3 research outputs found

    Analysis and Design of Energy Efficient Frequency Synthesizers for Wireless Integrated Systems

    Full text link
    Advances in ultra-low power (ULP) circuit technologies are expanding the IoT applications in our daily life. However, wireless connectivity, small form factor and long lifetime are still the key constraints for many envisioned wearable, implantable and maintenance-free monitoring systems to be practically deployed at a large scale. The frequency synthesizer is one of the most power hungry and complicated blocks that not only constraints RF performance but also offers subtle scalability with power as well. Furthermore, the only indispensable off-chip component, the crystal oscillator, is also associated with the frequency synthesizer as a reference. This thesis addresses the above issues by analyzing how phase noise of the LO affect the frequency modulated wireless system in different aspects and how different noise sources in the PLL affect the performance. Several chip prototypes have been demonstrated including: 1) An ULP FSK transmitter with SAR assisted FLL; 2) A ring oscillator based all-digital BLE transmitter utilizing a quarter RF frequency LO and 4X frequency multiplier; and 3) An XO-less BLE transmitter with an RF reference recovery receiver. The first 2 designs deal with noise sources in the PLL loop for ultimate power and cost reduction, while the third design deals with the reference noise outside the PLL and explores a way to replace the XO in ULP wireless edge nodes. And at last, a comprehensive PN theory is proposed as the design guideline.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/153420/1/chenxing_1.pd

    Digital Intensive Mixed Signal Circuits with In-situ Performance Monitors

    Get PDF
    University of Minnesota Ph.D. dissertation.November 2016. Major: Electrical/Computer Engineering. Advisor: Chris Kim. 1 computer file (PDF); x, 137 pages.Digital intensive circuit design techniques of different mixed-signal systems such as data converters, clock generators, voltage regulators etc. are gaining attention for the implementation of modern microprocessors and system-on-chips (SoCs) in order to fully utilize the benefits of CMOS technology scaling. Moreover different performance improvement schemes, for example, noise reduction, spur cancellation, linearity improvement etc. can be easily performed in digital domain. In addition to that, increasing speed and complexity of modern SoCs necessitate the requirement of in-situ measurement schemes, primarily for high volume testing. In-situ measurements not only obviate the need for expensive measurement equipments and probing techniques, but also reduce the test time significantly when a large number of chips are required to be tested. Several digital intensive circuit design techniques are proposed in this dissertation along with different in-situ performance monitors for a variety of mixed signal systems. First, a novel beat frequency quantization technique is proposed in a two-step VCO quantizer based ADC implementation for direct digital conversion of low amplitude bio- potential signals. By direct conversion, it alleviates the requirement of the area and power consuming analog-frontend (AFE) used in a conventional ADC designs. This prototype design is realized in a 65nm CMOS technology. Measured SNDR is 44.5dB from a 10mVpp, 300Hz signal and power consumption is only 38μW. Next, three different clock generation circuits, a phase-locked loop (PLL), a multiplying delay-locked loop (MDLL) and a frequency-locked loop (FLL) are presented. First a 0.4-to-1.6GHz sub-sampling fractional-N all digital PLL architecture is discussed that utilizes a D-flip-flop as a digital sub-sampler. Measurement results from a 65nm CMOS test-chip shows 5dB lower phase noise at 100KHz offset frequency, compared to a conventional architecture. The Digital PLL (DPLL) architecture is further extended for a digital MDLL implementation in order to suppress the VCO phase noise beyond the DPLL bandwidth. A zero-offset aperture phase detector (APD) and a digital- to-time converter (DTC) are employed for static phase-offset (SPO) cancellation. A unique in-situ detection circuitry achieves a high resolution SPO measurement in time domain. A 65nm test-chip shows 0.2-to-1.45GHz output frequency range while reducing the phase-noise by 9dB compared to a DPLL. Next, a frequency-to-current converter (FTC) based fractional FLL is proposed for a low accuracy clock generation in an extremely low area for IoT application. High density deep-trench capacitors are used for area reduction. The test-chip is fabricated in a 32nm SOI technology that takes only 0.0054mm2 active area. A high-resolution in-situ period jitter measurement block is also incorporated in this design. Finally, a time based digital low dropout (DLDO) regulator architecture is proposed for fine grain power delivery over a wide load current dynamic range and input/output voltage in order to facilitate dynamic voltage and frequency scaling (DVFS). High- resolution beat frequency detector dynamically adjusts the loop sampling frequency for ripple and settling time reduction due to load transients. A fixed steady-state voltage offset provides inherent active voltage positioning (AVP) for ripple reduction. Circuit simulations in a 65nm technology show more than 90% current efficiency for 100X load current variation, while it can operate for an input voltage range of 0.6V – 1.2V

    Toward realizing power scalable and energy proportional high-speed wireline links

