
University of Pennsylvania
ScholarlyCommons

IRCS Technical Reports Series Institute for Research in Cognitive Science

March 1998

Maximum Entropy Models For Natural Language
Ambiguity Resolution
Adwait Ratnaparkhi
University of Pennsylvania

Follow this and additional works at: http://repository.upenn.edu/ircs_reports

University of Pennsylvania Institute for Research in Cognitive Science Technical Report No. IRCS-98-15.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/ircs_reports/60
For more information, please contact libraryrepository@pobox.upenn.edu.

Ratnaparkhi, Adwait, "Maximum Entropy Models For Natural Language Ambiguity Resolution" (1998). IRCS Technical Reports Series.
60.
http://repository.upenn.edu/ircs_reports/60

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76360003?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fircs_reports%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ircs_reports?utm_source=repository.upenn.edu%2Fircs_reports%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ircs?utm_source=repository.upenn.edu%2Fircs_reports%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ircs_reports?utm_source=repository.upenn.edu%2Fircs_reports%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ircs_reports/60?utm_source=repository.upenn.edu%2Fircs_reports%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ircs_reports/60
mailto:libraryrepository@pobox.upenn.edu


Maximum Entropy Models For Natural Language Ambiguity Resolution

Abstract
This thesis demonstrates that several important kinds of natural language ambiguities can be resolved to state-
of-the-art accuracies using a single statistical modeling technique based on the principle of maximum entropy.

We discuss the problems of sentence boundary detection, part-of-speech tagging, prepositional phrase
attachment, natural language parsing, and text categorization under the maximum entropy framework. In
practice, we have found that maximum entropy models offer the following advantages:

State-of-the-art Accuracy: The probability models for all of the tasks discussed perform at or near state-of-
the-art accuracies, or outperform competing learning algorithms when trained and tested under similar
conditions. Methods which outperform those presented here require much more supervision in the form of
additional human involvement or additional supporting resources.

Knowledge-Poor Features: The facts used to model the data, or features, are linguistically very simple, or
"knowledge-poor" but yet succeed in approximating complex linguistic relationships.

Reusable Software Technology: The mathematics of the maximum entropy framework are essentially
independent of any particular task, and a single software implementation can be used for all of the probability
models in this thesis.

The experiments in this thesis suggest that experimenters can obtain state-of-the-art accuracies on a wide
range of natural language tasks, with little task-specific effort, by using maximum entropy probability models.
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are essentially independent of any particular task� and a single software implemen�
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Chapter �

Introduction

This thesis demonstrates that a single implementation of a statistical modeling technique

based on the principle of maximum entropy� in conjunction with knowledge�poor informa�

tion sources� su�ces to achieve state�of�the�art performance in several tasks of tremendous

interest to the natural language processing community�

Speci�cally� the thesis discusses the tasks of sentence boundary detection� part�of�

speech tagging� prepositional phrase attachment� parsing� and text categorization� Here

are some examples�

Sentence Boundary Detection� In the following text fragment�

He called Mr� White at � p�m� in Washington� D�C� Mr� Green responded�

how can a computer program tell which of the �	s� if any� denote actual sentence

boundaries �

Part�of�Speech Tagging� In the following two sentences�

� Fruit �ies like a banana�

� Time �ies like an arrow�

the words �ies and like are ambiguous� In the �rst sentence� �ies is a noun and like

is a verb� while in the second sentence� �ies is a verb and like is a preposition� How

�



can a computer program automatically and accurately predict the part�of�speech of

ambiguous words like �ies and like �

Prepositional Phrase Attachment� In the following two sentences�

� He bought the car with a credit card�

� He bought the car with a sunroof�

what does a computer program need to know in order to know that with a credit

card refers to bought� whereas with a sunroof refers to the car �

Parsing� A natural language parser takes a sentence as input� and determines the labelled

syntactic tree structure that corresponds to the interpretation of the sentence� For

example� the di�erent part�of�speech assignments for the word �ies and likes lead to

di�erent parse trees� and di�erent interpretations�

� S

NP

Fruit �ies

VP

like NP

a banana

� S

NP

Time

VP

�ies PP

like NP

an arrow

Parsing requires the resolution of all syntactic ambiguities that arise during the

interpretation of a sentence� and not just the noun�verb ambiguities or prepositional

phrase attachments discussed earlier� How can a computer automatically predict all






the plausible tree structures� and then choose among them to resolve any structural

ambiguities �

Text Categorization� Given a document and a topic� the task is to decide if the docu�

ment should be categorized with the topic� If the document contains the wordmoney�

is it relevant to the topic of mergers and acquisitions � How can the computer best

use the words in the documents to predict the topic �

Each task can be viewed as a �classi�cation� problem� in which the objective is to estimate

a function cl � X � Y � which maps an object x � X to its �correct� class y � Y � Typically�

Y is the prede�ned set of linguistic classes we are interested in predicting� and X consists

of either words� sentences� or other textual material of interest that might be useful for

making the prediction� For example� in sentence boundary detection� given a potential

end�of�sentence mark x � f� � �g� we wish to predict y � ftrue� falseg which classi�es it

as either a real or spurious sentence boundary� In POS tagging� given an n word input

sentence x � fall possible n word sentencesg� we wish to predict a sequence of n tags

y � T n� where T are the allowable POS tags for a word� For complex problems like

tagging and parsing� it is computationally convenient to decompose them into a sequence

of simpler classi�cation problems� For example� instead of building a classi�er to predict

a sequence of n tags� it is simpler to �rst estimate a classi�er that predicts a POS tag

for a single word� and to then apply it n times� once for each word� Likewise� instead

of predicting a whole parse tree� we predict a sequence of simpler actions� one at a time�

that each predict a small part of the parse tree� Since the simpler classes are predicted in

sequence� a classi�er can exploit the previously completed n� � classi�cations in order to

correctly predict the nth class in the sequence� The exact details of decomposing a given

task are a problem�speci�c art� but the general methodology is applicable to any complex

linguistic prediction task�

All the classi�cation functions for the tasks discussed in this thesis are implemented

with maximum entropy probability models� We can implement any classi�er cl � X � Y

with a conditional probability model p by simply choosing the class with the highest

�



conditional probability�

cl�x� � argmax
y

p�yjx�

where x is an textual object and y is a class� Likewise� probability models can natu�

rally implement a complex classi�er cl � Xn � Y n as a sequence of simpler probability

calculations�

cl�x� � � � xn� � arg max
y����yn

nY
i��

p�yijx� � � � xn� y� � � � yi���

where x� � � � xn� y� � � � yi��� informally called a context or history� is the textual material

available at the ith decision� and where yi is the outcome of the ith decision� Under the

maximum entropy framework� the probability for a class y and object x depends solely on

the features that are �active� for the pair �x� y�� where a feature is de�ned here as a function

f � �X�Y �� f�� �g that maps a pair �x� y� to either � or �� Features are the means through

which an experimenter feeds problem�speci�c information to the maximum entropy model�

and they should encode any information that could be useful in correctly determining the

class� The importance of each feature is determined automatically by running a parameter

estimation algorithm over a pre�classi�ed set of examples� or a �training set�� As a result�

an experimenter need only tell the model what information to use� since the model will

automatically determine how to use it�

This thesis will provide experimental support for three claims� regarding accuracy�

knowledge�poor features� and reusability�

Accuracy In every application of maximum entropy modelling discussed here� the accu�

racy is at or near the state�of�the�art� even though we have not tuned the models in

any substantial task�speci�c manner� The few published results that exceed those

presented here require considerably more domain expertise or human e�ort on the

part of the experimenter� In controlled experiments� our maximum entropy model

implementation outperformed a commercially available decision�tree learning pack�

age�

Knowledge�Poor Features While the primary objective in designing a feature set is

to maximize prediction accuracy� the feature sets in this thesis are comparatively

knowledge�poor� in that they do not require deep linguistic knowledge� and ask only






elementary questions about the surrounding context� The feature sets used in this

thesis rely less on linguistic knowledge� preprocessing� or semantic databases than

competing approaches� and are therefore much easier to specify and easier to port

than the features used in these other approaches� Despite the apparent simplicity

of the features� they can e�ectively approximate complex linguistic relationships�

particularly in the case of parsing and prepositional attachment tasks�

Software Reusability The generality of the maximum entropy framework allows an ex�

perimenter to use literally the same parameter estimation routine for di�erent tasks�

The code for the parameter estimation is essentially independent of any particular

task� and a single implementation su�ces for all the models in this thesis� More

importantly� the maximum entropy models perform reasonably well on each task�

despite the fact that all the tasks are quite di�erent in nature and complexity� The

experimental results in this thesis suggest that researchers can use and re�use a single

implementation of the maximum entropy framework for a wide variety of tasks� and

expect it to perform at state�of�the�art accuracies�

Chapter 
 describes the maximum entropy framework� Chapter � discusses other learn�

ing techniques for natural language processing� and Chapters 
� �� �� � discuss the tasks

of sentence boundary detection� part�of�speech tagging� parsing� and prepositional phrase

attachment� respectively� Chapter � discusses comparative experiments with other feature

selection and learning techniques� Chapter � discusses some drawbacks of the technique�

and Chapter �� discusses our conclusions�
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Chapter �

The Maximum Entropy

Framework

��� Introduction

As noted in the previous chapter� many problems in natural language processing �NLP� can

be re�formulated as classi�cation problems� in which the task is to observe some linguistic

�context� b � B and predict the correct linguistic �class� a � A� This involves constructing

a classi�er cl � B � A� which in turn can be implemented with a conditional probability

distribution p� such that p�ajb� is the probability of �class� a given some �context� b�

Contexts in NLP tasks usually include at least words� and the exact context depends on

the nature of the task� for some tasks� the context b may consist of just a single word�

while for others� b may consist of several words and their associated syntactic labels� Large

text corpora usually contain some information about the cooccurrence of a	s and b	s� but

never enough to reliably specify p�ajb� for all possible �a� b� pairs� since the words in b

are typically sparse� The challenge is then to �nd a method for using the partial evidence

about the a	s and b	s to reliably estimate the probability model p�

Maximum entropy probability models o�er a clean way to combine diverse pieces of

contextual evidence in order to estimate the probability of a certain linguistic class occur�

ring with a certain linguistic context� We �rst demonstrate how to represent evidence and

�



combine it with a particular form of probability model in the maximum likelihood frame�

work� and then discuss an independently motivated interpretation of the probability model

under the maximum entropy framework� We describe the framework �rst as it applies to

an example problem� and then as it applies to the NLP problems in this thesis� We also

discuss the advantages of combining evidence in this framework�

��� Representing Evidence

We represent evidence with functions known as contextual predicates and features� If

A � fa� � � � aqg represents the set of possible classes we are interested in predicting� and

B represents the set of possible contexts or textual material that we can observe� then a

contextual predicate is a function�

cp � B � ftrue� falseg

that returns true or false� corresponding to the presence or absence of useful information

in some context� or history b � B� The exact set of contextual predicates cp� � � � cpm that

are available for use varies with the problem� but in each problem they must be supplied

by the experimenter� Contextual predicates are used in features� which are functions of

the form

f � A� B � f�� �g

Any feature� in this thesis has the form

fcp�a��a� b� �

���
��

� if a � a� and cp�b� � true

� otherwise

and checks for the co�occurrence of some prediction a� with some contextual predicate

cp� The actual set of features we use for a problem is determined by a feature selection

strategy� which� in general� is speci�c to the problem� We will later show that a single

feature selection strategy applied to the di�erent problems in this thesis still yields good

prediction accuracy�

�While a feature in this thesis is de�ned on A�B� a feature in the machine learning literature is usually
de�ned only on the space of possible contexts B� Our de�nition of feature is borrowed from past literature
on the maximum entropy framework�

�



��� The Machine Learning or Corpus�Based Approach

The work in this thesis �ts squarely in what is called the �machine learning� or �corpus�

based� approach to natural language processing� In this approach� we assume the existence

of a training set T � f�a�� b�� � � � �aN � bN �g� which is a large set of contexts b� � � � bN that

have been annotated with their correct classes a� � � � aN � The notion of a training set that

consists of pairs of boolean vectors �contexts� together with classes is very general� and is

used by a vast number of algorithms in the machine learning literature� The advantage

of conforming to this representation is that experimenters can use the learning technique

of their choice� and that rigorous comparisons can be made between di�erent learning

techniques on the same data�

����� Learning with Maximum Likelihood Estimation on Exponential

Models

One way to combine evidence is to �weight� the features by using them in a log�linear� or

exponential� model�

p�ajb� �
�

Z�b�

kY
j��

�
fj�a�b�
j �
���

Z�b� �
X
a

kY
j��

�
fj�a�b�
j

where k is the number of features and Z�b� is a normalization factor to ensure thatP
a p�ajb� � �� Each parameter �j� where �j � �� corresponds to one feature fj and

can be interpreted as a �weight� for that feature� The probability p�ajb� is then a normal�

ized product of those features that are �active� on the �a� b� pair� i�e�� those features fj

such that fj�a� b� � �� The weights �� � � � �k of the probability distribution p� that best

�t the training data can be obtained with the popular technique of maximum likelihood

estimation�

Q � fp j p�ajb� � �

Z�b�

kY
j��

�
fj�a�b�
j g

L�p� �
X
a�b

 p�a� b� log p�ajb�

p� � argmax
q�Q

L�q�

�



where Q is the set of models of log�linear form�  p�a� b� is the probability of seeing a� b in

the training set T � L�p� is the conditional log�likelihood of the training set T �normalized

by the number of training events�� and p� is the optimal probability distribution according

to the maximum likelihood criterion�

����� Learning under the Maximum Entropy Framework

While there are conceivably many other ways to combine evidence in the form of a probabil�

ity distribution� the form �
��� has an independently motivated justi�cation under the max�

imum entropy framework� The Principle of Maximum Entropy !Jaynes� ����� Good� ����"�

argues that the best probability model for the data is the one which maximizes entropy�

over the set of probability distributions that are consistent with the evidence�

���in making inferences on the basis of partial information we must use that

probability distribution which has maximum entropy subject to whatever is

known� This is the only unbiased assignment we can make� to use any other

would amount to arbitrary assumption of information which by hypothesis we

do not have�

We will �rst illustrate maximum entropy modeling with a simple example� and then de�

scribe how the framework is applied to the natural language ambiguity problems in this

thesis�

��� Maximum Entropy� A simple example

The following example illustrates the use of maximum entropy on a very simple problem�

Suppose the task is to estimate a joint probability distribution p de�ned over fx� yg�f�� �g�
Furthermore suppose that the only facts known about p are that p�x� ���p�y� �� � ��� and

that p�x� �� � p�y� �� � p�x� �� � p�y� �� � ���� �While the constraint that
P

a�b p�a� b� � �

is implicit since p is a probability distribution� it will be treated as an externally imposed

constraint for illustration purposes��

In a prediction task� x and y would be mutually exclusive observations� and � and �

would be two mutually exclusive outcomes we are interested in predicting� For example�
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p�a� b� � �

x � �
y � �

total �� ���

Table 
��� Task is to �nd a probability distribution p under constraints p�x� ���p�y� �� � ���
and p�x� �� � p�x� �� � p�y� �� � p�y� �� � �

suppose the actual task is to determine the probability with which �rst�year students do

not receive �A� grades� and suppose we assign the following interpretation to the event

space fx� yg � f�� �g�

x � student is a �rst�year

y � student is not a �rst�year

� � student	s grade is A

� � student	s grade is not A

Then the observed fact that ���# of all students received an A for a grade� is implemented

with the constraint p�x� �� � p�y� �� � ��� The implicit fact that ����# of all students

received an A or not an A� is implemented with the constraint
P

a�b p�a� b� � �� The goal

in this modeling framework is to fully estimate p� so questions such as �What �estimated�

percentage of �rst�year students did not receive an A�� can be answered by computing a

probability� such as p�x� ���

Table 
�� represents the probability distribution p as 
 cells labelled with ���� whose

values must be consistent with the constraints� Clearly there are �in�nitely� many con�

sistent ways to �ll in the cells of table 
��� one such way is shown in table 
�
� However�

the Principle of Maximum Entropy recommends the assignment in table 
��� which is the

most non�committal assignment of probabilities that meets the constraints on p�

Formally� under the maximum entropy framework� the fact

p�x� �� � p�y� �� � ��

��



� �

x �� ��
y �� ��

total �� ���

Table 
�
� One way to satisfy constraints

� �

x �� �

y �� �


total �� ���

Table 
��� The most �uncertain� way to satisfy constraints

is implemented as a constraint on the model p	s expectation of the feature f��

Epf� � �� �
�
�

where

Epf� �
X

a�fx�yg�b�f���g
p�a� b�f��a� b�

and where f� is de�ned as follows�

f��a� b� �

���
��

� if b � �

� otherwise

Similarly� the fact

p�x� �� � p�y� �� � p�x� �� � p�y� �� � ���

is implemented as the constraint

Epf� � ��� �
���

where

Epf� �
X

a�fx�yg�b�f���g
p�a� b�f��a� b�

f��a� b� � �

��



The objective under the maximum entropy framework is then to maximize

H�p� � �
X

a�fx�yg�b�f���g
p�a� b� log p�a� b�

subject to the constraints �
�
� and �
����

Assuming that features always map an event �a� b� to either � or �� a constraint on

a feature expectation is simply a constraint on the sum of the �a� b� cells in the table on

which the feature returns �� While the above constrained maximum entropy problem can

be solved trivially �by inspection�� an iterative procedure is usually required for larger

problems since multiple constraints often overlap in ways that prohibit a closed form

solution�

��� Conditional Maximum Entropy Models

While the previous example used only two features� the framework used to solve the prob�

lems in this thesis assumes that we have k features� and that given a linguistic prediction

a � A and an observable context b � B� our ultimate goal is to �nd an estimate for the

conditional probability p�ajb�� as opposed to the joint probability� In the conditional maxi�

mum entropy framework used in earlier work such as !Berger et al�� ����� Lau et al�� �����

Rosenfeld� ����"� the optimal solution p� is the most uncertain distribution that satis�es

the k constraints on feature expectations�

p� � argmax
p�P

H�p�

H�p� � �
X
a�b

 p�b�p�ajb� log p�ajb�

P � fp j Epfj � E�pfj� j � f� � � � kgg
E�pfj �

X
a�b

 p�a� b�fj�a� b�

Epfj �
X
a�b

 p�b�p�ajb�fj�a� b�

An important di�erence here from the simple example is that H�p� denotes the conditional

entropy averaged over the training set� as opposed to the joint entropy� and that the
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marginal probability of b used here is the observed probability  p�b�� as opposed to a model

probability p�b�� Our choice of  p�b� as a marginal probability� borrowed from earlier work

such as !Berger et al�� ����"� is motivated by the fact that any model probability p�b�

cannot be explicitly normalized over the space of possible contexts B� since B is typically

very large in practice� Here Epfj is the model p	s expectation of fj� and is computed

di�erently than before since it uses  p�b� as a marginal probability� for the same important

practical reasons� As before� E�pfj denotes the observed expectation of a feature fj�  p�a� b�

denotes the observed probability of �a� b� in some �xed training sample� and P denotes the

set of probability models that are consistent with the observed evidence�

����� Relationship to Maximum Likelihood

In general� the maximum likelihood and maximum entropy frameworks are two di�erent

approaches to statistical modeling� but in this case they yield the same answer� We can

show that maximum likelihood parameter estimation for models of form �
��� is equivalent

to maximum entropy parameter estimation over the set of consistent models� That is�

p� � argmax
q�Q

L�q� � argmax
p�P

H�p�

This fact is described using lagrange multiplier theory in !Berger et al�� ����"� and

with information theoretic arguments �for the case when p� is a joint model� in

!Della Pietra et al�� ����"� Under the maximum likelihood criterion� p� will �t the data

as closely as possible� while under the maximum entropy criterion� p� will not assume

anything beyond the information in the linear constraints that de�ne P � We include a

proof in Section A�
 to show that the condition p� � argmaxq�QL�q� is equivalent to

the condition that p� � argmaxp�P H�p�� It is important to note that the model form

�
��� is not arbitrary� the maximum entropy solution p� � argmaxp�P H�p� must have this

form� This duality with the maximum entropy principle is appealing� and provides both

an interpretation and a justi�cation for using maximum likelihood estimation on models

of form �
����

��



��� Parameter Estimation

We use an algorithm called Generalized Iterative Scaling!Darroch and Ratcli�� ���
"� or

GIS� to �nd values for the parameters of p�� The GIS procedure requires that the features

sum to a constant for any �a� b� � A� B� or that
kX

j��

fj�a� b� � C �
�
�

where C is some constant� If this condition is not already true� we use the training set to

choose C

C � max
a�A�b�T

kX
j��

fj�a� b�

and add a �correction� feature fl� where l � k � �� such that

fl�a� b� � C �
kX

j��

fj�a� b�

for any �a� b� pair� Note that unlike the existing features� fl�a� b� ranges from � to C� where

C can be greater than �� In theory� a correction constant to enforce the constraint �
�
�

for all �a� b� pairs should be derived from the space of possible events A� B� However� a

summation over the whole event space is not practical� and correction constants derived

from training sets are usually accurate in practice� if the training set is large�

Algorithm � 
Generalized Iterative Scaling 
GIS��� The following procedure will con�

verge to p��

�
���
j � �

�
�n	��
j � �

�n�
j !

