all the consideration and comparison above, we can say that there
is no clear ‘best’ option when designing a protocol. We would argue
that one should choose between either BSPL, or a combination of MPST
and MSCs. The best choice depends on the purpose and scope of the
protocol under consideration.

We think that MPST and MSCs complement each other perfectly; with
MPST serving as a tool to formally analyse a protocol and say things
about its inherent structure, while MSC can serve as a method to
make the protocol more accessible and encode implementation details
and guidance straight in the protocol itself, further simplifying the
implementation and reducing the number of implicit assumptions.

On the other hand, BSPL offers unique possibilities with its declarative
approach. It allows the designer to think on a higher level of abstraction,
focusing on the information flow and the added value of a protocol
as a whole. The declarative notation is clear and straightforward; no
complex notation is necessary. Especially for relatively straightforward
communications between just two parties, eliminating the issue of
non-local choice, BSPL is well-suited.

However, BSPL does have its limitations: it does not allow elementary
constructs such as a loop, and confuses between protocol behaviour and
message data. It tries to lift to a higher level of abstraction, but does

SC@RUG 2021 proceedings

109

not reach it by still being centred around discrete messages and one-off
interactions. This leaves us between a rock and a hard place: we still
have to deal with the order of messages, but we cannot intuitively do so
because we are at a too high abstraction level.

8 Alternatives
For BSPL, it seems like it just misses the right balance between
abstraction and concretisation. Perhaps a better approach would be even
more abstract, almost closer to business descriptions. One in which we
could define processes that play out over multiple parties, such that we
only need to be concerned with what information we need, and what the
dependencies between these pieces of information are. However, such
description would not benefit from a very formal format such as BSPL.

Another approach would be to try and overcome the shortcomings
in BSPL: to allow control over the order of operations and discrete
messages, while also re-instantiating the distinction between information
and flow control. This is exactly what Bliss [13] aims for: it extends
BSPL, while introducing a clear distinction between five types of
parameters: 1. key parameters, 2. payload parameters, 3. completion
parameters, 4. integrity parameters, and 5. control parameters.

For MPST, a wide range of alternative type theories and formalisms
are available [1]. These all have different ‘specialties’, dependent upon
the requirements for the protocol. For example, MPST can be extended
with so-called trace-based semantics, that offer even greater correctness
guarantees to a protocol [9].

Lastly, for MSC, a well-known alternative is UML [11]. UML is a
large specification, covering many aspects of software design besides
just protocols. Therefore, UML is an attractive alternative: it allows
one to incorporate the protocol in a larger system design. Furthermore,
the differences between UML and MSC are small and mostly about
syntax [3]. It is not surprising then, that work has been done to pursue
a unification of the two [10].

References

[1] J. Baeten. A brief history of process algebra. Theoretical Computer
Science, 335(2-3):131–146, May 2005. doi: 10.1016/j.tcs.2004.07.036

[2] Ø. Haugen. Using MSC-92 effectively. In R. Bræk and A. Sarma, eds.,
SDL ’95 with MSC in Case, pp. 37–49. Elsevier, Amsterdam, Jan. 1995.
doi: 10.1016/B978-0-444-82269-7.50008-3

[3] Ø. Haugen. Comparing UML 2.0 Interactions and MSC-2000. In D. Amyot
and A. W. Williams, eds., System Analysis and Modeling, Lecture Notes in
Computer Science, pp. 65–79. Springer, Berlin, Heidelberg, 2005. doi: 10.
1007/978-3-540-31810-1_5

[4] K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session
types. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL ’08, pp. 273–284.
Association for Computing Machinery, New York, NY, USA, Jan. 2008.
doi: 10.1145/1328438.1328472

[5] P. B. Ladkin and S. Leue. Interpreting Message Flow Graphs. Formal
Aspects of Computing, 7(5):473–509, Sept. 1995. doi: 10.1007/BF01211629

[6] S. Mauw. Message Sequence Chart (MSC). Draft Recommandation Z.
120, p. 74, 1996.

[7] S. Mauw and M. A. Reniers. High-level Message Sequence Charts. In
A. Cavalli and A. Sarma, eds., SDL ’97: Time for Testing, pp. 291–306.
Elsevier Science B.V., Amsterdam, Jan. 1997. doi: 10.1016/B978-044482816
-3/50020-4

[8] R. Milner. A Calculus of Communicating Systems. Lecture Notes in
Computer Science. Springer-Verlag, Berlin Heidelberg, 1980. doi: 10.
1007/3-540-10235-3

[9] L. Padovani, M. Dezani-Ciancaglini, and G. Castagna. On Global Types
and Multi-Party Session. Logical Methods in Computer Science, Volume
8, Issue 1, Mar. 2012. doi: 10.2168/LMCS-8(1:24)2012

[10] E. Rudolph, J. Grabowski, and P. Graubmann. Towards a Harmonization of
UML-Sequence Diagrams and MSC. In R. Dssouli, G. v. Bochmann, and
Y. Lahav, eds., SDL ’99, pp. 193–208. Elsevier Science B.V., Amsterdam,
Jan. 1999. doi: 10.1016/B978-044450228-5/50014-X

[11] J. Rumbaugh, I. Jacobson, and G. Booch. Unified Modeling Language
Reference Manual, The (2nd Edition). Pearson Higher Education, 2004.

[12] M. P. Singh. Information-driven interaction-oriented programming: BSPL,
the blindingly simple protocol language. In The 10th International Confer-
ence on Autonomous Agents and Multiagent Systems - Volume 2, AAMAS
’11, pp. 491–498. International Foundation for Autonomous Agents and
Multiagent Systems, Richland, SC, May 2011.

[13] M. P. Singh. Bliss: Specifying Declarative Service Protocols. In 2014
IEEE International Conference on Services Computing, pp. 235–242, June
2014. doi: 10.1109/SCC.2014.39

[14] K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language
and its typing system. In C. Halatsis, D. Maritsas, G. Philokyprou, and
S. Theodoridis, eds., PARLE’94 Parallel Architectures and Languages
Europe, Lecture Notes in Computer Science, pp. 398–413. Springer, Berlin,
Heidelberg, 1994. doi: 10.1007/3-540-58184-7_118

[15] N. Yoshida and L. Gheri. A Very Gentle Introduction to Multiparty Session
Types. In D. V. Hung and M. D´Souza, eds., Distributed Computing
and Internet Technology, vol. 11969, pp. 73–93. Springer International
Publishing, Cham, 2020. doi: 10.1007/978-3-030-36987-3_5

[16] H. Zimmermann. OSI Reference Model - The ISO Model of Architecture
for Open Systems Interconnection. IEEE Transactions on Communications,
28(4):425–432, Apr. 1980. doi: 10.1109/TCOM.1980.1094702

An Overview of Communication Protocol Specifications – Bauke Risselada and Floris Westerman

110

faculty of science
and engineering

computing science

SC@RUG 2020 proceedings

Rein Smedinga, Michael Biehl (editors)

17th SC@RUG
2019-2020

17th S
C

@
R

U
G

 2019-2020

rug.nl/research/bernoulli

faculty of science
and engineering

computing science

R20170190_omslag_SC_RUG2018_.indd 3 01-05-18 13:11

