1,164 research outputs found

    Statistical Parsing by Machine Learning from a Classical Arabic Treebank

    Get PDF
    Research into statistical parsing for English has enjoyed over a decade of successful results. However, adapting these models to other languages has met with difficulties. Previous comparative work has shown that Modern Arabic is one of the most difficult languages to parse due to rich morphology and free word order. Classical Arabic is the ancient form of Arabic, and is understudied in computational linguistics, relative to its worldwide reach as the language of the Quran. The thesis is based on seven publications that make significant contributions to knowledge relating to annotating and parsing Classical Arabic. Classical Arabic has been studied in depth by grammarians for over a thousand years using a traditional grammar known as i’rāb (إعغاة ). Using this grammar to develop a representation for parsing is challenging, as it describes syntax using a hybrid of phrase-structure and dependency relations. This work aims to advance the state-of-the-art for hybrid parsing by introducing a formal representation for annotation and a resource for machine learning. The main contributions are the first treebank for Classical Arabic and the first statistical dependency-based parser in any language for ellipsis, dropped pronouns and hybrid representations. A central argument of this thesis is that using a hybrid representation closely aligned to traditional grammar leads to improved parsing for Arabic. To test this hypothesis, two approaches are compared. As a reference, a pure dependency parser is adapted using graph transformations, resulting in an 87.47% F1-score. This is compared to an integrated parsing model with an F1-score of 89.03%, demonstrating that joint dependency-constituency parsing is better suited to Classical Arabic. The Quran was chosen for annotation as a large body of work exists providing detailed syntactic analysis. Volunteer crowdsourcing is used for annotation in combination with expert supervision. A practical result of the annotation effort is the corpus website: http://corpus.quran.com, an educational resource with over two million users per year

    The CoNLL 2007 shared task on dependency parsing

    Get PDF
    The Conference on Computational Natural Language Learning features a shared task, in which participants train and test their learning systems on the same data sets. In 2007, as in 2006, the shared task has been devoted to dependency parsing, this year with both a multilingual track and a domain adaptation track. In this paper, we define the tasks of the different tracks and describe how the data sets were created from existing treebanks for ten languages. In addition, we characterize the different approaches of the participating systems, report the test results, and provide a first analysis of these results

    Wrapper syntax for example-based machine translation

    Get PDF
    TransBooster is a wrapper technology designed to improve the performance of wide-coverage machine translation systems. Using linguistically motivated syntactic information, it automatically decomposes source language sentences into shorter and syntactically simpler chunks, and recomposes their translation to form target language sentences. This generally improves both the word order and lexical selection of the translation. To date, TransBooster has been successfully applied to rule-based MT, statistical MT, and multi-engine MT. This paper presents the application of TransBooster to Example-Based Machine Translation. In an experiment conducted on test sets extracted from Europarl and the Penn II Treebank we show that our method can raise the BLEU score up to 3.8% relative to the EBMT baseline. We also conduct a manual evaluation, showing that TransBooster-enhanced EBMT produces a better output in terms of fluency than the baseline EBMT in 55% of the cases and in terms of accuracy in 53% of the cases

    Maximum Entropy Models For Natural Language Ambiguity Resolution

    Get PDF
    This thesis demonstrates that several important kinds of natural language ambiguities can be resolved to state-of-the-art accuracies using a single statistical modeling technique based on the principle of maximum entropy. We discuss the problems of sentence boundary detection, part-of-speech tagging, prepositional phrase attachment, natural language parsing, and text categorization under the maximum entropy framework. In practice, we have found that maximum entropy models offer the following advantages: State-of-the-art Accuracy: The probability models for all of the tasks discussed perform at or near state-of-the-art accuracies, or outperform competing learning algorithms when trained and tested under similar conditions. Methods which outperform those presented here require much more supervision in the form of additional human involvement or additional supporting resources. Knowledge-Poor Features: The facts used to model the data, or features, are linguistically very simple, or knowledge-poor but yet succeed in approximating complex linguistic relationships. Reusable Software Technology: The mathematics of the maximum entropy framework are essentially independent of any particular task, and a single software implementation can be used for all of the probability models in this thesis. The experiments in this thesis suggest that experimenters can obtain state-of-the-art accuracies on a wide range of natural language tasks, with little task-specific effort, by using maximum entropy probability models
    corecore