E�pfj

Ep�n�fj
"
�
C �
���

where

Ep�n�fj �
X
a�b

 p�b�p�n��ajb�fj�a� b�

p�n��ajb� �
�

Z�b�

lY
j��

��
�n�
j �fj�a�b�

�




!Darroch and Ratcli�� ���
" shows� that L�p�n	��� � L�p�n��� and that limn�� p�n� �

p�� See !Csiszar� ����" for a proof of GIS under the I�divergence geometry framework of

!Csiszar� ����"� GIS is actually a special case of Improved Iterative Scaling� described in

!Berger et al�� ����� Della Pietra et al�� ����"� which �nds the parameters of p� without

the use of a correction feature�

����� Computation

Given k features� the GIS procedure requires computation of each observed expectation

E�pfj� and requires re�computation of the model	s expectation Epfj on each iteration� for

j � � � � � k� The quantity E�pfj is merely the count of fj normalized over the training set�

E�pfj �
X
a�b

 p�a� b�fj�a� b� �
�

N

NX
i��

fj�ai� bi�

where N is the number of event tokens �as opposed to types� the training sample T �

f�a�� b��� � � � � �aN � bN �g�
The computation of Epfj involves summing over each context b in the training set� and

each a � A�

Ep�n�fj �
X
a�b

 p�b�p�n��ajb�fj�a� b�

Most importantly� any context b not in the training set can be excluded from this sum�

since  p�b� � � if b �� T � The computation of Epfj dominates the running time of each

iteration� If N is the number of training samples� A is the set of predictions� and V is

the average number of features that are active for a given event� the running time of each

iteration is O�N jAjV ��

The procedure should be terminated after a �xed number of iterations or when the

change in log�likelihood or accuracy is negligible� For the problems in this thesis� using

��� iterations is a good �rule�of�thumb�� since using more iterations rarely resulted in any

signi�cant accuracy gains�

�The proof in �Darroch and Ratcli�� ����	 is for the case when p� is a joint model� the proof for when
p� is a conditional model is similar�
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��	 Discussion

The biggest advantage of this framework is that it allows a virtually unrestricted ability to

represent problem�speci�c knowledge in the form of features� The exact linguistic informa�

tion corresponding to a feature is dependent on the task� but there is no inherent restriction

on what kinds of linguistic items a feature can encode� The features in a maximum en�

tropy model need not be statistically independent� all probability models in this thesis fully

exploit this advantage by using overlapping and interdependent features� In tasks which

require a sequence of classi�cation decisions� like tagging and parsing� it is highly likely

that the features of the model used for the nth decision in the sequence will look at one

or more of the n � � previous classi�cation decisions� For example� !Ratnaparkhi� ����"

estimates a model for part�of�speech tagging in which the context b contains the word to

be tagged� surrounding words� as well as the results of the previous two tagging decisions

�i�e�� the tags of the previous two words�� For example� useful features for part�of�speech

tagging might be

fj�a� b� �

���
��

� if a �DETERMINER and current word is ��that���b� � true

� otherwise

or

fk�a� b� �

���
��

� if a �NOUN and previous tag is DETERMINER�b� � true

� otherwise

The observed pieces of evidence corresponding to these features are E�pfj and E�pfk� which

have clear intuitive interpretations� E�pfj is the frequency in the training sample with

which �that� occurs as a DETERMINER normalized over the number of training samples�

while E�pfk is the frequency in the training sample with which DETERMINER precedes NOUN�

also normalized over the number of training samples�

In the maximum entropy framework� experimenters can add� without modifying the

formalism� more exotic and detailed forms of evidence once they are discovered� As an

example� a more interesting feature might be

fj�a� b� �

���
��

� if a �ADVERB and complex ��about�� predicate�b� � true

� otherwise
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where

complex �about�� predicate�b� �

������
�����

true if current word in b is �about�

and next word is �$� or a number

false otherwise

Such a feature would help a tagger to correctly distinguish the case where about is used as

an adverb �like approximately�� as in It cost about ����� from the case where about is used as

a preposition� as in He talked about it� While such features are diverse in nature� the extent

to which each feature fj contributes towards p�ajb�� i�e�� its �weight� �j � is automatically

determined by the Generalized Iterative Scaling algorithm� described in Section 
��� As a

result� experimenters need only focus their e�orts on discovering what features to use� and

not on how to use them�

����� A Special Case� Non�Overlapping Features

The maximum entropy framework reduces to a very simple type of probability model when

the features do not overlap� Suppose that the contextual predicates partition B� so that

every b corresponds to only one predicate cpi� i�e�� cpi�b� � true while cpi��b� � false for

i �� i�� Furthermore suppose that for every predicate cpi� we have jAj features fcpi�a which

test for cpi and a� In this case� an iterative algorithm is not necessary to compute p�ajb��
the closed form estimate is simply a ratio of counts�

p�ajb� � E�pfcp�a

E�p!cp�b� � true"
�
Count�cp�b� � true� a�

Count�cp�b� � true�
�
���

where cp is the predicate that corresponds to b� �See Section A�� for a proof�� So if the

features form partitions of the event space as described above� the parameter estimation

algorithm� and the maximum entropy framework itself� are not useful� since the correct

probability estimate can be derived from the raw counts alone� We emphasize that true

utility of the maximum entropy framework comes from its ability to robustly combine

features that do not form partitions of the event space� but instead overlap in arbitrarily

complex ways�

��



��
 Conclusion

The rest of this thesis will demonstrate that the maximum entropy framework discussed

here is general enough to handle� without modi�cation� a wide range of natural language

problems� The only items in the framework that are particular to each task are the set of

outcomes A� the set of possible contexts B� and the set of features f� � � � fk in the model�

All three items are fully speci�ed with these three facts�

Outcomes� The set of possible predictions A � fa�� � � � � aqg�

Contextual Predicates� The available contextual predicates fcp�� � � � � cpmg� these are

necessary and su�cient to capture all the information in any context b � B�

Feature Selection� The features actually used in the model� A particular contextual

predicate cpi may occur with many predictions but may be useful for predicting only

a few of them� Even if cpi occurs with both aj � A and ak � A� the model may use

the feature fcpi�aj � but not the feature fcpi�ak �

Therefore� in subsequent chapters� a maximum entropy model will be described by only

the above three characteristics� since all its other formal properties� namely�

� The form of the model

� The form of the constraints

� Its maximum entropy property

� Its relationship to maximum likelihood estimation

� The parameter estimation algorithm

are independent of the particular prediction task�
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Chapter �

Machine Learning Techniques

Applied to Natural Language� A

Brief Review

We illustrate some advantages and disadvantages of the maximum entropy framework

by comparing it to other machine learning algorithms that have been applied to natural

language� There are many statistical and corpus�based algorithms in the literature for

natural language learning� but we restrict our discussion to those that are general� i�e��

those that have not been speci�cally designed for one particular domain or application� In

this discussion� we will assume the existence of a training set T � f�a�� b�� � � � �aN � bN �g and
m contextual predicates cp� � � � cpm� We also assume that the machine learning techniques

discussed here use the training set to gather co�occurrence statistics between some outcome

a and the truth value of any contextual predicate cpi applied to a context b� or cpi�b��

We review the other natural language learning techniques� and motivate our use of the

maximum entropy framework�

��� Naive Bayes

The naive Bayes classi�er is derived from Bayes	 rule� and from strong conditional inde�

pendence assumptions about the observed evidence� It has been used for natural language
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applications such as text categorization !Lewis and Ringuette� ���
" and word sense dis�

ambiguation !Gale et al�� ���
"� Using Bayes	 rule� we rewrite p�ajb��

p�ajb� � p�bja�p�a�
p�b�

and use it to construct a classi�er clbayes � B � A�

clbayes�b� � argmax
a

p�bja�p�a�

Typically� the explicit computation of p�bja� is impossible due to sparse data� so most

experimenters make a very strong conditional independence assumption�

p�bja� � p�cp��b� � � � cpm�b�ja� �
mY
i��

pi�cpi�b�ja�

The parameters pi�cpi�b�ja� are derived directly from the �cpi�b�� a� counts in the train�

ing data and do not require an iterative estimation algorithm like the maximum entropy

models�

The maximum entropy framework di�ers from the naive Bayes classi�er in that it

makes no inherent conditional independence assumptions� and allows experimenters to

encode dependencies freely in the form of features� at the expense of an iterative parameter

estimation algorithm� E�g�� suppose cp� and cp� are contextual predicates whose results are

independent� i�e�� p�cp��b� � X� cp��b� � Y � � p�cp��b� � X�p�cp��b� � Y � for any context

b� Now de�ne another predicate cp��b� � cp��b�� cp��b�� which is clearly dependent on cp�

and cp�� In the maximum entropy framework� we can use features to correlate cp�� cp�� cp�

with some prediction a�� e�g��

f��a� b� �

���
��

� if a � a� and cp��b� � true

� otherwise

f��a� b� �

���
��

� if a � a� and cp��b� � true

� otherwise

f��a� b� �

���
��

� if a � a� and cp��b� � true

� otherwise
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without violating any independence assumptions� In contrast� the Naive Bayes probability

model will treat cp� as if it were independent from cp�� cp�� and is therefore unlikely to yield

accurate probability estimates� Under the maximum entropy framework� the parameter

estimation algorithm is not explicitly told about any interdependencies expressed in the

features� but yet will adjust the feature weights to account for them� Of course� there may

be interdependencies that are not expressed in the features� in which case the parameter

estimation algorithm will fail to account for them�

��� Statistical Decision Trees

In a statistical decision tree� or class probability tree� the internal nodes represent �tests�

and the leaves represent conditional probability distributions� Any context b � B corre�

sponds to some leaf l of the decision tree� The path from the root to the leaf l is obtained

by �rst applying the test at the current node� choosing a branch to a child node that

corresponds to the outcome of the test� and then recursively repeating the process from

the new child node� The conditional probability distribution associated with l� or pl� is

then used to compute p�ajb��
We draw comparison to binary decision trees� where each internal node corresponds to

a contextual predicate cp � B � ftrue� falseg� where left branches correspond to false�

and where right branches correspond to true� Assume that b � B is a context� and that

cp is the contextual predicate at the current node� We can trace a path from the root to

a leaf if we start at the root� take the branch to the left child if cp�b� � false� take the

branch to the right otherwise� and recursively repeat this process from the newly selected

child node until we reach a leaf� A path from the root to the leaf l� corresponding to a

context b� is then uniquely determined by the sequence of contextual predicates that are

used in reaching l� and by the results of applying those predicates to b� Let cpli denote

the predicate that corresponds to the ith parent of leaf l� and let vli denote the value of

cpli�b�� where b is a context associated with leaf l� De�ne leafl � B � ftrue� falseg to be
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a function that returns true if b corresponds to the unique leaf l�

leafl�b� �

���
��

true if
Vn
i�� cpli�b� � vli

false otherwise

The functions leafl� for all leaves l� partition B such that each partition corresponds

to exactly one leaf� The conditional probability pl�ajb� at each leaf l �for any b such that

leafl�b� � true� is simply the normalized frequency of a in the partition of B corresponding

to the leaf l� I�e�� it can be derived from the raw counts as follows�

pl�ajb� � Count�leafl�b� � true� a�

Count�leafl�b� � true�
�����

where Count�� returns the raw counts over the training set T �

Statistical decision trees are similar to maximum entropy models in that they can

cope with diverse� non�independent pieces of information in the predicates� We can even

implement a decision tree with L leaves as a maximum entropy model with LjAj features�
where A is the set of predictions� For each leaf l in the decision tree� the corresponding

maximum entropy model has jAj features of the form�

fl�a��a� b� �

���
��

� if leafl�b� � true and a � a�

� otherwise

When the predicates partition B� and when the features check for all jAj outcomes with

each predicate� the maximum entropy probability p�ajb� can be derived simply from the

raw counts in the training set using equation �
���� and is identical to ������

Statistical decision trees are grown from a training sample T with recursive partitioning

algorithms� like those described used in the ID�!Quinlan� ����"� C
��!Quinlan� ���
"� and

CART!Breiman et al�� ���
"� These induction algorithms can automatically grow compli�

cated tests �conjuncts of predicates� from simple tests �predicates�� Our approach di�ers in

that any conjunction of predicates are speci�ed in advance by the experimenter in the form

of features� and that complicated features are not derived automatically from simpler ones�

However� feature induction is possible� see !Berger et al�� ����� Della Pietra et al�� ����"

for an algorithm which incrementally grows conjuncts of features in the maximum entropy

framework�







An important advantage of maximum entropy models over decision trees is that the

maximum entropy parameter estimation does not partition the training sample T � Par�

titioning the data with sparse predicates leads to uneven splits� which in turn lead to

the well�known data fragmentation problem� in which the distributions at some leaves

are unreliable since they correspond to a very small partition of the training set� Data

fragmentation is particularly a concern for natural language processing� since predicates

typically test for words� which are sparse by nature� Past work on decision trees for nat�

ural language� such as !Black et al�� ����� Jelinek et al�� ���
� Magerman� ����" has relied

a host of other techniques to alleviate data fragmentation� such as clustering algorithms

that reduce the amount �and hence sparseness� of predicates� as well as smoothing and

pruning algorithms that yield better probability estimates� In contrast� the maximum

entropy models used in this thesis do not use clustering and smoothing techniques�

��� Transformation Based Learning

Transformation based learning� introduced in !Brill� ����a"� is a non�probabilistic technique

for incrementally learning rules to maximize prediction accuracy� A transformation rule�

in our notation� would have the format

If the outcome is a� and cpi�b� � true� change a to a�

where a� a� are outcomes� and cpi is a contextual predicate� Transformation based learning

begins with an initial state T�� which consists of all �a� b� pairs such that b is a context of the

original training set and a is the default outcome for b� e�g�� the most frequent outcome

or the best guess for the context� Next� the learner iterates� and on the ith iteration�

selects the transformational rule whose application to the �a� b� pairs in Ti�� results in the

highest score� The �a� b� pairs of Ti�� are re�annotated with this selected rule to create Ti�

The score of a transformational rule on the ith iteration is usually related to how much it

improves the resemblance of Ti�� with respect to the truth� i�e�� the manually annotated

training set T � The transformation based learning strategy can therefore be viewed as

greedy error minimization� The experimenter is required to specify the initial state� the

space of transformations available to the learner� and the scoring function� When given a
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context b in test data� we begin with the default outcome for b� and apply� in respective

order� the transformations learned during the training phase� Past literature!Brill� ���
"

on transformation based learning claims that the rules learned by the procedure are easier

to understand than the statistics of comparable probabilistic approaches� Transformation

based learning is extremely �exible� and has been used �among other tasks� for part�of�

speech tagging !Brill� ���
"� prepositional phrase attachment !Brill and Resnik� ���
"� and

parsing !Brill� ����b"�

Maximum entropy models are equally �exible in the kinds of evidence they allow and

the types tasks they can perform� In the maximum entropy framework� we do not specify

the space of possible transformations� but instead specify� in a very similar manner� the

space of possible features� Maximum entropy models di�er in that for each context b� they

return a probability distribution over the possible outcomes� whereas a transformation

based learner returns only an outcome�

��� Decision Lists

!Yarowsky� ����" applies the learning technique of decision lists to the natural language

problem of word sense disambiguation� using supervised and unsupervised techniques� The

decision lists in !Yarowsky� ����" e�ectively rank di�erent pieces of evidence by reliability�

so that unknown test events are classi�ed by the single most reliable piece of evidence

available� In our notation� if our space of outcomes consists of two elements� i�e�� A �

fa�� a��g� the reliability of each contextual predicate cpi is given by the absolute value of

the conditional log�likelihood ratio�

j log p�a�jcpi�b� � true�

p�a��jcpi�b� � true�
j

This ratio is used to create a sorted list of contextual predicates and outcomes

f�cp�� a�� � � � �cpn� an�g� such that cp� has the highest log�likelihood ratio� and where ai

is the most probable outcome given cpi� i�e� ai � argmaxa�fa��a��g p�ajcpi�b� � true��

When classifying a test case b� the decision list technique chooses the outcome ai that

corresponds to the �rst predicate cpi in the list such that cpi�b� � true� The conditional

probabilities used in the ratio must be smoothed when this technique is applied to word







sense disambiguation� see !Yarowsky� ����" for details� The decision list technique allows

the experimenter to use many diverse forms of contextual evidence� but in the end chooses

the outcome based on a single piece of reliable evidence�

Maximum entropy models can use equally diverse forms of evidence� but di�er greatly in

that their probability estimates depend on many pieces of evidence� and not just the single

best one� !Yarowsky� ����" argues that using the single best piece of evidence su�ces to

achieve high accuracies for word sense disambiguation� but also notes that further research

is needed to validate this claim for other tasks�

��� Interpolation

Linear interpolation is a popular way to combine the estimates of derived from various

pieces of evidence� For example� it has been used extensively in language modeling� in

which the goal is to compute P �wijwi��wi��� by combining the estimates of several com�

ponent distributions�

P �wijwi��wi��� � ��p��wi� � ��p��wijwi��� � ��p��wijwi��wi���

where �i � �� and
P�

i�� �i � � Each component distribution pi is estimated straight from

the raw counts of the training data� and each �i is e�ectively a �weight� that re�ects

the importance of its corresponding component probability distribution� The weights are

computed to maximize the likelihood of held�out data� see !Jelinek� ����" for details� The

technique can be generalized to combine any number of probability models�

p�ajb� �
X
i

�ipi�ajcpi�b� � true�

Here� pi�ajcpi�b� � true� is the conditional probability distribution derived from the counts

of �cpi�b�� a� in the training set� and each predicate cpi is associated with a �i� that weights

the estimate pi�ajcpi�b� � true� for a � A� The interpolation technique makes no assump�

tions on the underlying nature of the models that it is combining� and it is therefore a very

general method for integrating evidence�

Maximum entropy models have the same level of generality as interpolation techniques�

but di�er in that any weight �j and feature fj are associated with both a contextual
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predicate cp and an outcome a� The weights in the maximum entropy model are somewhat

��ner�grained� than in the interpolation model� which associates weights with only the

predicates� and not the outcomes�

��� Decomposable Models

Decomposable models have been used for word sense disambiguation in

!Bruce and Weibe� ���
� Pedersen et al�� ����" and also for prepositional phrase at�

tachment in !Kayaalp et al�� ����"� Such models can be expressed as a product of the

marginal probabilities of the interdependent variables� scaled by the marginal probabilities

of the variables that are common to two or more terms� In our notation� if we are given

three contextual predicates cp�� cp�� cp� such cp� and cp� are interdependent� and cp� is

conditionally independent from cp� and cp�� then the probability p�a� cp�� cp�� cp�� � is

written as�

p�a� cp�� cp�� cp�� �
p��a� cp�� cp��p��a� cp��

p��a�

�Here the event cpi�b� � true is abbreviated as simply cpi�� No iterative parameter esti�

mation algorithm is necessary to implement this algorithm� the relevant marginal proba�

bilities p�� p�� p� can be obtained directly from the counts in the training data� In order to

compute the joint probability given by a decomposable model� the interdepencies of the

contextual predicates must either be known a priori� or must be induced automatically� as

in !Pedersen et al�� ����"� Furthermore� the contextual predicates may be interdependent

in such a way that prohibits further decomposition of the joint probability�

Maximum entropy models di�er from decomposable models in how they handle interde�

pendence among the features� In the maximum entropy framework� interdependencies are

expressed through features� and not through the form of the model� However� in order to

account for interdependencies expressed in the features� maximum entropy models require

a computationally expensive iterative parameter estimation algorithm� Furthermore� the

maximum entropy framework is more general� in that it can handle interdependencies that

may not be expressible as decomposable models�
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��	 Logistic Regression Models

Logistic regression� as described in !Hosmer and Lemeshow� ����"� is a common technique

for modeling the e�ects of one or more explanatory variables on some binary�valued out�

come variable� For example� success and failure are commonly used outcomes� and the

probability that the observations �x � fx� � � � xjg of the explanatory variables indicate

success is given by q��x��

q��x� �
eg��x�

� � eg��x�
���
�

where

g��x� � �� �
kX

j��

�jxj

and where the xj	s are real�valued observations� and the �j 	s are real�valued parameters�

Likewise� the probability of the failure outcome is �� q��x�� The logistic regression model

form above is a special case of the maximum entropy model form �
���� and we show below

how to implement a logistic regression model under the maximum entropy framework� We

assume a space of two outcomes A � f�� �g that represent failure and success� respectively�

and we further assume that the features are real�valued� and not binary�valued� We use a

feature f�

f��a� b� �

���
��

� if a � �

� otherwise
�����

and the features f� � � � fk of the format

fj�a� b� �

���
��

xj if a � �

� otherwise
���
�

where xj is an observation of some explanatory variable �which presumably exists in the

context b�� The probability that the observations lead to success� or p�a � �jb�� is given

by�

p�a � �jb� �

Qk
j�� �

fj���b�
jQk

j�� �
fj���b�
j �

Qk
j�� �

fj���b�
j

�
eg�b�

� � eg�b�
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where

g�b� � ��f���� b� �
kX

j��

�jfj��� b�

and where �j � ln�j� f���� b� � �� and fj��� b� is de�ned to be xj� for j � �� Thus�

if the features are de�ned as in ����� and ���
�� a maximum entropy model probability

model obtained with the GIS algorithm is equivalent to a logistic regression model ���
� in

which the parameters are obtained with maximum likelihood estimation� However� while

the above simulation of logistic regression assumes real�valued features and binary�valued

outcomes� the implementation in this thesis di�ers in that it assumes binary�valued features

and multiple�valued outcomes�

��
 Conclusion

We use the maximum entropy framework for the tasks in this thesis because it o�ers

some important advantages over other techniques� It allows more �exible features than

the naive Bayes and decomposable probability models �at the expense of parameter esti�

mation�� and is capable of using more evidence for each prediction than the decision list

technique� It is in theory equally �exible as linear interpolation� but studies in language

modeling have shown that maximum entropy techniques perform better in practice� e�g��

see !Rosenfeld� ����"� Transformation�based learning is also a �exible and equally powerful

technique when the goal is to �nd a single classi�cation without a probability� but its non�

probabilistic nature makes it di�cult to rank sequences of classi�cations� as we need to do

in Chapters � and �� Logistic regression models are designed for problems with binary�

valued outcomes� and are not suited for natural language tasks like tagging and parsing

that require probability models with multiple�valued outcomes� Decision tree probability

models have successfully been scaled up to attack the natural language parsing problem in

previous work� such as !Black et al�� ����� Jelinek et al�� ���
� Magerman� ����"� but have

relied heavily on the word clustering technique of !Brown et al�� ���
"� We believe that

this clustering technique�based on contiguous word bigrams� and designed for n�gram

language modeling� does not preserve the information necessary for highly accurate syn�

tactic and semantic disambiguation� We therefore use the maximum entropy framework
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because it allows us to use the words directly� without the concern of data fragmentation�

Furthermore� using a direct representation of words eliminates any harmful assumptions

imposed by the clustering� and gives us the option of using the same kind of information

used in the vast number of traditional approaches to natural language processing� Our

hypothesis is that a direct representation of words under the maximum entropy framework

will yield more accurate results than using a clustered representation with decision trees�

Furthermore� we believe that the maximum entropy technique is a theoretically more com�

pelling way to combine evidence than the other techniques reviewed here� and we wish to

test if the theory will manifest itself in practice with better prediction accuracy�
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Chapter �

Sentence Boundary Detection

�This chapter represents joint work with Je�rey C� Reynar of the University of Pennsyl�

vania��

��� Introduction

The task of identifying sentence boundaries in raw text has only recently received serious

attention in the computational linguistics literature� Most natural language tools like part�

of�speech taggers and parsers� including the ones discussed in this thesis� assume that the

text has already been divided into sentences� and do not discuss algorithms for dividing it

accurately�

On �rst glance� it may appear that postulating a sentence boundary for every occur�

rence of a potential sentence��nal punctuation mark� such as �� �� and �� is su�cient to

accurately divide text into sentences� However� these punctuation marks are not used

exclusively to mark sentence breaks� For example� embedded quotations may contain any

of the sentence�ending punctuation marks and � is used as a decimal point� in e�mail ad�

dresses� to indicate ellipsis and in abbreviations� Both � and � are somewhat less ambiguous

but appear in proper names and may be used multiple times for emphasis to mark a single

sentence boundary�

Lexically�based rules could be written and exception lists used to disambiguate the

di�cult cases described above� However� the lists will never be exhaustive� and multiple

��



rules may interact badly since punctuation marks exhibit absorption properties� Sites

which logically should be marked with multiple punctuation marks will often only have

one �!Nunberg� ����" as summarized in !White� ����"�� For example� a sentence�ending

abbreviation will most likely not be followed by an additional period if the abbreviation

already contains one �e�g� note that D�C is followed by only a single � in The president

lives in Washington� D�C���

The manual approach of writing rules appears to be both di�cult and time�consuming�

due to the large number of lexically�based rules that would need to be written� and due

to the rule interactions that would need to be resolved� As an alternative� this chapter

presents a solution based on a maximum entropy model which requires a few hints about

what information to use and a corpus annotated with sentence boundaries� The model

trains easily and performs comparably to systems that require vastly more information�

��� Previous Work

The most recent work on sentence boundary detection is !Palmer and Hearst� ����"� which

describes a system architecture called SATZ and also includes a thorough review of other

work related to sentence boundary detection� The SATZ architecture uses either a decision

tree or a neural network to disambiguate sentence boundaries� The neural network achieves

����# accuracy on a corpus of Wall Street Journal articles using a lexicon which includes

part�of�speech �POS� tag information� By increasing the quantity of training data and

decreasing the size of their test corpus� !Palmer and Hearst� ����" reports an accuracy of

����# with the neural network� and ��# with the decision tree� All the results presented

in this chapter use their their initial� larger test corpus�

!Riley� ����" describes a decision�tree based approach to the problem� Performance

of this approach on the Brown corpus is ����#� using a model learned from a corpus of


� million words� !Liberman and Church� ���
" suggest that a system could be quickly

built to divide newswire text into sentences with a nearly negligible error rate� but do not

actually build such a system�

��



��� Maximum Entropy Models for Sentence Boundary Iden�

ti�cation

This chapter present two systems for identifying sentence boundaries� both based on max�

imum entropy models� One is targeted at high performance and uses some knowledge

about the structure of English �nancial newspaper text which may not be applicable to

text from other genres or in other languages� The other system uses no domain�speci�c

knowledge and is aimed at being portable across English text genres and Roman alphabet

languages�

Potential sentence boundaries are identi�ed by scanning the text for sequences of char�

acters separated by whitespace �tokens� containing one of the symbols �� � or �� The

systems use information about the token containing the potential sentence boundary� as

well as contextual information about the tokens immediately to the left and to the right�

Wider contexts did not improve performance and were therefore omitted�

	���� Outcomes

The outcomes of the probability model are yes and no� where yes denotes that a potential

sentence boundary is an actual sentence boundary� and no denotes that it isn	t a an actual

sentence boundary�

	���� Contextual Predicates

We call the token containing the symbol which marks a putative sentence boundary the

Candidate� The portion of the Candidate preceding the potential sentence boundary is

called the Pre�x and the portion following it is called the Su�x� The system that focused

on maximizing performance used the following hints� or contextual �templates��

� The Pre�x

� The Su�x

� The presence of particular characters in the Pre�x or Su�x

� Whether the Candidate is an honori�c �e�g� Ms�� Dr�� Gen��

�




� Whether the Candidate is a corporate designator �e�g� Corp�� S�p�A�� L�L�C��

� Features of the word left of the Candidate

� Features of the word right of the Candidate

The templates specify only the form of the information� The exact set of contex�

tual predicates used by the maximum entropy model for the potential sentence boundary

marked by � in Corp� in Example � below would be� PreviousWordIsCapitalized� Pre�

�x�Corp� Su�x�NULL� Pre�xFeature�CorporateDesignator�

��� ANLP Corp� chairman Dr� Smith resigned�

The highly portable system uses only the identity of the Candidate and its neighbor�

ing words� and a list of abbreviations induced from the training data�� Speci�cally� the

�templates� used are�

� The Pre�x

� The Su�x

� Whether the Pre�x or Su�x is on the list of induced abbreviations

� The word left of the Candidate

� The word right of the Candidate

� Whether the word to the left or right of the Candidate is on the list of induced

abbreviations

The information this model would use for Example � would be� PreviousWord�ANLP�

FollowingWord�chairman� Pre�x�Corp� Su�x�NULL� Pre�xFeature�InducedAbbreviation�

The abbreviation list is automatically produced from the training data� and the contex�

tual questions are also automatically generated by scanning the training data with question

templates� As a result� no hand�crafted rules or lists are required by the highly portable

system and it can be easily re�trained for other languages or text genres�

�A token in the training data is considered an abbreviation if it is preceded and followed by whitespace�
and it contains a � that is not a sentence boundary�
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	���� Feature Selection and Decision Rule

For each potential sentence boundary token ��� �� and ��� we wish to estimate a joint

probability distribution p of it and its surrounding context occurring as an actual sentence

boundary� The probability distribution used here is a maximum entropy model identical

to equation 
���

p�ajb� � �

Z�b�

kY
j��

�
fj�a�b�
j

The contextual predicates deemed useful for sentence�boundary detection� which we de�

scribed earlier� are encoded in the model using features� For example� a useful feature

might be�

fj�a� b� �

���
��

� if Pre�x�b� � Mr � a � no

� otherwise

This feature will allow the model to discover that the period at the end of the word Mr�

seldom occurs as a sentence boundary� Therefore the parameter corresponding to this

feature will hopefully boost the probability p�nojb� if the Pre�x is Mr� All features occur�

ring �� times or more in the training data are retained in the model� and the model pa�

rameters are estimated with the Generalized Iterative Scaling !Darroch and Ratcli�� ���
"

algorithm� described in Section 
���

All experiments use a simple decision rule to classify each potential sentence boundary�

a potential sentence boundary in the context b is an actual sentence boundary if and only

if p�yesjb� � ����

��� System Performance

WSJ Brown

Sentences 
�
�� ����


Candidate P� Marks �
��� ��
�


Accuracy ����# ����#

False Positives 
�� ���

False Negatives ��� ���

Table 
��� Our best performance on two corpora�

�




The system was trained on ��

� sentences ������� words� of Wall Street Journal text

from sections �� through 

 of the second release of the Penn Treebank� !Marcus et al�� ���
"�

We corrected punctuation mistakes and erroneous sentence boundaries in the training data�

Performance �gures for our best performing system� which used a hand�crafted list of hon�

ori�cs and corporate designators� are shown in Table 
��� The �rst test set� WSJ� is Palmer

and Hearst	s initial test data and the second is the entire Brown corpus� We present the

Brown corpus performance to show the importance of training on the genre of text on

which testing will be performed� Table 
�� also shows the number of sentences in each

corpus� the number of candidate punctuation marks� the accuracy over potential sentence

boundaries� the number of false positives and the number of false negatives� Performance

on the WSJ corpus was� as we expected� higher than performance on the Brown corpus

since we trained the model on �nancial newspaper text�

Possibly more signi�cant than the system	s performance is its portability to new do�

mains and languages� The trimmed down system which only uses information derived from

the training corpus performs nearly as well on the same test sets as the previous system�

as shown in Table 
�
�

Test False False
Corpus Accuracy Positives Negatives

WSJ ����# ��� 

�

Brown ����# �
�� 
��

Table 
�
� Performance on the same two corpora using the highly portable system�

Since ��

� training sentences is considerably more than might exist in a new domain

or a language other than English� we experimented with the quantity of training data

�We did not train on �les which overlapped with Palmer and Hearst
s test data� namely sections ��� �
�
�� and ���

Number of sentences in training corpus
��� ���� 
��� 
��� ���� ����� ��

�

Best performing ����# ���
# ����# ���
# ����# ����# ����#

Highly portable ����# ����# ����# ����# ����# ����# ����#

Table 
��� Performance on Wall Street Journal test data as a function of training set size
for both systems�
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required to maintain performance� Table 
�� shows performance on the WSJ corpus as

a function of training set size using the best performing system and the more portable

system� As can seen from the table� performance degrades as the quantity of training

data decreases� but even with only ��� example sentences performance is better than the

baselines of �
��# if a sentence boundary is guessed at every potential site and ���
# if

only token��nal instances of sentence�ending punctuation are assumed to be boundaries�

��� Conclusions

This chapter has described an approach to identifying sentence boundaries which performs

comparably to other state�of�the�art systems that require vastly more resources� For exam�

ple� the system of !Riley� ����" performs better� but trains from the Brown corpus and uses

thirty times as much data as our system� Also� the system of !Palmer and Hearst� ����"

requires POS tag information� which limits its use to those genres or languages for which

there are either POS tag lexica or POS tag annotated corpora that could be used to train

automatic taggers� In comparison� system in this chapter does not require POS tags or

any supporting resources beyond the sentence�boundary annotated corpus� It is therefore

easy and inexpensive to retrain this system for di�erent genres of text in English and text

in other Roman�alphabet languages� Furthermore� we showed that a small training corpus

is su�cient for good performance� and we estimate that annotating enough data to achieve

good performance would require only several hours of work� in comparison to the many

hours required to generate POS tag and lexical probabilities�
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Chapter �

Part�of�Speech Tag Assignment

��� Introduction

Many natural language tasks require the accurate assignment of Part�Of�Speech �POS�

tags to previously unseen text� Due to the availability of large corpora which have been

manually annotated with POS information� many taggers use annotated text to �learn�

either probability distributions or rules and use them to automatically assign POS tags to

unseen text�

This chapter presents a POS tagger implemented under the maximum entropy frame�

work that learns a probability distribution for tagging from manually annotated data�

namely� the Wall Street Journal corpus of the Penn Treebank project!Marcus et al�� ���
"�

Since most realistic natural language applications must process words that were never seen

before in training data� all experiments in this chapter are conducted on test data that

include unknown words�

Several recent papers!Brill� ���
� Magerman� ����" have reported ����# tagging accu�

racy on the Wall St� Journal corpus� The experiments in this chapter test the hypothesis

that better use of context will improve the accuracy� A maximum entropy model is well�

suited for such experiments since it combines diverse forms of contextual information in

a principled manner� This chapter discusses the features used for POS tagging and the

experiments on the Penn Treebank Wall St� Journal corpus� It then discusses the con�

sistency problems discovered during an attempt to use specialized features on the word
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context� Lastly� the results in this chapter are compared to those from previous work on

POS tagging�

��� The Probability Model

The probability p�ajb� represents the conditional probability of a tag a � A� given some

context or history b � B� where A is the set of allowable tags� and where B is the set of

possible word and tag contexts� The probability model is identical to equation 
���

p�ajb� � �

Z�b�

kY
j��

�
fj�a�b�
j

where as usual� each parameter �j corresponds to a feature fj� Given a sequence of words

fw�� � � � � wng and tags fa�� � � � ang as training data� we de�ne bi as the context available

when predicting ai�

��� Features for POS Tagging

The conditional probability of a history b and tag a is determined by those parameters

whose corresponding features are active� i�e�� those �j such that fj�a� b� � �� A feature�

given �a� b�� may activate on any word or tag in the history b� and must encode any informa�

tion that might help predict a� such as the spelling of the current word� or the identity of the

previous two tags� For example� de�ne the contextual predicate currentsuffix is ing�b�

to return true if the current word in b ends with the su�x �ing�� A useful feature might

be

fj�a� bi� �

���
��

� if currentsuffix is ing�bi� � true � a � VBG

� otherwise

If the above feature exists in the feature set of the model� its corresponding model param�

eter will contribute towards the probability p�ajbi� when wi ends with �ing� and when

a �VBG�� Thus a model parameter �j e�ectively serves as a �weight� for a certain contex�

tual predictor� in this case the su�x �ing�� towards the probability of observing a certain

tag� in this case a VBG�

�VBG is the Penn treebank POS tag for progressive verb�
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Condition Contextual Predicates

wi is not rare wi � X

wi is rare X is pre�x of wi� jXj � 

X is su�x of wi� jXj � 

wi contains number
wi contains uppercase character
wi contains hyphen

	 wi ti�� � X

ti��ti�� � XY

wi�� � X

wi�� � X

wi	� � X

wi	� � X

Table ���� Contextual Predicates on the context bi

Word� the stories about well�heeled communities and developers
Tag� DT NNS IN JJ NNS CC NNS
Position� � 
 � 
 � � �

Table ��
� Sample Data

����� Contextual Predicates

The contextual predicates are generated automatically from the training data scanning

each bi with the �templates� in Table ����

The generation of contextual predicates for tagging unknown words relies on the hy�

pothesized distinction that �rare� words� in the training set are similar to unknown words

in test data� with respect to how their spellings help predict their tags� Our technique of

using rare words in training data for tagging unknown words in test data was developed

independently from !Baayen and Sproat� ����"� who also observe that POS tags of words

that occur once �the hapax legomena� are reliable predictors for POS tags of unknown

words� The rare word predicates in Table ���� which look at the word spellings� will apply

to both rare words and unknown words in test data�

�A �rare� word here denotes a word which occurs less than � times in the training set� The count of �
was chosen by subjective inspection of words in the training data�
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wi � about

wi�� � stories

wi�� � the

wi	� � well�heeled

wi	� � communities

ti�� � NNS

ti��ti�� � DT NNS

Table ���� Contextual Predicates Generated From b� �for tagging about� from Table ��


wi�� � about

wi�� � stories

wi	� � communities

wi	� � and

ti�� � IN

ti��ti�� � NNS IN

pre�x�wi��w
pre�x�wi��we
pre�x�wi��wel
pre�x�wi��well
su�x�wi��d
su�x�wi��ed
su�x�wi��led
su�x�wi��eled
wi contains hyphen

Table ��
� Contextual Predicates Generated From b� �for tagging well�heeled� from
Table ��
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For example� Table ��
 contains an excerpt from training data while Table ��� contains

the contextual predicates generated while scanning b�� in which the current word is about�

Table ��
 contains predicates generated while scanning �b��� in which the current word�

well�heeled� occurs � times in training data and is therefore classi�ed as �rare��

����� Feature Selection

The behavior of a feature that occurs very sparsely in the training set is often di�cult to

predict� since its statistics may not be reliable� Therefore� the model uses the heuristic that

any feature which occurs less than �� times in the data is unreliable� and ignores features

whose counts are less than ��� Speci�cally� any contextual predicate cp that returned true

in the presence of a particular prediction a� more than �� times� is used as a feature f in

the model� with the form�

f�a� b� �

���
��

� if cp�b� � true and a � a�

� otherwise

��� Testing the Model

The test corpus is tagged one sentence at a time� The testing procedure requires a search

to enumerate the candidate tag sequences for the sentence� and the tag sequence with the

highest probability is chosen as the answer�

��	�� Search Algorithm

The search algorithm is a top K breadth �rst search �BFS�� it is similar to a �beam search�

and maintains� as it sees a new word� the K highest probability tag sequence candidates

up to that point in the sentence� Given a sentence fw� � � � wng� a tag sequence candidate

fa� � � � ang has conditional probability�

P �a� � � � anjw� � � � wn� �
nY
i��

p�aijbi�

where bi is the history corresponding to the ith word�

�Except for features that look only at the current word� i�e�� features of the form wi ��word� and
ti ��TAG�� A cuto� of �� corresponding to the de�nition of �rare� words� was used for this kind of feature�
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In addition the search procedure consults a tag dictionary� which is automatically

constructed from the training data and whose entries have the form�

word t� � � � tn

where word is a word from the training set� and t� � � � tn are the tags that word occurs

with in the training set� When the search procedure needs to tag a word w� and w exists in

the tag dictionary� only the tags from w	s entry in the tag dictionary are considered as tag

candidates for w� If w is not in the tag dictionary� the search procedure explores all tags in

the tagset when tagging w� Table ��� describes the search procedure in more detail� The

running time is dominated by the inner loop containing the insert function� which must�

for each word� insert at most KT sequences into the heap where each insertion costs at

most O�logKT �� where T is the size of the tagset� and K is the number of tag sequences

to maintain� Hence the running time on an N word sentence is O�NKT logKT ���

��	�� Experiments on the Wall St� Journal

In order to conduct tagging experiments� the Wall St� Journal data has been split into

three contiguous sections� as shown in Table ���� The feature set and search algorithm

were tested and debugged only on the training and development sets� and the o�cial test

result on the unseen test set is presented in Table ����� The performances of the tagging

model with the �baseline� feature set �derived from Table ����� both with and without the