    Get PDF
    Growing computational demand and proliferation of cloud computing has placed high-speed serial links at the center stage. Due to saturating energy efficiency improvements over the last five years, increasing the data throughput comes at the cost of power consumption. Conventionally, serial link power can be reduced by optimizing individual building blocks such as output drivers, receiver, or clock generation and distribution. However, this approach yields very limited efficiency improvement. This dissertation takes an alternative approach toward reducing the serial link power. Instead of optimizing the power of individual building blocks, power of the entire serial link is reduced by exploiting serial link usage by the applications. It has been demonstrated that serial links in servers are underutilized. On average, they are used only 15% of the time, i.e. these links are idle for approximately 85% of the time. Conventional links consume power during idle periods to maintain synchronization between the transmitter and the receiver. However, by powering-off the link when idle and powering it back when needed, power consumption of the serial link can be scaled proportionally to its utilization. This approach of rapid power state transitioning is known as the rapid-on/off approach. For the rapid-on/off to be effective, ideally the power-on time, off-state power, and power state transition energy must all be close to zero. However, in practice, it is very difficult to achieve these ideal conditions. Work presented in this dissertation addresses these challenges. When this research work was started (2011-12), there were only a couple of research papers available in the area of rapid-on/off links. Systematic study or design of a rapid power state transitioning in serial links was not available in the literature. Since rapid-on/off with nanoseconds granularity is not a standard in any wireline communication, even the popular test equipment does not support testing any such feature, neither any formal measurement methodology was available. All these circumstances made the beginning difficult. However, these challenges provided a unique opportunity to explore new architectural techniques and identify trade-offs. The key contributions of this dissertation are as follows. The first and foremost contribution is understanding the underlying limitations of saturating energy efficiency improvements in serial links and why there is a compelling need to find alternative ways to reduce the serial link power. The second contribution is to identify potential power saving techniques and evaluate the challenges they pose and the opportunities they present. The third contribution is the design of a 5Gb/s transmitter with a rapid-on/off feature. The transmitter achieves rapid-on/off capability in voltage mode output driver by using a fast-digital regulator, and in the clock multiplier by accurate frequency pre-setting and periodic reference insertion. To ease timing requirements, an improved edge replacement logic circuit for the clock multiplier is proposed. Mathematical modeling of power-on time as a function of various circuit parameters is also discussed. The proposed transmitter demonstrates energy proportional operation over wide variations of link utilization, and is, therefore, suitable for energy efficient links. Fabricated in 90nm CMOS technology, the voltage mode driver, and the clock multiplier achieve power-on-time of only 2ns and 10ns, respectively. This dissertation highlights key trade-off in the clock multiplier architecture, to achieve fast power-on-lock capability at the cost of jitter performance. The fourth contribution is the design of a 7GHz rapid-on/off LC-PLL based clock multi- plier. The phase locked loop (PLL) based multiplier was developed to overcome the limita- tions of the MDLL based approach. Proposed temperature compensated LC-PLL achieves power-on-lock in 1ns. The fifth and biggest contribution of this dissertation is the design of a 7Gb/s embedded clock transceiver, which achieves rapid-on/off capability in LC-PLL, current-mode transmit- ter and receiver. It was the first reported design of a complete transceiver, with an embedded clock architecture, having rapid-on/off capability. Background phase calibration technique in PLL and CDR phase calibration logic in the receiver enable instantaneous lock on power-on. The proposed transceiver demonstrates power scalability with a wide range of link utiliza- tion and, therefore, helps in improving overall system efficiency. Fabricated in 65nm CMOS technology, the 7Gb/s transceiver achieves power-on-lock in less than 20ns. The transceiver achieves power scaling by 44x (63.7mW-to-1.43mW) and energy efficiency degradation by only 2.2x (9.1pJ/bit-to-20.5pJ/bit), when the effective data rate (link utilization) changes by 100x (7Gb/s-to-70Mb/s). The sixth and final contribution is the design of a temperature sensor to compensate the frequency drifts due to temperature variations, during long power-off periods, in the fast power-on-lock LC-PLL. The proposed self-referenced VCO-based temperature sensor is designed with all digital logic gates and achieves low supply sensitivity. This sensor is suitable for integration in processor and DRAM environments. The proposed sensor works on the principle of directly converting temperature information to frequency and finally to digital bits. A novel sensing technique is proposed in which temperature information is acquired by creating a threshold voltage difference between the transistors used in the oscillators. Reduced supply sensitivity is achieved by employing junction capacitance, and the overhead of voltage regulators and an external ideal reference frequency is avoided. The effect of VCO phase noise on the sensor resolution is mathematically evaluated. Fabricated in the 65nm CMOS process, the prototype can operate with a supply ranging from 0.85V to 1.1V, and it achieves a supply sensitivity of 0.034oC/mV and an inaccuracy of ±0.9oC and ±2.3oC from 0-100oC after 2-point calibration, with and without static nonlinearity correction, respectively. It achieves a resolution of 0.3oC, resolution FoM of 0.3(nJ/conv)res2 , and measurement (conversion) time of 6.5μs
    corecore