824 research outputs found

    A set-based reasoner for the description logic \shdlssx (Extended Version)

    Full text link
    We present a \ke-based implementation of a reasoner for a decidable fragment of (stratified) set theory expressing the description logic \dlssx (\shdlssx, for short). Our application solves the main TBox and ABox reasoning problems for \shdlssx. In particular, it solves the consistency problem for \shdlssx-knowledge bases represented in set-theoretic terms, and a generalization of the \emph{Conjunctive Query Answering} problem in which conjunctive queries with variables of three sorts are admitted. The reasoner, which extends and optimizes a previous prototype for the consistency checking of \shdlssx-knowledge bases (see \cite{cilc17}), is implemented in \textsf{C++}. It supports \shdlssx-knowledge bases serialized in the OWL/XML format, and it admits also rules expressed in SWRL (Semantic Web Rule Language).Comment: arXiv admin note: text overlap with arXiv:1804.11222, arXiv:1707.07545, arXiv:1702.0309

    A \textsf{C++} reasoner for the description logic \shdlssx (Extended Version)

    Full text link
    We present an ongoing implementation of a \ke\space based reasoner for a decidable fragment of stratified elementary set theory expressing the description logic \dlssx (shortly \shdlssx). The reasoner checks the consistency of \shdlssx-knowledge bases (KBs) represented in set-theoretic terms. It is implemented in \textsf{C++} and supports \shdlssx-KBs serialized in the OWL/XML format. To the best of our knowledge, this is the first attempt to implement a reasoner for the consistency checking of a description logic represented via a fragment of set theory that can also classify standard OWL ontologies.Comment: 15 pages. arXiv admin note: text overlap with arXiv:1702.03096, arXiv:1804.1122

    Web ontology representation and reasoning via fragments of set theory

    Full text link
    In this paper we use results from Computable Set Theory as a means to represent and reason about description logics and rule languages for the semantic web. Specifically, we introduce the description logic \mathcal{DL}\langle 4LQS^R\rangle(\D)--admitting features such as min/max cardinality constructs on the left-hand/right-hand side of inclusion axioms, role chain axioms, and datatypes--which turns out to be quite expressive if compared with \mathcal{SROIQ}(\D), the description logic underpinning the Web Ontology Language OWL. Then we show that the consistency problem for \mathcal{DL}\langle 4LQS^R\rangle(\D)-knowledge bases is decidable by reducing it, through a suitable translation process, to the satisfiability problem of the stratified fragment 4LQSR4LQS^R of set theory, involving variables of four sorts and a restricted form of quantification. We prove also that, under suitable not very restrictive constraints, the consistency problem for \mathcal{DL}\langle 4LQS^R\rangle(\D)-knowledge bases is \textbf{NP}-complete. Finally, we provide a 4LQSR4LQS^R-translation of rules belonging to the Semantic Web Rule Language (SWRL)

    Analytic Tableaux for Simple Type Theory and its First-Order Fragment

    Full text link
    We study simple type theory with primitive equality (STT) and its first-order fragment EFO, which restricts equality and quantification to base types but retains lambda abstraction and higher-order variables. As deductive system we employ a cut-free tableau calculus. We consider completeness, compactness, and existence of countable models. We prove these properties for STT with respect to Henkin models and for EFO with respect to standard models. We also show that the tableau system yields a decision procedure for three EFO fragments

    An optimized KE-tableau-based system for reasoning in the description logic \shdlssx (Extended Version)

    Full text link
    We present a \ke-based procedure for the main TBox and ABox reasoning tasks for the description logic \dlssx, in short \shdlssx. The logic \shdlssx, representable in the decidable multi-sorted quantified set-theoretic fragment \flqsr, combines the high scalability and efficiency of rule languages such as the Semantic Web Rule Language (SWRL) with the expressivity of description logics. %In fact it supports, among other features, Boolean operations on concepts and roles, role constructs such as the product of concepts and role chains on the left hand side of inclusion axioms, and role properties such as transitivity, symmetry, reflexivity, and irreflexivity. Our algorithm is based on a variant of the \ke\space system for sets of universally quantified clauses, where the KE-elimination rule is generalized in such a way as to incorporate the γ\gamma-rule. The novel system, called \keg, turns out to be an improvement of the system introduced in \cite{RR2017} and of standard first-order \ke x \cite{dagostino94}. Suitable benchmark test sets executed on C++ implementations of the three mentioned systems show that the performances of the \keg-based reasoner are often up to about 400\% better than the ones of the other two systems. This a first step towards the construction of efficient reasoners for expressive OWL ontologies based on fragments of computable set-theory.Comment: arXiv admin note: text overlap with arXiv:1702.03096, arXiv:1805.0860

    Deciding regular grammar logics with converse through first-order logic

    Full text link
    We provide a simple translation of the satisfiability problem for regular grammar logics with converse into GF2, which is the intersection of the guarded fragment and the 2-variable fragment of first-order logic. This translation is theoretically interesting because it translates modal logics with certain frame conditions into first-order logic, without explicitly expressing the frame conditions. A consequence of the translation is that the general satisfiability problem for regular grammar logics with converse is in EXPTIME. This extends a previous result of the first author for grammar logics without converse. Using the same method, we show how some other modal logics can be naturally translated into GF2, including nominal tense logics and intuitionistic logic. In our view, the results in this paper show that the natural first-order fragment corresponding to regular grammar logics is simply GF2 without extra machinery such as fixed point-operators.Comment: 34 page
    corecore