Tag Dictionary� are shown in Table ����

All experiments use K � �� further increasing K does not signi�cantly increase perfor�

mance on the development set but adversely a�ects the speed of the tagger� Even though

use of the tag dictionary gave an apparently insigni�cant ���
#� improvement in accu�

racy� it is used in further experiments since it reduces the average number of tags that are

explored for each word� and thus signi�cantly speeds up the tagger�

�Since the KT elements of a heap are known before the heap is created� a better implementation would
have created the heap in one pass using the well�known linear time function heapify� in which case the
search procedure
s running time would have been O�NKT �� However� the current �asymptotically slower�
implementation is more �exible in that it allows us to experiment with search strategies in which the heap
elements are not all known when the heap is constructed�







advance� s �� s� � � � sm �� Given tag sequence s� produce new

sequences s� � � � sm� each of length jsj � ��
When necessary� this procedure consults

the tag dictionary���

insert� s� h �� void �� inserts sequence s in heap h ��

extract� h �� s �� returns tag sequence in h with

highest score and also removes it from

h���

n � length of input sentence

N � ��
s � empty tag sequence

h� � empty heap �� hi contains tag sequences of length i ��

insert	h�� s
 �� initialize h� with empty sequence ��

for i � � to n� �
sz � min�N� jhij�
for j � � to sz

s� � � � sm � advance	 extract	hi



for p � � to m

insert	sp� hi	�


return extract	hn


Table ���� Tagger Search Procedure

DataSet Sentences Words Unknown Words

Training 
���� ��
��� �

Development ���� ��
�
� ����

Test �
�� ������ ��
�

Table ���� WSJ Data Sizes

Total Word Unknown Word Sentence
Accuracy Accuracy Accuracy

Tag Dictionary ���
�# ���
�# 
����#

No Tag Dictionary �����# ���
�# 
����#

Table ���� Baseline Performance on Development Set
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Word Correct Tag Proposed Tag Frequency

about RB IN ���

that DT IN ���

more RBR JJR 

�

up IN RB ���

that WDT IN ��


as RB IN ���

up IN RP ���

more JJR RBR ���

that IN WDT ���

about IN RB �



that IN DT �
�

out RP IN �
�

that DT WDT �
�

much JJ RB ���

yen NN NNS ���

chief NN JJ ���

up RP IN ��


ago IN RB ��


much RB JJ ���

out IN RP ���

Table ���� Top Tagging Mistakes on Training Set for Baseline Model







Number of �Di�cult� Words Development Set Performance


� ���
�#

Table ���� Performance of Baseline Model with Specialized Features

��� Specialized Features and Consistency

The maximum entropy model allows arbitrary binary�valued features on the context� so

it can use additional specialized� i�e�� word�speci�c� features to correctly tag the �residue�

that the baseline features cannot model� Since such features typically occur infrequently�

the training set consistency must be good enough to yield reliable statistics� Otherwise

the specialized features will model noise and perform poorly on test data�

Such features can be designed for those words which are especially problematic for the

model� The top errors of the model �over the training set� are shown in Table ���� clearly�

the model has trouble with the words that and about� among others� As hypothesized

in the introduction� better features on the context surrounding that and about should

correct the tagging mistakes for these two words�

Specialized features for a given word are constructed by conjoining certain features in

the baseline model with a question about the word itself� The features which ask about

previous tags and surrounding words now additionally ask about the identity of the current

word� e�g�� a specialized feature for the word about in Table ��� could be�

fj�ai� bi� �

������
�����

� if wi � about � ti��ti�� � DT NNS

� ai � IN

� otherwise

where wi is the current word in bi� and where ti��ti�� are the previous two tags in bi�

Table ��� shows the results of an experiment in which specialized features are con�

structed for �di�cult� words� and are added to the baseline feature set� Here� �di�cult�

words are those that are mistagged a certain way at least �� times when the training set

is tagged with the baseline model� Using the set of 
� di�cult words� the model performs

at ���
�# accuracy on the Development Set� an insigni�cant improvement from the base�

line accuracy of ���
�#� Table ���� shows the change in error rates on the Development
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Word � Baseline Model Errors � Specialized Model Errors

that 

� 
��

up ��� ���

about ��� �
�

out ��
 ��

more �� ��

down �� �


o� �� ��

as �� ��

much 
� 
�

chief 
� 
�

in �� ��

executive �� ��

most 
� �


ago 

 ��

yen �� ��

Table ����� Errors on Development Set with Baseline and Specialized Models

Set for the frequently occurring �di�cult� words� For most words� the specialized model

yields little or no improvement� and for some� i�e�� more and about� the specialized model

performs worse�

The lack of improvement implies that either the feature set is still impoverished� or

that the training data is inconsistent� A simple consistency test is to graph the POS tag

assignments for a given word as a function of the article in which it occurs� Consistently

tagged words should have roughly the same tag distribution as the article numbers vary�

Figure ��� represents each POS tag with a unique integer and graphs the POS annotation

of about in the training set as a function of the article� �the points are �scattered� to

show density�� As seen in �gure ���� about is usually annotated with tag��� which denotes

IN �preposition�� or tag��� which denotes RB �adverb�� and the observed probability of

either choice depends heavily on the current article�� Upon further examination
� the

tagging distribution for about changes precisely when the annotator changes� Figure ��
�

which again uses integers to denote POS tags� shows the tag distribution of about as a

function of annotator� and implies that the tagging errors for this word are due mostly

�The mapping from article to annotator is in the �le doc�wsj�wht on the Treebank v�� CDROM�
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� ��� ��� ��� ��� ���� ���� ���� ���� ���� ����

POS Tag

Article�

Figure ���� Distribution of Tags for the word �about� vs� Article�

�

�

��

��

��

��

��

��

� � � �

POS Tag

Annotator

Figure ��
� Distribution of Tags for the word �about� vs� Annotator
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Training Size�words� Test Size�words� Baseline Specialized

������ 


�� ����
# �����#

Table ����� Performance of Baseline � Specialized Model When Tested on Consistent
Subset of Development Set

to inconsistent data� The words ago� chief� down� executive� off� out� up and yen also

exhibit similar bias�

Thus specialized features may be less e�ective for those words a�ected by inter�annotator

bias� A simple solution to eliminate inter�annotator inconsistency is to train and test the

model on data that has been created by the same annotator� The results of such an

experiment� are shown in Table ����� The total accuracy is higher� implying that the

singly�annotated training and test sets are more consistent� and the improvement due to

the specialized features is higher than before ���#� but still modest� implying that either

the features need further improvement or that intra�annotator inconsistencies exist in the

corpus�

��� Experiments on other Corpora

The tagger has also been evaluated on the LOB corpus!Johansson� ����"� which contains

samples of British English� and also on the CRATER corpus!S%anchez�Le%on� ���
"� which

contains samples of Spanish in the telecommunications domain� The templates to cre�

ate the baseline feature set �shown in Table ���� for the Wall St� Journal experiments

were also used for both the LOB and CRATER corpus experiments� The performance of

the maximum entropy tagger on these corpora with the baseline feature set is shown in

Table ���
�

The tagset of the CRATER corpus is very detailed and consists of over ��� tags� we

mapped them down to a smaller set of �
� tags� The maximum entropy tagger was trained

�The single�annotator training data was obtained by extracting those articles tagged by �maryann� in
the Treebank v�� CDROM� This training data does not overlap with the Development and Test set used in
the chapter� The single�annotator Development Set is the portion of the Development Set which has also
been annotated by �maryann�� The word vocabulary and tag dictionary are the same as in the baseline
experiment�
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Corpus Accuracy
Word Unknown Word Sentence

LOB Corpus ���
�# N�A N�A

CRATER Corpus ����# ����# ���
#

Table ���
� Performance on the LOB corpus and CRATER corpus with baseline feature
set

on �
k sentences from this corpus� and tested on the remaining 
k sentences� the results

are shown in Table ���
� The preprocessing� tokenization� and experiments on the LOB

corpus are described elsewhere in !van Halteren et al�� ����"�

��	 Comparison With Previous Work

Most of the recent corpus�based POS taggers in the literature either use

markov modeling techniques!Weischedel et al�� ����� Merialdo� ���
"� statistical deci�

sion tree techniques!Jelinek et al�� ���
� Magerman� ����"� or transformation based

learning!Brill� ���
"� The maximum entropy tagger presented in this chapter combines

the advantages of all these methods� It uses a rich feature representation� like transforma�

tion based learning� and generates a tag probability distribution for each tag decision� like

decision tree and markov model techniques�

!Weischedel et al�� ����" provide the results from a battery of �tri�tag� markov model

experiments� in which the probability P �W�T � of observing a word sequence W �

fw�� w�� � � � � wng together with a tag sequence T � ft�� t�� � � � � tng is given by�

P �T jW �P �W � � p�t��p�t�jt���
nY
i��

p�tijti��ti���
�

nY
�

p�wijti�
�

Furthermore� p�wijti� for unknown words is computed by the following heuristic� which

uses a set of �� pre�determined endings�

p�wijti� � p�unknownwordjti��
p�capitalfeaturejti��
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p�endings�hypenationjti�

On the Wall St� Journal corpus� this approximation works as well as the maximum entropy

model� giving ��# unknown word accuracy!Weischedel et al�� ����"� despite its indepen�

dence assumptions� However� as more diverse information sources are added� many of them

are likely to be statistically dependent� and approximations that rely on independence as�

sumptions may not adequately model the data� In contrast� the maximum entropy model

combines diverse and non�local information sources without making any independence

assumptions on the features�

A POS tagger is one component in the decision tree based statistical parsing system

described in !Jelinek et al�� ���
� Magerman� ����"� The total word accuracy on Wall

St� Journal data� ����#!Magerman� ����"� is similar to that presented in this chapter�

However� these techniques require word classes!Brown et al�� ���
" to help prevent data

fragmentation� and a sophisticated smoothing algorithm to mitigate the e�ects of any

fragmentation that occurs� Unlike decision trees� the maximum entropy training procedure

does not recursively split the data� and hence does not su�er from unreliable counts due

to data fragmentation� As a result� a word class hierarchy and smoothing algorithm are

not required to achieve the same level of accuracy�

!Brill� ���
" presents transformation�based learning� a data�driven but non�probabilistic

approach to POS tagging which also uses a rich feature representation� and performs at a

total word accuracy of ����# and an unknown word accuracy of ��#!Brill� ���
"� The

representation used in !Brill� ���
" is somewhat similar to the one used in this chap�

ter� !Brill� ���
" looks at words 
� away from the current word� whereas the feature

set in this chapter uses a window of 

� For unknown words� !Brill� ���
" uses a separate

transformation�based learner and uses pre�x�su�x additions and deletions� which are not

used in this chapter� The tagger in this chapter� unlike !Brill� ���
"� does not use a sepa�

rate model for unknown words� and uses both features for tagging known words �such as

the previous tag context� together with spelling features in order to tag unknown words�

Transformation�based learning is non�probabilistic� it cannot be used as a probabilistic

component in a larger model� In contrast� the tagger in this chapter provides a probability
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Total Word Accuracy Unknown Word Accuracy Sentence Accuracy

�����# �����# 
����#

Table ����� Performance of Specialized Model on Unseen Test Data

for each tagging decision� which can be used in the probability calculation of any structure

that is predicted over the POS tags� such as noun phrases� or entire parse trees� as will be

demonstrated in Chapter ��

While the claimed advantages of the maximum entropy tagger over other taggers are

not realized on the Wall St� Corpus� they are apparently evident on the LOB corpus�

since !van Halteren et al�� ����" reports that the maximum entropy tagger outperformed

all the other taggers tested� including the transformation�based learning tagger and an

HMM tagger� We suspect that all taggers have approached a performance limit �roughly

����#� on the Wall St� Journal due to the inherent noise in the corpus� and that the

taggers have not yet approached a similar limit on the less noisy LOB corpus�

��
 Conclusion

The implementation in this chapter is a state�of�the�art POS tagger� as evidenced by the

����# accuracy on unseen Wall St� Journal data� shown in Table ����� The model with

specialized features does not perform much better than the baseline model� and further

discovery or re�nement of word�based features is di�cult given the inconsistencies in the

training data� A model trained and tested on data from a single annotator performs at

��# higher accuracy than the baseline model and should produce more consistent input

for applications that require tagged text�
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Chapter �

Parsing

��� Introduction

The task of a natural language parser is to take a sentence as input and return a syntactic

representation that corresponds to the likely semantic interpretation of the sentence� For

example� some parsers� given the sentence

I buy cars with tires

would return a parse tree in the format�

S

NP

I

VP

buy NP

cars PP

with NP

tires

where the non�terminal labels denote the type of phrase �e�g�� �PP� stands for prepositional

phrase�� Accurate parsing is di�cult because subtle aspects of word meaning�from the

�




parser	s view�dramatically a�ect the interpretation of the sentence� For example� given

the sentence

I buy cars with money

a parser might propose the following two parses

� �Unlikely�� S

NP

I

VP

buy NP

cars PP

with NP

money

� �Likely�� S

NP

I

VP

buy NP

cars

PP

with NP

money

Both parses are grammatical� in the sense that a typical context free grammar for English

will generate both structures� but only one corresponds to the likely interpretation of the

sentence� A parser actually needs detailed semantic knowledge of certain key words in the

sentence order to distinguish the correct parse� it needs to somehow know that with money

refers to buy and not car�
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Sfbuysg

NPfmang
The man

VPfbuysg

buys NPfcarsg

fast cars PPfwithg

with NPftiresg
big tires

Figure ���� A parse tree annotated with head words

The parsers which currently show superior accuracies on freely occurring text are all

classi�ed as statistical or corpus�based� since they automatically learn syntactic and se�

mantic knowledge for parsing from a large corpus of text� called a treebank� that has

been manually annotated with syntactic information� In order to evaluate the accuracy

of a statistical parser� we �rst train it on a subset of the treebank� test it on another

non�overlapping subset� and then compare the labelled syntactic constituents it proposes

with the labelled syntactic constituents in the annotation of the treebank� The labelled

constituent accuracies of the best parsers approach roughly ��# when tested on freely

occurring sentences in the Wall St� Journal domain�

��� Previous Work

Recent corpus�based parsers di�er in the simplicity of their representation and the de�

gree of supervision necessary� but agree in that they resolve parse structure ambiguities

by looking at certain cooccurrences of constituent head words in the ambiguous parse� A

head word of a constituent� informally� is the one word that best represents the meaning

of the constituent� e�g�� �gure ��� shows a parse tree annotated with head words� Parsers

vary greatly on how head word information is used to disambiguate possible parses for an

input sentence� !Black et al�� ����" introduces history�based parsing� in which decision tree

probability models� trained from a treebank� are used to score the di�erent derivations of

�




sentences produced by a hand�written grammar� !Jelinek et al�� ���
� Magerman� ����"

also train history�based decision tree models from a treebank for use in a parser� but do

not require an explicit hand�written grammar� The decision trees in !Black et al�� �����

Jelinek et al�� ���
� Magerman� ����" do not look at words directly� but instead repre�

sent words as bitstrings derived from an automatic clustering technique� In contrast�

!Hermjakob and Mooney� ����" uses a rich semantic representation when training decision

tree and decision list techniques to drive parser actions�

Several other recent papers use statistics of pairs of head words in conjunction

with chart parsing techniques to achieve high accuracy� The parsers in !Collins� �����

Collins� ����" use chart�parsing techniques and head word bigram statistics derived from

a treebank� !Charniak� ����" uses head word bigram statistics with a probabilistic context

free grammar� while !Goodman� ����" uses head word bigram statistics with a probabilis�

tic feature grammar� !Collins� ����� Goodman� ����� Charniak� ����� Collins� ����" do

not use general machine learning algorithms� but instead develop specialized statistical

estimation techniques for their respective parsing tasks�

The parser in this paper attempts to combine the advantages of other approaches� It

uses a natural and direct representation of words in conjunction with a general machine

learning technique� maximum entropy modeling� We argue that the successful use of

a simple representation with a general learning technique is the combination that both

minimizes human e	ort and maintains state�of�the�art parsing accuracy�

��� Parsing with Maximum Entropy Models

The parser presented here constructs labelled syntactic parse trees with actions similar to

those of a standard shift&reduce parser� The sequence of actions fa� � � � ang that construct

a completed parse tree T are called the derivation of T � There is no explicit grammar that

dictates what actions are allowable� instead� all actions that lead to a well�formed parse tree

are allowable and maximum entropy probability models are used to score each action� The

maximum entropy models are trained by examining the derivations of the parse trees in a

large� hand�corrected� corpus of example parse trees� The individual scores of the actions
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Pass Procedure Actions Description

First Pass tag A POS tag in tag
set

Assign POS Tag to
word

Second Pass chunk Start X� Join X�
Other

Assign Chunk tag
to POS tag and
word

Third Pass build Start X� Join X�
where X is a con�
stituent label in la�
bel set

Assign current tree
to start a new con�
stituent� or to join
the previous one

check Yes� No Decide if current
constituent is com�
plete

Table ���� Tree�Building Procedures of Parser

in a derivation are used to compute a score for the whole derivation� and hence the whole

parse tree� When parsing a sentence� the parser uses a search procedure that e�ciently

explores the space of possible parse trees� and attempts to �nd the highest scoring parse

tree�

����� Actions of the Parser

The actions of the parser are produced by procedures� that each take a derivation d �

fa� � � � ang� and predict some action an	� to create a new derivation d� � fa� � � � an	�g�
The actions of the procedures are designed so that any possible complete parse tree T has

exactly one derivation�

The procedures are called tag� chunk� build� and check� and are applied in three

left�to�right passes over the input sentence� the �rst pass applies tag� the second pass

applies chunk� and the third pass applies build and check� The passes� the procedures

they apply� and the actions of the procedures are summarized in table ���� Typically� the

parser explores many di�erent derivations when parsing a sentence� but for illustration

purposes� �gures ��
&��� trace one possible derivation for the sentence �I saw the man

with the telescope�� using the constituent labels and part�of�speech �POS� tags of the

University of Pennsylvania treebank!Marcus et al�� ���
"�
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The actions of the procedures are scored with maximum entropy probability models

that use information in the local context to compute their probability distributions� �A

more detailed discussion of the probability models will occur in Section ����
�� Using three

passes instead of one pass allows the the use of more local context� For example� the model

for the chunk procedure will have the output from tag in its left and right context� and

the models for the build and check procedures will have the output of tag and chunk

and their left and right contexts� If all these procedures were implemented in one left�to�

right pass� the model for chunk would not have the output of tag in its right context�

and the models for build and check would not have the output of tag and chunk in

their right context�

First Pass

The �rst pass takes an input sentence� shown in �gure ��
� and uses tag to assign each

word a POS tag� The result of applying tag to each word is shown in �gure ���� The

tagging phase is described in Chapter � in more detail� It is integrated into the parser	s

search procedure� so that the parser does not need to commit to a single POS tag sequence�

Second Pass

The second pass takes the output of the �rst pass and uses chunk to determine the ��at�

phrase chunks of the sentence� where a phrase is ��at� if and only if it is a constituent

whose children consist solely of POS tags� Starting from the left� chunk assigns each

�word�POS tag� pair a �chunk� tag� either Start X� Join X� or Other� Figure ��
 shows

the result after the second pass� The chunk tags are then used for chunk detection� in

which any consecutive sequence of words wm � � � wn �m � n� are grouped into a ��at�

chunk X if wm has been assigned Start X and wm	� � � � wn have all been assigned Join

X� The result of chunk detection� shown in �gure ���� is a forest of trees and serves as the

input to the third pass�

The granularity of the chunks� as well as the possible constituent labels of the chunks�

are determined from the treebank that is used to train the parser� Examples of constituents

that are marked as �at chunks in the Wall St� Journal domain of the Penn treebank include
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Procedure Actions Similar Shift�
Reduce Parser
Action

check No shift

check Yes reduce ��
where � is
CFG rule
of proposed
constituent

build Start X� Join X Determines �

for subsequent
reduce opera�
tions

Table ��
� Comparison of build and check to operations of a shift�reduce parser

I saw the man with the telescope

Figure ��
� Initial Sentence

noun phrases such as a nonexecutive director� adjective phrases such as 
� years old� and

quanti�er phrases such as about � �
� million�

The chunking in our second pass di�ers from other chunkers in the

literature!Ramshaw and Marcus� ����� Church� ����" in that it �nds chunks of all

constituent labels� and not just noun phrase chunks� Our multi�pass approach is similar

to the approach of the parser in !Abney� ����"� which also �rst �nds chunks in one pass�

and then attaches them together in the next pass�

PRP

I

VBD

saw

DT

the

NN

man

IN

with

DT

the

NN

telescope

Figure ���� The result after First Pass
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Start NP

PRP

I

Other

VBD

saw

Start NP

DT

the

Join NP

NN

man

Other

IN

with

Start NP

DT

the

Join NP

NN

telescope

Figure ��
� The result after Second Pass

NP

PRP

I

VBD

saw

NP

DT

the

NN

man

IN

with

NP

DT

the

NN

telescope

Figure ���� The result of chunk detection

Start S

NP

PRP

I

Start VP

VBD

saw

Join VP

NP

DT

the

NN

man

IN

with

NP

DT

the

NN

telescope

Figure ���� An application of build in which Join VP is the action

Start S

NP

PRP

I

�

Start VP

VBD

saw

Join VP

NP

DT

the

NN

man

IN

with

NP

DT

the

NN

telescope

Figure ���� The most recently proposed constituent �shown under ��
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Start S

NP

PRP

I

Start VP

VBD

saw

Join VP

NP

DT

the

NN

man

�

IN

with

NP

DT

the

NN

telescope

Figure ���� An application of check in which No is the action� indicating that the proposed
constituent in �gure ��� is not complete� build will now process the tree marked with �

Third Pass

The third pass always alternates between the use of build and check� and completes any

remaining constituent structure� build decides whether a tree will start a new constituent

or join the incomplete constituent immediately to its left� Accordingly� it annotates the

tree with either Start X� where X is any constituent label� or with Join X� where Xmatches

the label of the incomplete constituent immediately to the left� build always processes the

leftmost tree without any Start X or Join X annotation� Figure ��� shows an application

of build in which the action is Join VP� After build� control passes to check� which �nds

the most recently proposed constituent� and decides if it is complete� The most recently

proposed constituent� shown in �gure ���� is the rightmost sequence of trees tm � � � tn �m �
n� such that tm is annotated with Start X and tm	� � � � tn are annotated with Join X� If

check decides yes� then the proposed constituent takes its place in the forest as an actual

constituent� on which build does its work� Otherwise� the constituent is not �nished and

build processes the next tree in the forest� tn	�� check always answers no if the proposed

constituent is a ��at� chunk� since such constituents must be formed in the second pass�

Figure ��� shows the result when check looks at the proposed constituent in �gure ���

and decides No� The third pass terminates when check is presented a constituent that

spans the entire sentence�

Table ��
 compares the actions of build and check to the operations of a standard

shift�reduce parser� The No and Yes actions of check correspond to the shift and reduce

actions� respectively� The important di�erence is that while a shift�reduce parser creates a

constituent in one step �reduce ��� the procedures build and check create it over several

��



steps in smaller increments�

While the use of maximum entropy models together with shift&reduce parsing is novel

�to our knowledge�� shift&reduce parsing techniques have been popular in the natural lan�

guage literature� !Aho et al�� ����" describe shift&reduce parsing techniques �for program�

ming languages� in detail� !Marcus� ����" uses shift&reduce parsing techniques for natural

language� and !Briscoe and Carroll� ����" describe probabilistic approaches to LR parsing�

a type of shift&reduce parsing�

����� Maximum Entropy Probability Model

The parser uses a �history�based� approach !Black et al�� ����"� in which a probability

pX�ajb� is used to score an action a of procedure X � ftag�chunk�build�checkg de�

pending on the context b that is available at the time of the decision� The conditional

models pX are estimated under the maximum entropy framework� as described in Chapter


� The advantage of this framework is that we can use arbitrarily diverse information in

the context b when computing the probability of an action a of some procedure X�

While any context b is a rich source of information� it is �in general� di�cult to know

exactly what information is useful for parsing� However� we would like to implement the

following inexact intuitions about parsing�

� Using constituent head words is useful�

� Using combinations of head words is useful�

� Using less�speci�c information is useful�

� Allowing limited lookahead is useful�

The above intuitions are implemented in the maximum entropy framework as features�

and each feature is assigned a �weight� which corresponds to how useful it is for modeling

the data� We describe the outcomes� the contextual predicates� and the feature selection

strategy for the parsing models pX below� and furthermore show that a mere handful of

guidelines are su�cient to completely describe the feature sets used by the parsing models�

We also describe how the probability models pX are used to compute the score of a parse

tree�

��



Outcomes

The outcomes of the conditional probability models ptag� pchunk� pbuild and pcheck

are exactly the allowable actions of the tag� chunk� build� and check procedures� listed

in Table ����

Contextual Predicates

The features in this chapter require contextual predicates to look at any information in the

partial derivation or context� A contextual predicate has the form cp � B � ftrue� falseg
and checks for the presence or absence of useful information in a context b � B and returns

true or false accordingly� In this implementation of the maximum entropy framework�

every feature f has the format

f�a� b� �

���
��

� if cp�b� � true �� a � a�

� otherwise

and therefore must use a contextual predicate cp to express a cooccurrence relationship

between some action a� and some linguistic fact about the context captured by cp� The

contextual predicates for a procedure X are denoted by CPX � and Table ��� speci�es the

guidelines� or templates� for creating CPX � where X � f tag� chunk� build� check

g� The templates are only linguistic hints� in that they do not specify the information

itself� but instead� specify the location of the useful information in a context b� The

templates use indices relative to the tree that is currently being modi�ed� For example� if

the current tree is the �th tree� cons��
� looks at the constituent label� head word� and

start�join annotation of the �rd tree in the forest� The actual contextual predicates in CPX

are obtained automatically� by recording certain aspects of the context �speci�ed by the

templates� in which procedure X was used in the derivations of the trees in the treebank�

For an example� an actual contextual predicate cp � CPbuild� derived �automatically�

from the template cons���� might be

cp�b� �

���
��

true if the �th tree of b has label �NP� and head word �he�

false otherwise

�




In order to obtain this predicate� there must exist a derivation in the manually parsed ex�

ample sentences in which build decides an action in the presence of some partial derivation

b� such that the �th tree of b had a constituent label �NP� and head word �he�� Con�

stituent head words are found� when necessary� with the algorithm in !Black et al�� �����

Magerman� ����"�

Contextual predicates which look at head words� or especially pairs of head words� may

not be reliable predictors for the procedure actions due to their sparseness in the training

set� Therefore� for each lexically based contextual predicate� there also exist one or more

corresponding less speci�c contextual predicates which look at the same context� but omit

one or more words� For example� the templates cons��� ���� cons���� ��� cons���� ��� are

the same as cons��� �� but omit references to the head word of the �st tree� the �th tree�

and both the �th and �st tree� respectively� The less speci�c contextual predicates should

allow the model to provide reliable probability estimates when the words in the history

are rare� Less speci�c predicates are not enumerated in table ���� but their existence is

indicated with a � and y� The default predicates in table ��� return true for any context

and are the least speci�c �and most frequent� predicates� they should provide reasonable

estimates when the model encounters a context in which every other contextual predicate

is unreliable�

The contextual predicates attempt to capture the intuitions about parsing information

discussed earlier� For example� predicates derived from templates like cons��� look at

constituent head words� while predicates derived from templates like cons���� �� look at

combinations of head words� Predicates derived from templates like cons����� �� look

at less speci�c information� while predicates derived from templates like cons��� �� 
� use

limited lookahead� Furthermore� the information expressed in the predicates is always local

to where the parsing action is taking place� The contextual predicates for tag� discussed

in Chapter �� look at the previous 
 words and tags� the current word� and the following


 words� The contextual predicates for chunk look at the previous 
 words� tags� and

chunk labels� as well as the current and following 
 words and tags� build uses head word

information from the previous 
 and current trees� as well as the following 
 chunks� while

check looks at the surrounding 
 words and the head words of the children of the proposed

��



constituent� The intuitions behind the contextual predicates are not linguistically deep�

and as a result� the information necessary for parsing can be speci�ed concisely with only

a few templates�

Feature Selection

Feature selection refers to the process of choosing a useful subset of features SX from the

set of all possible features PX for use in the maximum entropy model corresponding to

procedure X� If CPX are all the contextual predicates used to encode the training events

TX � and AX are the possible actions for procedure X� the set of possible features PX for

use in X	s model are�

PX � ff jf�a� b� �

���
��

� if cp�b� � true �� a � a�

� otherwise

where cp � CPX and a� � AXg

Thus any contextual predicate cp that occurs with any action a� can potentially be a

feature� However� many of these features occur infrequently� and are therefore not reliable

sources of evidence since their behavior in the training events may not represent their

behavior in unseen data� For example� it is unlikely that all of the contextual predicates

in Table ��� would form reliable features�

We use a very simple feature selection strategy� assume that any feature that occurs

less than � times is noisy and discard it� Feature selection with a count cuto� does not

yield a minimal feature set� many of the selected features will be redundant� However�

in practice� it yields a feature set that is mostly noise�free with almost no computational

expense� Therefore� the selected features for use in procedure X	s model are

SX � ff jf�a� b� �

���
��

� if cp�b� � true �� a � a�

� otherwise

where cp � CPX and a� � AX �
X

�a�b��TX
f�a� b� � �g

In this approach� the burden of deciding the contribution of each selected feature towards

modeling the data falls to the parameter estimation algorithm�
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Model Categories Description Templates Used

tag See Chapter �

chunk chunkandpostag�n�� The word� POS tag� and
chunk tag of nth leaf� Chunk
tag omitted if n � ��

chunkandpostag����
chunkandpostag�����
chunkandpostag����
chunkandpostag����
chunkandpostag���

chunkandpostag�m�n�� chunkandpostag�m� �
chunkandpostag�n�

chunkandpostag���� ���
chunkandpostag��� ��

default Returns true for any context�

build cons�n� The head word� con�
stituent �or POS� label�
and start�join annotation
of the nth tree� Start�join
annotation omitted if n � ��

cons���� cons����� cons�����
cons���� cons���

cons�m� n�� cons�m� � cons�n� cons���� ��� cons��� ��
cons�m�n� p�y cons�m�� cons�n�� � cons�p�� cons���������� cons��� �� ���

cons���� �� ��
punctuation The constituent we could

join ��� contains a ��� and
the current tree is a �	�� ���
contains a ��� and the cur�
rent tree is a ���� ��� spans
the entire sentence and cur�
rent tree is ���

bracketsmatch� iscomma� endofsen�

tence

default Returns true for any context�

check checkcons�n�� The head word� constituent
�or POS� label of the nth
tree� and the label of pro�
posed constituent� begin and
last are �rst and last child
�resp�� of proposed con�
stituent�

checkcons�last�� checkcons�begin�

checkcons�m�n�� checkcons�m� �
checkcons�n�

checkcons�i� last�� begin � i � last

production Constituent label of parent
�X�� and constituent or POS
labels of children �X� � � � Xn�
of proposed constituent

production�X � X� � � � Xn

surround�n�� label of proposed con�
stituent� and POS tag and
word of the nth leaf to the
left of the constituent� if
n � �� or to the right of the
constituent� if n � �

surround���� surround����
surround����� surround����

default Returns true for any context�

Table ���� Contextual Information Used by Probability Models �� � all possible less speci�c
contexts are used� y � if a less speci�c context includes a word� it must include head word
of the current tree� i�e�� the �th tree��
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Start S

NP

PRP

I

Start VP

VBD

saw

Join VP

NP

DT

the

NN

man

IN

with

NP

DT

the

NN

telescope

The above action �Join VP� is encoded as follows �a vertical bar � separates information
from the same subtree� while a comma � separates information from di�erent subtrees� A
tilde 
 denotes a constituent label� as opposed to a part�of�speech tag���

Action � JoinVP

Contextual Predicates �

DEFAULT

cons�����NP	man

cons��
���NP

cons�����StartVP	VBD	saw

cons���
��StartVP	VBD

cons��
��StartS	�NP	I

cons��

��StartS	�NP

cons����IN	with

cons��
��IN

cons�
���NP	telescope

cons�

���NP

cons���
��
��StartVP	VBD��NP

cons�����
��StartVP	VBD	saw��NP

cons���
����StartVP	VBD	��NP	man

cons�������StartVP	VBD	saw��NP	man

cons��
��
���NP�IN

cons����
���NP	man�IN

cons��
�����NP�IN	with

cons�������NP	man�IN	with

cons��
��
�

���NP�IN��NP

cons����
�

���NP	man�IN��NP

cons�����

���NP	man�IN	with��NP

cons����
�
���NP	man�IN��NP	telescope

cons�����
���NP	man�IN	with��NP	telescope

cons���
��
��
��StartVP	VBD��NP�IN

cons���
����
��StartVP	VBD��NP	man�IN

cons�������
��StartVP	VBD	saw��NP	man�IN

cons���
������StartVP	VBD��NP	man�IN	with

cons���������StartVP	VBD	saw��NP	man�IN	with

cons��

���
��
��StartS	�NP�StartVP	VBD��NP	

cons��

���
����StartS	�NP�StartVP	VBD��NP	man

cons��
���
����StartS	�NP	I�StartVP	VBD��NP	man

cons��

�������StartS	�NP�StartVP	VBD	saw��NP	man

cons��
�������StartS	�NP	I�StartVP	VBD	saw��NP	man

Figure ���� Encoding a derivation with contextual predicates
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Scoring Parse Trees

Once the probability models are estimated� we can use them to de�ne a function score�

which the search procedure uses to rank derivations of incomplete and complete parse

trees� For notational convenience� de�ne q as follows

q�ajb� �

���������
��������

ptag�ajb� if a is an action from tag

pchunk�ajb� if a is an action from chunk

pbuild�ajb� if a is an action from build

pcheck�ajb� if a is an action from check

Let deriv�T � � fa�� � � � � ang be the derivation of a parse T � where T is not necessarily

complete� and where each ai is an action of some tree�building procedure� By design� the

tree�building procedures guarantee that fa�� � � � � ang is the only derivation for the parse T �

Then the score of T is merely the product of the conditional probabilities of the individual

actions in its derivation�

score�T � �
Y

ai�deriv�T �

q�aijbi�

where bi is the context in which ai was decided�

����� Search

The search heuristic attempts to �nd the best parse T �� de�ned as�

T � � arg max
T�trees�S�

score�T �

where trees�S� are all the complete parses for an input sentence S�

The heuristic employs a breadth��rst search �BFS�� similar to the one used in Chapter ��

which does not explore the entire frontier� but instead� explores only at most the top K

scoring incomplete parses in the frontier� and terminates when it has found M complete

parses� or when all the hypotheses have been exhausted� Furthermore� if fa� � � � ang are

the possible actions for a given procedure on a derivation with context b� and they are

sorted in decreasing order according to q�aijb�� we only consider exploring those actions

fa� � � � amg that hold most of the probability mass� where m is de�ned as follows�

m � max
m

mX
i��

q�aijb� � Q
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Figure ����� Observed running time of top K BFS on Section 
� of Penn Treebank WSJ�
using one ���Mhz UltraSPARC processor and 
��MB RAM of a Sun Ultra Enterprise

����

and where Q is a threshold less than �� The search also uses a Tag Dictionary constructed

from training data� described in Chapter �� that reduces the number of actions explored by

the tagging model� Thus there are three parameters for the search heuristic� namely K�M �

and Q and all experiments reported in this chapter use K � 
�� M � 
�� and Q � ����

Table ��
 describes the top K BFS and the semantics of the supporting functions�

It should be emphasized that if K � �� the parser does not commit to a single POS or

chunk assignment for the input sentence before building constituent structure� All three

of the passes described in section ����� are integrated in the search� i�e�� when parsing a

test sentence� the input to the second pass consists of K of the best distinct POS tag

assignments for the input sentence� Likewise� the input to the third pass consists of K of

the best distinct chunk and POS tag assignments for the input sentence�

The top K BFS described above exploits the observed property that the individual

steps of correct derivations tend to have high probabilities� and thus avoids searching a

�The parametersK�M � andQ were optimized on a �development set� which is separate from the training
and test sets�
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advance� d�Q �� d� � � � dm �� Applies relevant tree building

procedure to d and returns list of new

derivations whose action probabilities

pass the threshold Q ��

insert� d� h �� void �� inserts d in heap h ��

extract� h �� d �� removes and returns derivation in h

with highest score ��

completed� d �� ftrue�falseg �� returns true if and only if d is a

complete derivation ��

M � 
�
K � 
�
Q � ���
C � �empty heap� �� Heap of completed parses ��

h� ��input sentence� �� hi contains derivations of length i ��

while 	 jCj � M 


if 	 	i� hi is empty 


then break

i � maxfi j hi is non�emptyg
sz � min�K� jhij�
for j � � to sz

d� � � � dp � advance	 extract	hi
� Q 


for q � � to p

if 	completed	dq



then insert	dq� C


else insert	dq� hi	�


Table ��
� Top K BFS Search Heuristic
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K�M Seconds�Sentence Precision Recall


� 
��� ���� ����

�� ���� ���� ����

�� ���� ���� ����

� ���� ���
 ����

� ���� ���� ����

� ���� ���� ����

� ���
 �
�
 ���


Table ���� Speed and accuracy on ��� randomly selected unseen sentences

large fraction of the search space� Since� in practice� it only does a constant amount of work

to advance each step in a derivation� and since derivation lengths are roughly proportional

to the sentence length� we would expect it to run in linear observed time with respect to

sentence length� Figure ���� con�rms our assumptions about the linear observed running

time� As expected� parsing accuracy degrades as K and M are reduced� but even with

K � � and M � �� accuracy is over �
#� as shown in Table ����

��� Experiments

We present experiments that measure the accuracy and portability of the parser� and

also measure the potential gain of re�scoring the parser	s output� Experiments were con�

ducted on a treebank that is widely used in the statistical natural language processing

community� namely� the Wall St� Journal treebank �release 
� from the University of

Pennsylvania!Marcus et al�� ���
"� The maximum entropy parser was trained on sections


 through 
� �roughly 
���� sentences� of the Wall St� Journal corpus� and tested on sec�

tion 
� �

�� sentences� for comparison with other work� Table ��� describes the number

of training events extracted from the Wall St� Journal corpus� the number of actions in

the resulting probability models� and the number of selected features in the resulting prob�

ability models� Only the words� part�of�speech tags� constituent labels� and constituent

boundaries of the Penn treebank were used for training and testing� The other annotation�

such as the function tags that indiciate semantic properties of constituents� and the null

elements that indicate traces and coreference� were removed for both training and testing�

��



Previous literature on statistical parsing has used the following measures� based on those

proposed in !Black et al�� ����"� for comparing a proposed parse P with the corresponding

correct treebank parse T �

Recall �
� correct constituents in P

� constituents in T

Precision �
� correct constituents in P

� constituents in P

CB � Crossing Brackets� or � of constituents in P

that violate at least one constituent boundary in T

�CB � Zero Crossing Brackets� which is�

� if P contains any constituents that violate constituent boundaries in T

� otherwise

For the Precision and Recall measures� a constituent in P is �correct� if there exists a

constituent in T of the same label that spans the same words� and part�of�speech tags

are not counted as constituents� The Recall� Precision� and Crossing Brackets measures

are averaged across the constituents of the test set� while the � Crossing Brackets mea�

sure is averaged across the sentences of the test set� Table ���� shows results using the

PARSEVAL measures� as well as results using the slightly more forgiving measures used in

!Magerman� ����"�It shows that the maximum entropy parser compares favorably to other

state�of�the�art systems !Magerman� ����� Collins� ����� Goodman� ����� Charniak� �����

Collins� ����" and shows that only the results of !Collins� ����" are better in both precision

and recall� The parser of !Hermjakob and Mooney� ����" also performs well ���# labelled

precision and recall� on the Wall St� Journal domain� but uses a test set comprised of

sentences with only frequent words and recovers a di�erent form of annotation� and is

therefore not comparable to the parsers in Table ����� Figure ���� shows the e�ects of

training data size versus performance�
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Procedure Number of Training Events Number of Actions Number of Features

tag ������ 
� ������

chunk ������ 
� 
��
��

check ������
 
 ��

�


build ������
 �
 ��
��


Table ���� Sizes of Training Events� Actions� and Features

Word� The man buys cars with big tires
Modi�es� man buys ROOT buys cars tires with

Table ���� The parse of Figure ���� in dependency syntax notation

��	�� Dependency Evaluation

It is easier to diagnose errors with dependency syntax notation� as opposed to phrase

structure notation� Any phrase structure tree annotated with head words� like the one in

Figure ���� can be converted into dependency syntax notation� shown in Table ���� in which

each word is �tagged� with the the word it modi�es� and the head word of the sentence

is tagged with the symbol ROOT� �E�g�� see !Eisner� ����" as an example of using the Penn

treebank for dependency parsing and evaluation�� Table ��� shows the top 
� dependency

errors of the parser when the training set �sections 
 through 
� of the WSJ treebank�

itself is parsed� and Table ��� shows the top 
� dependency errors listed by part�of�speech

tags� over the training set� Table ��� displays the source word� its correct target� and the

�incorrect� target proposed by the parser� while Table ��� displays the tag of the source

word� the tag of the correct target� and the tag of the �incorrect� proposed target� Even if

the POS tags of the correct target and proposed target are be identical in Table ���� they

correspond to di�erent words in the sentence� Surprisingly� a few words� such as is� ago�

and from are repeatedly involved in the errors� and commas as well as prepositions �words

with part�of�speech tag IN� are consistently misattached by the parser�

��	�� Portability

Portability across domains is an important concern� since corpus�based methods will su�er

in accuracy if they are tested in a domain that is unrelated to the one in which they are
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Count Source Word Correct Target Proposed Target


� � share from

�
 ago from year

�
 year ago from


� � is said


� � is is



 and to to



 said is ROOT


� � is says


� � is said

�� is is ROOT

�� � is is

�� is ROOT said

�� � to is

�� � said is

�� � share rose

�� � said was

�� year earlier from

�� earlier from year

�� � will will

�� � was said

Table ���� The top 
� dependency errors on training set� by word

��



Count Tag of Source Word Tag of Correct Target Tag of Proposed Target

��
 � NN NN

��� NNP NNP NNP

�
� IN NN NN


�
 IN VBD NN


�� IN VB NN


�
 � NN NNP


�� NN NN IN



� � VBD VBD


�� NN IN NN

��� NNP NN NNP

��� IN NN VBD

��� � VBD NN

�
� � VBD VBD

��
 NN IN IN

��� NNP NNP NN


�� VBD VBD ROOT


�� VBD ROOT VBD


�� TO VBD NN


�� NNP IN NNP


�� NN NN NN

Table ���� The top 
� dependency errors on training set� by part�of�speech tag

Parser Precision Recall CB � CB

Maximum Entropy� ����# ����# ��
� ����#

Maximum Entropy� ����# ����# ��
� ���
#

!Magerman� ����"� �
��# �
��# ��
� �
#

!Collins� ����"� ����# ����# ���
 ���
#

!Goodman� ����"� �
��# ����# ��
� ����#

!Charniak� ����"� ����# ����# ��
 ����#

!Collins� ����"� ����# ����# ���� ����#

Table ����� Results on 

�� sentences of section 
� �� to ��� words in length� of the WSJ
Treebank� Evaluations marked with � ignore quotation marks� Evaluations marked with
� collapse the distinction between ADVP and PRT� and ignore all punctuation�
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� Accuracy

� Sample of Original Training Set

Precision �

�
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�

�

� Recall �
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Figure ����� Performance on section 
� as a function of training data size� The X axis
represents random samples of di�erent sizes from sections 
 through 
� of the Wall St�
Journal corpus�

Name Description Category

WSJ�train Sections 
 through 
� of the
WSJ corpus

Financial News

G�train First 
��� sentences of section
G in Brown corpus

Magazine�Journal Articles

G�test Remaining �
�� sentences of
section G in Brown corpus

Magazine�Journal Articles

K�train First 
��� sentences of section
K in Brown corpus

General Fiction

K�test Remaining 
��� sentences of
section K in Brown corpus

General Fiction

N�train First 
��� sentences of section
N in Brown corpus

Adventure Fiction

N�test Remaining 
�
� sentences of
section N in Brown corpus

Adventure Fiction

Table ����� Description of training and test sets
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Training Strat�
egy

Test Corpus �Precision�Recall� Avg� Precision�Recall

G K N

Strategy �
� Train on
WSJ�train�
test on X�test

���
#�����# ����#�����# ����#�����# ����#����
#

Strategy 

� Train on
WSJ�train �
X�train� test
on X�test

����#�����# ����#�����# �
��#�����# ����#�����#

Strategy �
� Train on
X�train� test
on X�test

���
#�����# ����#�����# ����#�����# ���
#�����#

Table ���
� Portability Experiments on the Brown corpus� See Table ���� for the training
and test sets�

trained �e�g�� see !Sekine� ����"�� Since treebank construction is a time�consuming and

expensive process� it is unlikely �in the near future� that treebanks will exist for every

domain that we could conceivably want to parse� It then becomes important to quantify

the potential loss in accuracy when training on a treebanked domain� like the Wall St�

Journal� and testing on a new domain� The experiments here address the two following

practical questions �

� How much accuracy is lost when the parser is trained on the Wall St� Journal domain�

and tested on another domain �compared to when the parser is trained and tested

on the Wall St� Journal� �

� How much does a small amount of additional training material �
��� sentences� on

a new domain help the parser	s accuracy on the new domain �

The new domains� namely �Magazine � Journal Articles�� �General Fiction�� and �Ad�

venture Fiction�� are from the Brown corpus!Francis and Kucera� ���
"� a collection of

English text from Brown University that represents a wide variety of di�erent domains�

These domains have been annotated in a convention similar to the text of the Wall St�

Journal treebank�
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Table ���
 describes the results of several di�erent training schemes� and table ����

describes the training and test corpora� The feature sets of the parser were not changed

in any way when training from the Brown corpus domains� According to table ���
� the

training schemes for parsing a new domain D� ranked in order from best to worst� are�

�� Strategy 
� Train on a mixture of a lot of WSJ and a little of D


� Strategy �� Train on a lot of WSJ

�� Strategy �� Train on a little of D

All experiments on a particular new domain �G� K� and N� are controlled to use the same

test set� and the additional training sets G�train� K�train� and N�train all consist of 
���

sentences from their respective domain� Compared to the accuracy achieved when training

and testing on the Wall St� Journal �����# precision�����# recall as shown in table ������

we conclude that�

� on average� we lose about ���# precision and ��
# recall when training on the Wall

St� Journal and testing on the Brown corpus �strategy ���

� on average� we lose ��� # precision and �# recall when training on the Wall St�

Journal and the domain of interest� and testing on that same domain �strategy 
��

The discussion thus far has omitted one other possibility� namely� that the lower Brown

corpus performance in strategies � and 
 is due to some inherent di�culty in parsing the

Brown corpus text� and not to the mismatch in training and test data� A quick glance at

�gure ���� and table ���
 dispels this possibility� since training on roughly 
��� sentences

of the Wall St� Journal yields ��# precision and ��# recall� which is only slightly higher

��#� than the results on the Brown corpus under identical circumstances� roughly ��#

precision ��# recall� Since the di�erence in accuracy due to inherent parsing di�culty

��#� is dwarfed by the loss in accuracy ����#� that we su�er with strategies � and 
� the

training domain�test domain mismatch must account for most of the accuracy loss�

��



��	�� Reranking the Top N

It is often advantageous to produce the top N parses instead of just the top �� since addi�

tional information can be used in a secondary model that re�orders the top N and hopefully

improves the quality of the top ranked parse� �E�g�� see !Ratnaparkhi et al�� ���
b" for a

probability model that reranks the output of !Jelinek et al�� ���
"�� Suppose there exists a

�perfect� reranking scheme that� for each sentence� magically picks the best parse from the

top N parses produced by the maximum entropy parser� where the best parse has the high�

est average precision and recall when compared to the treebank parse� The performance of

this �perfect� scheme is then an upper bound on the performance of any reranking scheme

that might be used to reorder the top N parses� Figure ���
 shows that the �perfect�

scheme would achieve roughly ��# precision and recall� which is a dramatic increase over

the top � accuracy of ��# precision and ��# recall� Figure ���� shows that the �Exact

Match�� which counts the percentage of times the proposed parse P is identical �excluding

POS tags� to the treebank parse T � rises substantially to about ��# from ��# when the

�perfect� scheme is applied� It is not surprising that the accuracy improves by looking

at the top N parses� but it is suprising�given the thousands of partial derivations that

are explored and discarded�that the accuracy improves drastically by looking at only the

top �� completed parses� For this reason� research into reranking schemes appears to be a

promising and practical step towards the goal of improving parsing accuracy�

��� Comparison With Previous Work

When compared to other parsers� the accuracy of the maximum entropy parser is state�of�

the�art� It performs slightly better than or equal to most of the other systems compared in

Table ����� and performs only slightly worse than !Collins� ����"� However� the di�erences

in accuracy are fairly small� and it is unclear if the di�erences will matter to the perfor�

mance of applications that require parsed input� The main advantage of the maximum

entropy parser is not its accuracy� but that it achieves the accuracy using only simple facts

about data that have been derived from linguistically obvious intuitions about parsing� As

a result� the evidence it needs can be speci�ed concisely� and the method can be re�used

��



��

��

�	

��

�



�


�


�


�


�


�

� � �� �� ��

� Accuracy

Number of Parses For Each Sentence

Precision �

�

�

�

�

�
�
� �

� � � � � � � � � � � � �

Recall �

�

�

�
�

�
�

�
� � � � � � � � � � � � � �

Figure ���
� Precision � recall of a �perfect� reranking scheme for the top N parses of
section 
� of the WSJ Treebank� as a function of N � Evaluation ignores quotation marks�

��
�	
�

��
��
��
�	
�

��
��
��
�	
�

��
��
��

� � �� �� ��

� Accuracy

Number of Parses For Each Sentence

Exact Match �

�

�

�

�

�
�
�
�
�
� � �

� � � � � � � � �

Figure ����� Exact match of a �perfect� reranking scheme for the top N parses of section

� of the WSJ Treebank� as a function of N � Evaluation ignores quotation marks�
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from other tasks� resulting in a minimum amount of e�ort on the part of the experimenter�

The maximum entropy parser di�ers from other statistical parsers in how it repre�

sents words and the generality of the method with which it uses to learn parsing actions�

For example� the parsers of !Black et al�� ����� Jelinek et al�� ���
� Magerman� ����" use a

general learning technique�decision trees�to learn parsing actions� and need to represent

words as bitstrings derived from a statistical word clustering technique� The maximum

entropy parser also uses a general learning technique but does not require a �typically

expensive� clustering procedure� and allows experimenters to use natural linguistic repre�

sentations of words and constituents�

Other parsers� like those of !Collins� ����� Goodman� ����� Charniak� �����

Collins� ����" use natural linguistic representations of words and constituents� but do not

use general machine learning techniques� Instead� they use custom�built statistical models

that combine evidence in clever ways to achieve high parsing accuracies� While it is always

possible to tune such methods to maximize accuracy� the methods are speci�c to the pars�

ing problem and require non�trivial research e�ort to develop� In contrast� the maximum

entropy parser uses an existing modeling framework that is essentially independent of the

parsing task� and saves the experimenter from designing a new� parsing�speci�c statistical

model�

In general� more supervision typically leads to higher accuracy� For example�

!Collins� ����" uses the semantic tags in the Penn treebank while the other� slightly less ac�

curate parsers in table ���� discard this information� Also� !Hermjakob and Mooney� ����"

use a hand�constructed knowledge base and subcategorization table and report ��# la�

belled precision and recall� using a di�erent test set and evaluation method� Currently�

the maximum entropy parser does not use this additional information� but it could� in

theory� be implemented as features in the parser	s appropriate probability model�

The portability of all the parsers discussed here is limited by the availability of tree�

banks� Currently� few treebanks exist� and constructing a new treebank requires a tremen�

dous amount of e�ort� It is likely that all current corpus�based parsers will parse text less

accurately if the domain of the text is not similar to the domain of the treebank that was

used to train the parser�
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��� Conclusion

The maximum entropy parser achieves state�of�the�art parsing accuracy� and minimizes

the human e�ort necessary for its construction through its use of both a general learning

technique� and a simple representation derived from a few intuitions about parsing� Those

results which exceed those of the parser presented here require much more human e�ort

in the form of additional resources or annotation� In practice� it parses a test sentence

in linear time with respect to the sentence length� It can be trained from other domains

without modi�cation to the learning technique or the representation� Lastly� this paper

clearly demonstrates that schemes for reranking the top 
� parses deserve research e�ort

since they could yield vastly better accuracy results�

The high accuracy of the maximum entropy parser also has interesting implications for

future applications of general machine learning techniques to parsing� It shows that the

procedures and actions with which a parser builds trees can be designed independently of

the learning technique� and that the learning technique can utilize the exactly same sorts

of information� e�g�� words� tags� and constituent labels� that might normally be used in a

more traditional� non�statistical natural language parser� This implies that it is feasible to

use maximum entropy models and other general learning techniques to drive the actions

of other kinds of parsers trained from more linguistically sophisticated treebanks� Perhaps

a better combination of learning technique� parser� and treebank will exceed the current

state�of�the�art parsing accuracies�
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Chapter �

Unsupervised Prepositional

Phrase Attachment

	�� Introduction

Prepositional phrase attachment� a sub�task of the general natural language parsing prob�

lem� is the task of choosing the attachment site of a preposition that corresponds to the

interpretation of the sentence� For example� the task in the following examples is to decide

whether the preposition with modi�es the preceding noun phrase �with head word shirt�

or the preceding verb phrase �with head word bought or washed��

�� I bought the shirt with pockets�


� I washed the shirt with soap�

In sentence �� with modi�es the noun shirt� since with pockets describes the shirt� However

in sentence 
� with modi�es the verb washed since with soap describes how the shirt is

washed� While this form of attachment ambiguity is usually easy for people to resolve� a

computer requires detailed knowledge about words �e�g�� washed vs� bought� in order to

successfully resolve such ambiguities and predict the correct semantic interpretation�

�




	�� Previous Work

Most of the previous successful approaches to this problem have been statistical or corpus�

based� and they consider only prepositions whose attachment is ambiguous between a

preceding noun phrase and verb phrase� Previous work has framed the problem as a

classi�cation task� in which the goal is to predict the correct attachment a � fN�V g�
corresponding to noun or verb attachment� given the head verb v� the head noun n� the

preposition p� and optionally� the object of the preposition n
� For example� the �v� n� p� n
�

tuples corresponding to the example sentences are

�� bought shirt with pockets


� washed shirt with soap

The correct classi�cations of examples � and 
 are N and V � respectively�

!Hindle and Rooth� ����" describes a partially supervised approach in which the

Fidditch partial parser was used to extract �v� n� p� tuples from raw text� where

p is a preposition whose attachment is ambiguous between the head verb v and

the head noun n� The extracted tuples are then used to construct a clas�

si�er� which resolves unseen ambiguities at around ��# accuracy� Later work�

such as !Ratnaparkhi et al�� ���
a� Brill and Resnik� ���
� Collins and Brooks� �����

Merlo et al�� ����� Zavrel and Daelemans� ����� Franz� ����"� trains and tests on quintu�

ples of the form �v� n� p� n
� a� extracted from the Penn treebank!Marcus et al�� ���
"� and

has gradually improved on this accuracy with other kinds of statistical learning methods�

yielding up to �
��# accuracy!Collins and Brooks� ����"� !Stetina and Nagao� ����" have

reported ��# accuracy by using a corpus�based model in conjunction with a semantic

dictionary� and therefore claim to match the human performance for this task reported

in !Ratnaparkhi et al�� ���
a"� !de Lima� ����" uses shallow parsing techniques to collect

training data for a corpus�based method to resolve ambiguous attachments in the German

language�

While previous corpus�based methods approach the accuracy of humans for this task�

they are not portable because they require resources that are expensive to construct or

simply nonexistent in other languages� Even in English� portability to other genres is a

��



serious hurdle for supervised approaches � Chapter � shows that training a natural language

parser on a treebank in one genre and testing it in another genre leads to a substantial

loss in prediction accuracy� We present an unsupervised algorithm for prepositional phrase

attachment that requires only a part�of�speech tagger and a morphology database during

its training phase� and is therefore less resource�intensive and more portable than previous

approaches� which have all required either treebanks or partial parsers� In theory� our

algorithm can be easily re�trained on most genres of English� and also other languages

with similar word orders� We present results in both English and Spanish�

	�� Unsupervised Prepositional Phrase Attachment

The exact task of our algorithm will be to construct a classi�er cl which maps an instance

of an ambiguous prepositional phrase �v� n� p� n
� to either N or V � corresponding to noun

attachment or verb attachment� respectively� In the full natural language parsing task�

there are more than just two potential attachment sites� but we limit our task to choosing

between a verb v and a noun n so that we may compare with previous supervised attempts

on this problem� While we will be given the candidate attachment sites during testing� the

training procedure assumes no information about potential attachment sites�

����� Generating Training Data From Raw Text

We generate training data from raw text by using a part�of�speech tagger� a simple chunker�

an extraction heuristic� and a morphology database� The order in which these tools are

applied to raw text is shown in Table ���� The tagger from Chapter � �rst annotates sen�

tences of raw text with a sequence of part�of�speech tags� The chunker� implemented with

two small regular expressions� then replaces simple noun phrases and quanti�er phrases

with their head words� The extraction heuristic then �nds head word tuples and their

likely attachments from the tagged and chunked text� The heuristic relies on the observed

fact that in English and in languages with similar word order� the attachment site of a

preposition is usually located only a few words to the left of the preposition� Finally� num�

bers are replaced by a single token� the text is converted to lower case� and the morphology

�




Tool Output

Raw Text The professional conduct of lawyers in other jurisdictions is
guided by American Bar Association rules or by state bar
ethics codes � none of which permit non�lawyers to be partners
in law �rms �

�
POS Tagger The DT professional JJ conduct NN of IN lawyers NNS

in IN other JJ jurisdictions NNS is VBZ guided VBN
by IN American NNP Bar NNP Association NNP rules NNS
or CC by IN state NN bar NN ethics NNS codes NNS � �
none NN of IN which WDT permit VBP non�lawyers NNS
to TO be VB partners NNS in IN law NN �rms NNS � �

�
Chunker conduct NN of IN lawyers NNS in IN jurisdictions NNS

is VBZ guided VBN by IN rules NNS or CC by IN
codes NNS � � none NN of IN which WDT permit VBP
non�lawyers NNS to TO be VB partners NNS in IN
�rms NNS � �

�
Extraction Heuristic �n �lawyers� p �in� n
 �jurisdictions�

�v �guided� p �by� n
 �rules�
�

Morphology� �n �lawyer� p �in� n
 �jurisdiction�
�v �guide� p �by� n
 �rule�

Table ���� How to obtain training data from raw text
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database is used to �nd the base forms of the verbs and nouns�

The extracted head word tuples di�er from the training data used in previous super�

vised attempts in an important way� In the supervised case� both of the potential sites�

namely the verb v and the noun n are known in conjunction with the attachment� In

the unsupervised case discussed here� the extraction heuristic only �nds what it thinks

are unambiguous cases of prepositional phrase attachment� Therefore� there is only one

possible attachment site for the preposition� and either the verb v or the noun n does not

exist� in the case of noun�attached preposition or a verb�attached preposition� respectively�

This extraction heuristic loosely resembles a step in the bootstrapping procedure used to

get training data for the classi�er of !Hindle and Rooth� ����"� In that step� unambiguous

attachments from the Fidditch parser	s output are initially used to resolve some of the

ambiguous attachments� and the resolved cases are iteratively used to disambiguate the

remaining unresolved cases� Our procedure di�ers critically from !Hindle and Rooth� ����"

in that we do not iterate� we extract unambiguous attachments from unparsed input sen�

tences� and we totally ignore the ambiguous cases� It is the hypothesis of this approach

that the information in just the unambiguous attachment events can resolve the ambiguous

attachment events of the test data�

Tagging and Chunking

We �rst use the tagger in Chapter � to automatically annotate raw text with part�of�speech

tags� Then� simple noun phrases and quanti�ed phrases are �chunked�� i�e�� replaced with

their head word� using the following� mostly trivial� PERL program�

� Input is one sentence per line�

� in the format� word��tag� word
�tag
 ��� wordN�tagN

while ��STDIN��

�

� chunk simple Noun phrases� and replace with last word

s���� ���DT ����� ����NNP	NN	NNS	NNPS	JJ	JJS	CD� �
��� ����NNP	NN	NNS	NNPS������g�

� chunk Quantifier phrases� and replace with last word

s������ ��� ���CD �
��� ���CD���
�g�

print ���

�

��



An example of a tagged and chunked sentence is shown in Table ����

Heuristic Extraction of Unambiguous Cases

Given a tagged and chunked sentence� the extraction heuristic returns head word tuples of

the form �v� p� n
� or �n� p� n
�� where v is the verb� n is the noun� p is the preposition� n


is the object of the preposition� The heuristic has the following parameters� which need to

be designed by the experimenter�

The window size K� This parameter determines the maximum distance in words be�

tween a preposition p and n� v� or n
� We use K � � in all the experiments here�

Functions to Identify Prepositions� Nouns� and Verbs� We assume the existence

of functions to identify prepositions� nouns� and verbs in tagged text�

Function to Identify Forms of to be� We assume a function that returns true or false

to indicate if a given verb is a form of the verb to be�

The actual function de�nitions depend on the language of the text and annotation style of

the tagger� Given tagged data and a description of the tagset� they are trivial to implement

in English and should be easy to port to other tagsets and languages�

The main idea of the extraction heuristic is that an attachment site of a preposition is

usually within a few words to the left of the preposition� We extract �

�v� p� n
� if

� p is a preposition �p �� of�

� v is the �rst verb that occurs within K words to the left of p

� v is not a form of the verb to be

� No noun occurs between v and p

� n
 is the �rst noun that occurs within K words to the right of p

� No verb occurs between p and n


�n� p� n
� if

��



� p is a preposition �p �� of�

� n is the �rst noun that occurs within K words to the left of p

� No verb occurs within K words to the left of p

� n
 is the �rst noun that occurs within K words to the right of p

� No verb occurs between p and n


Table ��� also shows the result of the applying the extraction heuristic to a sample sentence�

The heuristic ignores cases where p � of � since such cases are rarely ambiguous� and

we opt to model them deterministically as noun attachments� We will report accuracies

�in Section ���� on both cases where p � of and where p �� of � Also� the heuristic excludes

examples with the verb to be from the training set �but not the test set� since we found

them to be unreliable sources of evidence�

Morphology

We use the morphology database of the XTAG system!Karp et al�� ���
" to reduce all

nouns and verbs in the extracted tuples to their morphological base forms� In addition� all

upper case characters are translated to lower case before using the morphology database�

and any number or percent sign �#� is replaced by the token num� Table ��� shows an

example in which the verb guided and nouns lawyers� jurisdictions� and rules are reduced

to their base forms�

����� Accuracy of Extraction Heuristic

Applying the extraction heuristic to ���K unannotated sentences from the ���� Wall St�

Journal� data yields approximately ���K unique head word tuples of the form �v� p� n
�

or �n� p� n
�� The extraction heuristic is far from perfect� when applied to and compared

with the annotated Wall St� Journal data of the Penn treebank� only ��# of the extracted

head word tuples represent correct attachments�� The extracted tuples are meant to be

a noisy but abundant substitute for the information that one might get from a treebank�

�This data is available from the Linguistic Data Consortium� http���www�ldc�upenn�edu
�This accuracy also excludes cases where p � of �

��



Frequency Verb Prep Noun


���� close at num

��
� reach for comment

���� rise to num

�
�� compare with num

���
 fall to num

��� account for num

��� value at million

��� say in interview

��� compare with million

��� price at num

Table ��
� Most frequent �v� p� n
� head word tuples

Frequency Noun Prep Noun


���� num to num

�
� num from num

��� share from million

�
� trading on exchange

�
� num in num

��� num to month

��� share on revenue


�� num to day


�� trading on yesterday

��� share on sale

Table ���� Most frequent �n� p� n
� head word tuples

Tables ��
 and ��� list the most frequent extracted head word tuples for unambiguous verb

and noun attachments� respectively� Many of the frequent noun�attached �n� p� n
� tuples�

such as num to num�� are incorrect� The prepositional phrase to num is usually attached

to a verb such as rise or fall in the Wall St� Journal domain� e�g�� Pro�ts rose �
 � to ��

million�

�Recall the num is the token for quanti�er phrases identi�ed by the chunker� like � million� or � ��
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	�� Statistical Models

While the extracted tuples of the form �n� p� n
� and �v� p� n
� represent unambiguous noun

and verb attachments in which either the verb or noun is known� our eventual goal is to

resolve ambiguous attachments in the test data of the form �v� n� p� n
�� in which both

the noun n and verb v are always known� We therefore must use any information in the

unambiguous cases to resolve the ambiguous cases� A natural way is to use a classi�er that

compares the probability of each outcome�

cl�v� n� p� n
� ����
��

N if p � of

argmaxa�fN�V g Pr�v� n� p� n
� a� otherwise

�����

where Pr�v� n� p� n
� a � N� is the probability of the head words with a noun attach�

ment� and where Pr�v� n� p� n
� a � V � is the probability of the head words with a verb

attachment�

We can factor Pr�v� n� p� n
� a� as follows�

Pr�v� n� p� n
� a� � Pr�v�Pr�n�Pr�ajv� n�Pr�pja� v� n�Pr�n
jp� a� v� n�

The terms Pr�n� and Pr�v� are independent of the attachment a and need not be com�

puted in cl ������ but the estimation of Pr�ajv� n� � Pr�pja� v� n� � and Pr�n
jp� a� v� n� is

problematic since our training data� i�e�� the head words extracted from raw text� occur

with either n or v� but never both n� v� This leads to make some intuitively motivated

approximations for Pr�ajv� n�� Pr�pja� v� n�� and Pr�n
jp� a� v� n�� Let the random variable

� range over ftrue� falseg� and let it denote the presence or absence of any preposition

that is unambiguously attached to the noun or verb in question� Then p�� � truejn� is the
conditional probability that a particular noun n in free text has an unambiguous prepo�

sitional phrase attachment� �� � true will be written simply as true�� We approximate

Pr�ajv� n� as follows�

Pr�a � N jv� n� � Pr�truejn�
Z�v� n�

Pr�a � V jv� n� � Pr�truejv�
Z�v� n�

Z�v� n� � Pr�truejn� � Pr�truejv�

��



The rationale behind this approximation is that the tendency of a v� n pair towards a

noun �verb� attachment is related to the tendency of the noun �verb� alone to occur

with an unambiguous prepositional phrase� The Z�v� n� term exists only to make the

approximation a well formed probability over a � fN�V g�
We approximate Pr�pja� v� n� as follows�

Pr�pja � N� v� n� � Pr�pjtrue� n�
Pr�pja � V� v� n� � Pr�pjtrue� v�

and similarly approximate Pr�n
jp� a� v� n��

Pr�n
jp� a � N� v� n� � Pr�n
jp� true� n�
Pr�n
jp� a � V� v� n� � Pr�n
jp� true� v�

The rationale behind these approximations is that when generating p or n
 given a noun

�verb� attachment� only the counts involving the noun �verb� are relevant� assuming also

that the noun �verb� has an attached prepositional phrase� i�e�� � � true� The approxima�

tions avoid using counts of n� v together� since they are never seen together in the extracted

data�

We use word statistics from both the tagged corpus and the set of extracted head word

tuples to estimate the probability of generating � � true� p� and n
� The counts used from

the tagged corpus �before it has been chunked� are�

� c�n�� The count of a noun n

� c�v�� The count of a verb v

and the counts used from the extracted tuples are

� c�n� p� n
� � � true�� The count of a noun n with an unambiguously attached prepo�

sitional phrase with heads p and n
�

� c�v� p� n
� � � true�� The count of a verb v with an unambiguously attached prepo�

sitional phrase with heads p and n
�

��



Since the extracted tuples correspond to unambiguous attachments� they correspond to

instances in which � � true� Occurrences of verbs and nouns which� according to the ex�

traction heuristic� do not participate in unambiguous attachments correspond to instances

of � � false� The relationship between the two kinds of counts is given below�

c�n� � c�n� �� �� false� �
X
p�n�

c�n� p� n
� true�

c�v� � c�v� �� �� false� �
X
p�n�

c�v� p� n
� true�

where � represents a missing head word� Other types of counts can be derived in the usual

ways�

c�n� p� true� �
X
n�

c�n� p� n
� true�

c�v� p� true� �
X
n�

c�v� p� n
� true�

c�n� true� �
X
p

c�n� p� true�

c�v� true� �
X
p

c�v� p� true�

��	�� Generate �

The quantities Pr�truejn� and Pr�truejv� denote the conditional probability that n or v

will occur with some unambiguously attached preposition� and are estimated as follows�

Pr�truejn� �

���
��

c�n�true�
c�n� c�n� � �

�� otherwise

Pr�truejv� �

���
��

c�v�true�
c�v� c�v� � �

�� otherwise

��	�� Generate p

The terms Pr�pjn� true� and Pr�pjv� true� denote the conditional probability that a par�

ticular preposition p will occur as an unambiguous attachment to n or v� We present

�




three techniques to estimate this probability� one based on raw counts� one based on an

interpolation method� and one based on the maximum entropy framework�

Raw Counts

This technique uses the raw counts of the extracted head word tuples� and backs o� to the

uniform distribution when the denominator is zero�

Pr�pjtrue� n� �

���
��

c�n�p�true�
c�n�true� c�n� true� � �

�
jPj otherwise� where P is the set of possible prepositions

Pr�pjtrue� v� �

���
��

c�v�p�true�
c�v�true� c�v� true� � �

�
jPj otherwise� where P is the set of possible prepositions

Interpolation

This technique is similar to the one in !Hindle and Rooth� ����"� and interpolates between

the tendencies of the �v� p� and �n� p� bigrams and the tendency of the type of attachment

�e�g�� N or V� towards a particular preposition p� First� de�ne cN as the number of noun

attached tuples� and cN �p� as the number of noun attached tuples with the preposition p�

cN �
X
n�p

c�n� p� true�

cN �p� �
X
n

c�n� p� true�

Analogously� de�ne cV and cV �p��

cV �
X
v�p

c�v� p� true�

cV �p� �
X
v

c�v� p� true�

Using the above notation� we can interpolate as follows�

Pr�pjtrue� n� �
c�n� p� true� � cN �p�

cN

c�n� true� � �

Pr�pjtrue� v� �
c�v� p� true� � cV �p�

cV

c�v� true� � �

��



Interpolation via the Maximum Entropy Framework

Instead of using the above technique to interpolate between the bigrams	 and attachment	s

tendency toward a particular preposition p� we can instead implement the �v� p� and �n� p�

bigrams� as well as the cN �p� and cV �p� statistics� as features under the maximum entropy

framework� Note that if we only used the �v� p� and �n� p� bigrams with a count cuto� of

�� the resulting probability model would be equivalent to the model in Section ��
�
 that

uses only the raw counts�

In the notation introduced in Chapter 
� we can de�ne a maximum entropy conditional

model q such that q�pjn� v� a� is the probability of a preposition p given n� v� a� where either

the noun n or verb v is unknown� depending on the value of the attachment variable a�

�Here the outcome is the preposition p� and the context is the triple n� v� a� The model q

is de�ned as follows�

Outcomes� The set of outcomes consists of the words in the data that were tagged as

prepositions and that occurred at least ��� times� �The count cuto� of ��� throws

away most of the tagging errors�� A special outcome unknown represents any prepo�

sition that is not included in the word list obtained by the frequency cuto� of ����

Contextual Predicates� We use two predicates to capture the attachment alone�

cpN �v� n� a� � true i� a � N

cpV �v� n� a� � true i� a � V

We also use two types of predicates to capture the attachment and the noun or verb�

given by the following two templates�

cpnoun�N �v� n� a� � true i� a � N and n � noun

cpverb�V �v� n� a� � true i� a � V and v � verb

where noun and verb represent a noun or verb� respectively� The actual predicates

are obtained automatically by matching the templates to instances in the training

�




data� E�g�� an actual contextual predicate could be�

cpbuy�V �v� n� a� � true i� a � V and v � buy

Recall that if a � V � the noun is unknown� and if a � N � the verb is unknown since

our training data consists of only unambiguous attachments�

Feature Selection� We discard features that occur less than � times�

An example feature under this model might be�

fp�v�n�a �

���
��

� if p � with and cpbuy�V �v� n� a� � true

� otherwise

where p is outcome� and v� n� a is the context� Once q is estimated� we can compute Pr�pj
��

Pr�pjn� true� � q�pjv ��� n� a � Noun�

Pr�pjv� true� � q�pjv� n ��� a � V erb�

The condition that � � true is not written explicitly in q� but is assumed since q is trained

from the unambiguous examples which represent � � true�

��	�� Generate n�

The quantities Pr�n
jp� n� true� and Pr�n
jp� v� true� denote the conditional probability

that a noun n
 will occur with a preposition p and noun n� or a preposition p and verb v�

Our attempts so far to use these quantities have not helped the accuracy of the classi�er�

so we therefore omit them in the calculation of the classi�er ������ �Equivalently� we can

assume the uniform distribution for both terms� and factor out both terms when comparing

probabilities in �������

	�� Experiments in English

Approximately ���K unannotated sentences from the ���� Wall St� Journal were processed

in a manner identical to the example sentence in Table ���� The result was approximately
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Subset Number of Events clrawcount clinterp clmaxent clbase
p � of �
� ��� ��� ��� ���

p �� of 
��
 ��
� ���� ���� �
��

Total ���� 
��� 
��� 
��
 
���

Accuracy � �����# �����# ����
# �����#

Table ��
� Accuracy of mostly unsupervised classi�ers on English

������� head word tuples of the form �v� p� n
� or �n� p� n
�� Note that while the head

word tuples represent correct attachments only ��# of the time� their quantity is about


� times greater than the quantity of data used in previous supervised approaches� The

extracted data was used as training material for the four classi�ers clbase� clinterp� clmaxent�

and clrawcount Each classi�er is constructed as follows�

clbase This is the �baseline� classi�er� whose accuracy will indicate the level of performance

we can attain using virtually no information�

clbase�v� n� p� n
� �

���
��

N if p � of

V otherwise

clinterp� This classi�er has the form of equation ������ uses the method in section ��
�� to

generate �� and the �interpolation� method in section ��
�
 to generate p�

clmaxent� This classi�er has the form of equation ������ uses the method in section ��
�� to

generate �� and the �maximum entropy� method in section ��
�
 to generate p�

clrawcount� This classi�er has the form of equation ������ uses the method in section ��
��

to generate �� and the �raw count� method in section ��
�
 to generate p�

Table ��
 shows accuracies of the classi�ers on the test set of !Ratnaparkhi et al�� ���
a"�

which is derived from the manually annotated attachments in the Penn Treebank Wall St�

Journal data� The Penn Treebank is drawn from the ���� Wall St� Journal data� so there

is no possibility of overlap with our training data� Furthermore� the extraction heuristic

was developed and tuned on a �development set�� i�e�� a set of annotated examples that

did not overlap with either the test set or the training set� Figure ��� shows the e�ect of
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	�

	�

	�

	�

	�

��

��

��

� �� �� �� �� �� �� 	� �� 
� ���

� Accuracy

� Random Sample of training data

clrawcount ��

�

��

���
�
��

�

� �

�
� � � � �

clbaseline

Figure ���� Test set performance of clrawcount as a function of training set size

varying the training set size with performance on the test set� and shows that performance

is unlikely to improve much with additional data�

The classi�ers clinterp� clmaxent� and clrawcount clearly outperform the baseline� and

even begin to approach the performance of the best supervised approach� Surprisingly� the

clinterp and clmaxent classi�ers� which interpolate between the less speci�c evidence �the

preposition counts� and more speci�c evidence �the bigram counts� do not outperform

the clrawcount classi�er� despite the fact that they appear to be better motivated than

the clrawcount classi�er� The failure of clinterp and clmaxent to outperform clrawcount may

be due to the errors in our extracted training data� supervised classi�ers that train from

clean data typically bene�t greatly by combining less speci�c evidence with more speci�c

evidence�

	�� Experiments in Spanish

We claim that our approach is portable to languages with similar word order� and we

support this claim by demonstrating our approach on the Spanish language� The training

��



set of unambiguous tuples can again be extracted as in Table ���� but the tagger� the

morphological analyzer� and the extraction heuristic must be modi�ed for Spanish� We

use the Spanish tagger and morphological analyzer developed at the Xerox Research Centre

Europe�� and we modify the extraction heuristic�

� to account for the new POS tags

� to exclude cases where the preposition is de or del �analogous to of�

� to correctly identify Spanish forms of ser �analagous to to be�

We did not use a chunker for the Spanish experiments� since it is more di�cult to port


than the other natural language tools� Approximately ���k sentences of raw text from the

Spanish News Text Collection were used in the Spanish experiment� the �rst ��k sentences

were set aside to create a test set� and the remainder were used to extract the training set�

����� Creating the Test Set

Unlike English� there is no widely available test set of ambiguous prepositional phrase

attachments in the Spanish language� so three annotators were hired to create such a

test set� Initially� the �rst annotator scanned the raw text for subsequences of words

v���n���p���n
 such that the n
 was the object of p� and that p was either attached to the

v or the n� The annotator then recorded the head words v� n� p� n
 and marked them as

either N or V � corresponding to either noun or verb attachment� Then� in order to shift

our focus to highly ambiguous cases� the annotator extracted another test set� in which the

tuples only contained the preposition con� since con was observed to be highly ambiguous

in the �rst test set� �The test set in which p � con overlaps with the �rst test set� but is

not a subset of the �rst test set��

The other two annotators were given the �v� n� p� n
� head words extracted by the �rst

annotator from both test sets and were asked to judge them as noun or verb attachments�

�The judgement of the �rst annotator was withheld from the second and third annotators��

�These were supplied by Dr� Lauri Kartunnen during his visit to Penn�
�It is di�cult for the author to write a Spanish chunker� A native Spanish speaker� on the hand� would

probably not �nd it di�cult to write a chunker analagous to the one used for the English experiment�
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Test Set Subset Number of Events clrawcount clinterp clbase
All p p � dekdel ��� ��
 ��
 ��


p �� dekdel ��� ��� �� ��

Total 
�
 
�� 
�� 

�

Accuracy � �
��# �
��# ����#

p � con Total ��
 ��� ��� ���

Accuracy � ���
# ����# ����#

Table ���� Accuracy of mostly unsupervised classi�ers on Spanish

clrawcount correct clrawcount incorrect

clinterp correct �� ��

clinterp incorrect � �

Table ���� Proportions correct and incorrect on Spanish data �all prepositions�

For both the test sets� the examples on which all three annotators agreed were used to

evaluate the performance of our classi�er on Spanish�

����� Performance on Spanish Data

The performance of the classi�ers clrawcount� clinterp� and clbase� when trained and tested on

Spanish language data� are shown in Table ���� The performance of clbase is much higher

in Spanish than in English� but for both Spanish test sets� the performance of clrawcount

exceeds that of clbase�

Although the test sets for Spanish are fairly small compared to the set used in the

English experiment� the di�erence in the performance of clrawcount and clbase is statistically

signi�cant� We use the signi�cance test for non�independent proportions suggested in

!McNemar� ����"� which compares the number of decisions �A� on which new classi�er

clrawcount correct clrawcount incorrect

clinterp correct ��� ��

clinterp incorrect �� ��

Table ���� Proportions correct and incorrect on Spanish data �p � con�
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Attachment Pr�ajv� n� Pr�pja� v� n�
Noun�a � N� ��
 �


Verb�a � V � ��� �



Table ���� The key probabilities for the ambiguous example rise num to num

improves performance over the old classi�er� with the number of decisions �B� on which

the new classi�er dis�improves performance� If clrawcount and clbase are equally accurate�

we would expect that A
A	B � �� by mere chance� We can test the null hypothesis that

H� �
A

A�B
� ��

versus the �two�sided� alternative

H� �
A

A�B
�� ��

by assuming that the A�B decisions that have changed are actually A�B Bernoulli trials

with A successes� Using the standard normal approximation to A�B Bernoulli trials� we

can reject H� at con�dence level � if

A�Bp
A�B

� �z���

or if
A�Bp
A�B

� �z���

�See !Larsen and Marx� ����" and !McNemar� ����" for details on how to derive the sig�

ni�cance test�� For the experiment in Table ���� A�Bp
A	B

� ����
�p
��	


� 
��� � z���
 � �����

and for the experiment in Table ���� A�Bp
A	B

� �����
�p
��	�


� 
�
� � z���
 � ����� Assuming

that a � � ��� signi�cance level is su�cient� we can safely reject the null hypothesis �that

there is no di�erence between clbase and clrawcount� for both Spanish prepositional phrase

attachment experiments�

	�	 Discussion

Despite the errors in the extracted head word tuples� the best performance of our unsu�

pervised classi�ers for English �����#� begins to approach the best performance of the

���



comparable supervised classi�ers ��
��#� in the literature� For example� Table ��� shows

that the erroneous noun�attached head word tuple �num� to� num� is more frequent than

the verb�attached �rise� to� num�� but the conditional probabilities lead us to prefer the

verb attachment� A comparison to the more accurate results of !Stetina and Nagao� ����"

is not useful� since our stated goal is to cheaply replicate the information in treebank�

and not a semantic dictionary� In Spanish� the unsupervised classi�er performs signi��

cantly better than the baseline as well� and demonstrates that our approach is inherently

portable� Our results show that the information in imperfect but abundant data from un�

ambiguous attachments� as shown in Tables ��
 and ���� is su�cient to resolve ambiguous

prepositional phrase attachments at accuracies just under the best comparable supervised

accuracy�

There are several future directions we might take to further improve the prediction

accuracy� Firstly� it may be possible to improve the extraction heuristic in a way that

increases its precision but maintains its simplicity and portability� Secondly� our approach

should also use the preposition n
� since most previous supervised approaches have used

it and found that it helps accuracy �e�g�� see !Brill and Resnik� ���
"�� And lastly� the

Spanish experiment should include a chunker� since it will allow the extraction of cleaner

head word tuples� We believe that using a more precise extraction heuristic� the noun

n
� and a chunker for Spanish will further improve the accuracies of our unsupervised

approach�

The bigram�based model to compute Pr�pj
� for the best classi�er does not fully ex�

ploit the power of the maximum entropy framework since all the features it uses�word

bigrams�are homogenous� and not diverse� In circumstances such as these� maximum

entropy models can be implemented with raw counts alone� �See Section 
������ However�

the framework was useful for evaluating other� more diverse� feature sets in Section ��
�
�

and should be useful in future work for testing the diverse forms of information involving

the second noun n
�

���



	�
 Conclusion

The unsupervised algorithm for prepositional phrase attachment presented here is the only

algorithm in the published literature that can signi�cantly outperform the baseline without

using data derived from a treebank or parser� The accuracy of our technique approaches

the accuracy of the best comparable supervised methods� and does so with only a tiny

fraction of the supervision� Since only a small part of the extraction heuristic is speci�c to

English� and since part�of�speech taggers and morphology databases are widely available

in other languages� our approach is far more portable than previous approaches for this

problem� Furthermore� we demonstrated the portability of our approach by successfully

applying it to the prepositional phrase attachment task in the Spanish language�
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Chapter �

Experimental Comparison with

Feature Selection and Decision

Tree Learning


�� Introduction

This chapter describes controlled experiments in which we compare the maximum entropy

framework� as it has been used in previous chapters� with the two following alternative

modeling techniques�

Maximum Entropy Models with Incremental Feature Selection� We compare

against maximum entropy probability models in which the feature set has been

obtained with incremental feature selection� instead of a count cuto��

Decision Trees� We also compare against the C��� decision tree package� which is a well

known implementation of a decision tree learning algorithm�

We conduct our studies on the previously studied tasks of supervised prepositional phrase

attachment and supervised text categorization�

���




�� Maximum Entropy with Feature Selection

Feature selection is the process by which we �nd some informative subset of features F �

given a set of pre�de�ned candidate features C� where F � C� The applications in this

thesis have all used a simple frequency�based count cuto� to �nd F given C� i�e��

F � ff j
X

�a�b��T
f�a� b� � K f � Cg

where T � f�a�� b�� � � � �aN � bN �g is a training sample� K is some heuristically set threshold

�usually � or ���� and f�a� b� � f�� �g is a feature� While the previous chapters show that

this strategy works well in practice� the resulting set of selected features F is not minimal�

in the sense that there exist features in F that do not contribute towards modeling the

data� because they are redundant or non�informative�

There are more sophisticated strategies in the literature!Berger et al�� �����

Della Pietra et al�� ����" which incrementally attempt to build a minimal feature set F
from a set of candidate features C� where each feature from C is evaluated for its contri�

bution to modeling the data before it is added to F � Informally� the incremental feature

selection �IFS� algorithm works as follows�

�� Set F� � �� set i� �� and set C to be the set of candidate features�


� Select the f � C that leads to the most improvement when it is added to Fi�

�� Set Fi	� � Fi � f


� Let i� i��� and if the stopping conditions are met� terminate the loop� Otherwise�

repeat from �
�

De�ne QF as the set of log�linear models that use the feature set F �

QF � fpjp�ajb� � �

Z�b�

Y
fj�F

�
fj�a�b�
j g

and de�ne pF as the maximum likelihood model of this form�

pF � arg max
p�QF

L�p�

��




At �rst glance� a natural way to carry out step �
� is to compute a maximum likelihood

model pF�f that uses the feature set F � f � for every f � C� and to select the f for which

L�pF�f ��L�pF � is the greatest� In practice� C is very large and the computation of pF�f

for every f � C is very time�consuming� We therefore must approximate the contribution

of each f � C in a less expensive manner� De�ne the model form RF �f as the set of one�

parameter models in which the weights of the features of F are �xed� but in which the

weight of the candidate feature f is a parameter ��

RF �f �

���
��

p j p�ajb� � �
Z�b�pF �ajb��f�a�b�

where Z�b� �
P

a pF �ajb��f�a�b�

The maximum likelihood model of this form� qF �f �

qF �f � arg max
p�RF�f

L�p�

is meant to be a one�parameter approximation� for the jFj � ��parameter model pF�f �

and the quantity L�qF �f � � L�pF � is meant to approximate the true likelihood gain of f �

L�pF�f �� L�pF ��

Step �
� terminates the loop if certain stopping conditions met� A good stopping

condition is important� since performance will degrade on test data if either the feature

set F is too small or too large� If F is too small� it will not contain all the information

necessary to successfully model the data� while if it is too large� it will �over�t� the training

data and perform poorly on unseen test data� A reasonable stopping condition might be

to terminate the loop when the log�likelihood on �held�out� data begins to decrease as

new features are added� since this is a good indicator that the feature set is starting to

over�t� However� it may be the case that the held�out data log�likelihood decreases after

adding a noisy and unreliable feature� but then increases much more after adding the next

�more reliable� feature� In such a case� the stopping condition would terminate the loop

prematurely�

In order to avoid terminating the loop prematurely� and also to avoid running the

algorithm for too long� we �rst select N features with the IFS algorithm� where N is a

�We use GIS to �nd qF�f � and it is technically a two�parameter model� since the GIS algorithm requires
the additional �correction� feature�
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heuristically set upper bound on the number of features necessary to accurately model the

data� The �nal feature set F is the Fi � fF� � � �FNg that yields the highest log�likelihood

on held�out data� If L��p� denotes the held�out data log�likelihood according to the model

p� we choose the feature set F such that�

F � arg max
F�fF����FNg

L��pF �

A more speci�c de�nition of the IFS algorithm is then�

�� Initialize F� � �� initialize C to the set of candidate features� initialize N to be the

maximum number of features that we select�


� Select feature f that we think will most increase the likelihood of the training data�

when it is added to F �

f � argmax
f�C

L�qFi�f �� L�pFi�

�� Set Fi	� � Fi � f �


� Set i� i� �� If i � N � terminate the loop and return

F � arg max
F�fF����FNg

L��pF �

where L��p� is the likelihood of the held�out data according to p� Otherwise� repeat

from �
��

In the discussion that follows� we will fully specify an experiment with the IFS algorithm

by using two parameters�

Candidate Feature Set� This is the set C from which the IFS algorithm will select

features�

Maximum Number of Features� This is the number of features the IFS algorithm will

select from C� before it evaluates the resulting feature sets on held�out data�

We will assume the existence of a training set� a development set� and a test set� The

training set will be used to build the feature sets F� � � �FN � the development set will be
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used to evaluate the feature sets F� � � �FN � and the test set will be used for reporting

results�

The key property of this algorithm is that if a candidate feature f is redundant with

some other f � � Fi� or if it is non�informative when compared to other features� it is not

likely to be selected� since its approximate gain in likelihood �computed in step �
�� will

be negligible� Therefore� the resulting set of features F will be far less numerous than the

set of features obtained by using a count cuto�� since the redundant and non�informative

features are absent� The goal of the experiments in this chapter is to see if the resulting

smaller feature set will have better prediction accuracy than the much larger feature set

obtained with the count cuto��


�� Decision Tree Learning

Decision trees are a popular learning technique in the arti�cial intelligence literature�

so we experimentally compare the maximum entropy technique with a commercially

available decision tree package� C����� which is the successor to the well�known C
��

package!Quinlan� ���
"� C��� uses a recursive partitioning algorithm and attempts to �nd

informative tests on the attributes of the training data� Here� we assume that each train�

ing event consists of attributes fattr� � � � attrng� and that each attribute attri takes one of

�nitely many discrete values vi� � � � vim� C��� also works with continuous numerical�valued

attributes� but they are not relevant for our experiments�

C��� constructs a �tree��shaped classi�er� in which the �root� is at the top and the

�leaves� are at the bottom� The internal nodes consist of tests and the leaves consist of a

classi�cation decision� A test at each node has the form

What is the value of attri �

and each branch leading down from the node corresponds to some value vij� that might

serve as an answer to the test� When classifying a test event� we begin at the root node and

trace a unique path to a leaf� by using the tests at the root and internal nodes and following

�This package can be licensed from Rulequest Research� http���www�rulequest�com
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the branches that correspond to the answers to the tests� The classi�cation returned by

C��� is the classi�cation at the leaf that corresponds to the test event�

Note that C��� is di�erent than the statistical decision tree probability model of Sec�

tion ��
� The statistical decision tree discussed earlier returns a probability distribution�

whereas C��� returns a classi�cation decision �although� it appears to use counts at the

leaves in arriving at its classi�cation decision�� Also� the statistical decision tree discussed

earlier was binary�branching� whereas C��� is n�ary branching at any given node� where n

depends on the possible outcomes of the test at the given node�


�� Prepositional Phrase Attachment

Recall that the task of prepositional phrase attachment is to take 
 head words �v� n� p� n
�

and classify them as either N or V � which corresponds to either noun or verb attachment�

Many past supervised approaches have used the data of !Ratnaparkhi et al�� ���
a"� which

has been extracted from the Penn treebank!Marcus et al�� ���
" and is divided into a train�

ing set� a development set� and a test set� Each event in the training� development� and

test sets is a ��tuple

�v� n� p� n
� a�

where v� n� p� n
 are the appropriate head words� and a � fN�V g� The experiments for

this task are controlled to use the same training set for parameter estimation� feature

selection� and decision tree induction� They use the development set for any additional

parameter tuning� and use the test set only to report results� We try � experiments with

the maximum entropy framework� called ME Default� ME Tuned� and ME IFS� and 


experiments with decision trees� called DT Default and DT Tuned�

ME Default This is the maximum entropy framework as it has been used in this thesis�

i�e�� in conjunction with simple frequency based feature selection� In this experiment�

any feature that occurs less than � times is discarded� The precise model is described

below�

Outcomes� f N� V g

���



Contextual Predicates� Given a tuple of 
 head words v� n� p� n
� there exist con�

textual predicates that look at the following patterns

Head word ��grams� �v�� �n�� �p�

Head word ��grams� �v� p�� �n� p�� �p� n
�

Head word ��grams� �v� p� n
�� �n� p� n
�� �v� n� p�

Head word ��grams� �v� n� p� n
�

In addition we also use a default predicate that returns true for any context�

For example� a 
�gram contextual predicate that looks at the pattern v� p might

be�

cprose�to�b� � true if v �rose and p �to� where b � �v� n� p� n
�

and a feature that uses cprose�to might be�

frose�to�V �a� b� �

���
��

� if a � V and cprose�to�b� � true

� otherwise

Feature Selection� Any feature that occurs less than � times is discarded�

ME Tuned This model has the same outcomes and contextual predicates as the ME

Default model� but uses a di�erent feature selection strategy� The count cuto�s

have been experimentally tuned for di�erent types of n�gram contextual predicates�

depending on the n� In this experiment� all �� and 
�gram features are kept� 
�

gram features that occur less than 
 times are discarded� and ��gram features that

occur less than �� times are discarded� The cuto�s of ����
� and �� were determined

semi�automatically on a development set of examples� which is separate from the test

set�

ME IFS This model also has the same outcomes and contextual predicates as the ME

Default model� but uses a incremental feature selection instead of a count cuto��

The candidate feature set for the IFS algorithm consists of any feature that can

be formed with the outcomes and contextual predicates of the ME Default model�

I�e�� it is equivalent to the feature set of the ME Default experiment before the

count cuto� is applied� Figures ��� and ��
 graph the likelihood and accuracy of the
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Figure ���� Accuracy on PP attachment development set� as features are added

development set� as a function of the number of features� Table ��� shows the �rst 
�

features selected by the IFS algorithm� along with their weights� Incremental feature

selection under the maximum entropy framework has been implemented before in

!Ratnaparkhi et al�� ���
a"� but the ME IFS experiment here di�ers in its space of

candidate features� We use a setting of N � ��� for the maximum number of features

selected for the IFS algorithm� Ultimately� ��� features were chosen for the optimal

feature set�

DT Default This is an experiment with the C��� package� Each training event was rep�

resented with 
 head words v� n� p� n
 and an answer a � fN�V g� In the terminology

used by C���� there are two classes fN�V g � and four attributes� verb� noun� prepo�

sition� and noun
� each attribute ranges over the corresponding words that appeared

in the training data� C��� has 
 kinds of tests at its disposal�

� What is the value of the verb attribute �

� What is the value of the noun attribute �

� What is the value of the preposition attribute �

� What is the value of the noun
 attribute �
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Figure ��
� Log�Likelihood of PP attachment development set� as features are added

Feature �cp� a� Weight

p �of�V ���e���

DEFAULT�N ���e���

p �to�N ���e���

v �is�V 
�
e���

n �it�N ��
e���

p �into�N ��
e��


p �at�N 
��e���

n �np �stake�in�V ���e���

npn
 �p �as�N 
��e���

np �access�to�V 
��e��


np �million�in�V ���e��


v �are�V 
��e���

v �including�V ���e��


v �be�V ���e���

n �them�N ���e���

v �was�V 
��e���

p �about�V ���e���

p �through�N ���e���

Table ���� The �rst 
� features selected by IFS algorithm for PP attachment

���



The outcomes of these questions are not binary� but rather� they are n�ary where n

will be rather large� �E�g�� for the �rst question� the number of outcomes will be the

number of verbs we have seen�� The command used to invoke C��� is c��� �f pp

where pp is the �lestem used during testing�

DT Tuned This is also an experiment with the C��� package� but some of the optional

parameters to C��� have been optimized over the development set� We report results

with c��� �f pp �m � �c ��� where the �m � prevents C��� from splitting a node

of count less than �� and where the �c �� is a pruning con�dence level ���#� which

allows C��� to induce bigger and more complex trees� If no parameters are given �as

in the DT Default experiment�� C��� assumes �m � and �c ���

DT Binary This is an experiment with the C��� package in which the representation of a

context �v� n� p� n
� is identical to that used in the ME Default experiment� i�e�� the

decision tree has access to the same contextual predicates used in the ME Default

experiment� The resulting trees will be binary� since the contextual predicates are

all binary�valued�

Baseline This is the performance we obtain with the following classi�er�

cl�v� n� p� n
� �

���
��

N if p � of

V otherwise

The preposition of occurs very frequently in the data� and is almost always attached

to the noun�

The results of the above experiments� the number of features in the resulting maximum

entropy models� as well as the training times� of the maximum entropy and decision tree

models� are listed in Table ��
� All the maximum entropy models were used in a classi�er

cl�

cl�b� �

���
��

V if p�ajb� �� ��

N otherwise

�We ran all the ME experiments on a ���Mhz UltraSPARC processor� We ran all the DT experiments
on a ���Mhz UltraSPARC processor� We used a Java implementation for all the ME experiments�

��




Experiment Accuracy Training Time � of Features

ME Default �
��# �� min 
�
�

ME Tuned ����# �� min �����

ME IFS ����# �� hours ���

DT Default �
�
# � min

DT Tuned ���
# �� min

DT Binary � � week �

Baseline ���
#

Table ��
� Maximum Entropy �ME� and Decision Tree �DT� Experiments on PP attach�
ment

where the context b � �v� n� p� n
�� The decision trees grown by the C��� package do

not return a probability distribution� they instead give a classi�cation� The accuracy

in Table ��
 refers to classi�cation accuracy� i�e�� the number of times the classi�cation

proposed by the maximum entropy�decision tree models agreed with the actual annotated

classi�cation�

The ME Tuned experiment performs the best� the ME Default� ME IFS� and DT Tuned

perform slightly worse� and the DT Default experiment performs much worse� The DT

Binary experiment did not �nish �even after a week of computation�� so we cannot compare

its accuracy with the other experiments�

The ME Default� ME Tuned� and ME IFS experiments vary only in their feature

selection algorithm� The ME IFS experiment tests if incrementally selecting features from

a set C is better than using a default �ME Default� and tuned count cuto� �ME Tuned�

from the same set C� The ME IFS experiment took much longer to run� but yields a

feature set that is at least an order of magnitude less numerous than either of the feature

sets selected by the ME Default and ME Tuned experiments�

The DT Default� DT Tuned� and DT Binary experiments compare the performance

of decision trees against the performance of maximum entropy models �ME Default�� and

attempt to hold the other factor�the representation��xed� However the representations

used in DT Default and DT Tuned are slightly di�erent� since the questions in those

experiments have multiple�valued outcomes� while the contextual predicates used in the

maximum entropy models are binary�valued� Although� the minimum splitting count of �

���



used by the DT Tuned experiment resembles the count cuto� of � used by the ME Default

experiment� The questions used by DT Binary are equivalent to those used in ME Default�

but that experiment did not �nish� It is apparently very important to tune the smoothing

parameters of C���� since the DT Default experiment did not perform much better than

the baseline for this task�

The decision trees of the DT Default and DT Tuned experiments have a harder task

than the maximum entropy models of the ME experiments� The decision trees construc�

tively induce conjunctions of questions� while the maximum entropy models are told what

conjunctions to use� For example� in ME Default� we must tell the model to use trigram

predicates of the form v� p� n
� whereas the decision trees in DT Default and DT Tuned

must learn to use trigram predicates of the form v� p� n
� We can also give decision trees

the same hints on what kinds of n�grams are useful� by using the contextual predicates

of the ME Default experiment� but the experiment that uses these hints did not �nish�

presumably because the number of predicates is too large�


�� Text Categorization

In text categorization� the task is to examine a document d and predict zero� one� or

more categories from a prede�ned set of categories as the topic�s� of the document� In

our comparative experiments� we restrict ourselves to only one category� the acq category�

which represents documents about �mergers and acquisitions��

Our task is to �nd a classi�er

cl � B � ftrue� falseg

which returns true if a document b � B has the category acq� We implement the classi�er

cl with a maximum entropy probability model as follows�

cl�a� b� �

���
��

true if p�truejb� � T

false otherwise

where T � �� for the experiments discussed here� In our notation for probability models�

the set of contexts B now consists of the set of possible documents� and the outcomes of

��




p are A � ftrue� falseg� As a training set� we use the documents of the Reuters�
����

collection�� which have been manually annotated with topic categories� The following

experiments assume the existence of a training set T � f�a�� b�� � � � �aN � bN �g� in which

each pair �a� b� � T consists of the document b� and annotation a � ftrue� falseg which

indicates if b is annotated with the acq category in the Reuters collection� The Reuters

corpus is also annotated with the training set�test set split of !Apt%e et al�� ���
"� which

we use for our experiments� The training set consists of ���� documents and the test set

consists of �
�� documents� We further split the original training set by using the �rst

���� documents as a development training set� and using the remainder as a development

test set� Following the standard convention of the text categorization literature� the words

in all the documents have been lower�cased� reduced to their morphological base forms

with the database of !Karp et al�� ���
"� and �ltered with the 
�
�word stop list given in

!Lewis� ���
"� All the learning algorithms were trained on the development training set�

tuned �if necessary� on the development test set� and tested on the original test set�

We present two experiments on text categorization with maximum entropy models�

called ME Default and ME IFS� and one experiment with decision trees� called DT�

ME Default The ME Default experiment uses the maximum entropy framework in con�

junction with a count cuto� for feature selection� The maximum entropy probability

model is described as follows�

Outcomes� f true� false g

Contextual Predicates� We use contextual predicates that check for presence of

words in documents� that have the form�

cpw�b� �

���
��

true if document b contains word w

false otherwise

Note that the frequency of word w in document b is completely ignored� We

also use a default predicate that returns true for any context�

Feature Selection� We only select features from positive examples in the training

set� i�e�� from documents that have been annotated as true� and all features

�This is available from http���www�research�att�com��lewis for research purposes�
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Figure ���� Accuracy on text categorization development set� as features are added

therefore check for a � true� We use all features of the form

f�a� b� �

���
��

true if cpw�b� � true and a � true

false otherwise

Any feature that occurs less than � times in the training set is discarded�

ME IFS� This experiment uses incremental feature selection with the maximum entropy

framework� The outcomes and contextual predicates are the same as the ME Default

experiment� but the feature set is built incrementally with the IFS algorithm� The

candidate feature set consists of any feature that can be formed with the outcomes

and contextual predicates of the ME Default experiment� I�e�� it is equivalent to the

feature set of the ME Default experiment for text categorization before the count

cuto� is applied� Figures ��� and ��
 graph the likelihood and accuracy of the

development set� as a function of the number of features� Table ��� shows the �rst


� features selected by the IFS algorithm� along with their weights� The predicate

named 'null' is the default predicate� We use a setting of N � ��� for the maximum

number of features selected for the IFS algorithm� Ultimately� ��� features were

chosen for the optimal feature set�
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Figure ��
� Log�Likelihood of text categorization development set� as features are added

Feature �cp� a� Weight

'null'�true ���e���

acquire�true ���e���

stake�true ���e���

merger�true ���e���

cts�true 
��e���

rate�true ��
e���

acquisition�true ���e���

year�true ���e���

share�true ���e���

undisclosed�true ���e���

export�true 
��e���

disclose�true ��
e���

bid�true ���e���

rise�true 
��e���

underwrite�true 
��e���

unit�true ���e���

debt�true ��
e���

tonne�true ���e��


net�true 
��e���

sale�true ���e���

Table ���� The 
� �rst features selected by IFS algorithm for text categorization

���



DT Default This experiment uses the C��� decision tree package� A document is encoded

with the predicates used in the ME Default experiment �after feature selection��

Given m predicates cp� � � � cpm� we represent a document d as a m element boolean

vector fcp��d� � � � cpm�d�g� At each node� the decision tree e�ectively asks

Is word w in the document �

and can form arbitrarily complex conjunctions of such questions� We use the com�

mand c�� �f acq�

DT Tuned This experiment uses the same representation as the DT experiment� but some

of the optional parameters to C��� have been optimized over the text categorization

development set� We report results with c�� �f acq �m � �c ��� which invokes

C��� with a mininum splitting count of �� and a pruning con�dence level of ��#�

�This was also the optimal setting for the prepositional phrase attachment task��

Table ��
 shows the accuracy and training times
 of the ME Default� ME IFS� DT

Default� and DT Tuned experiments on the text categorization task� for the acq category�

In addition� the feature set sizes of the ME experiments are also included� The ME

Default and ME IFS algorithms for text categorization vary only in their feature selection�

and the results show that using incremental feature selection slightly outperforms feature

selection using a count cuto�� Both ME Default and ME IFS outperform both of the DT

experiments� The feature set selected by ME IFS is approximately � times smaller than the

one selected by ME Default� The representation used in both DT experiments is exactly

the same as that used in the ME Default experiment� both DT Default and DT Tuned use

the contextual predicates of the selected feature set in the ME Default experiment�

The decision tree of the DT experiments has an advantage in its ability to induce

conjunctions of word questions� and e�ectively test for word n�grams� In contrast� the

maximum entropy models �as they are used here� do not induce conjunctions� they use

only predicates on single words� It is surprising that this representational advantage of the

DT experiments does not translate into an accuracy gain over the ME experiments�

�We ran all the ME experiments on a ���Mhz UltraSPARC processor� We ran all the DT experiments
on a ���Mhz UltraSPARC processor� We used a Java implementation for all the ME experiments�

���



Experiment Accuracy Training Time � of Features

ME Default ����# �� min 
���

ME IFS ����# �� hours ���

DT Default ����## �� hours

DT Tuned �
��# �� hours

Table ��
� Text Categorization Performance on the acq category


�� Conclusion

The maximum entropy technique appears to perform better than the decision tree package

C��� for both the prepositional phrase attachment task and the text categorization task�

All experiments were controlled to use the same training� development� and test sets� The

experiments with decision trees were controlled to use a representation that was as close

as possible to the representation used by the maximum entropy models� Surprisingly� the

ability of the decision tree to induce conjunctions of questions did not give it a performance

advantage� since either the types of conjunctions could be pre�speci�ed to the maximum

entropy model �in the case pp attachment�� or the conjunctions of questions did not appear

to improve the accuracy �in the case of text categorization��

We also compared two very di�erent feature selection strategies for maximum entropy

models� count cuto� feature selection �CCFS� and incremental feature selection �IFS��

The CCFS strategy performed more accurately for prepositional phrase attachment� while

the IFS strategy performed more accurately for text categorization� Neither strategy

performed far behind the other� CCFS has the advantage that it is extremely quick to

both implement and execute� while the IFS algorithm is much more complicated and

extremely time�consuming� However� the IFS algorithm yields a concise and readable list

of features that represent the facts that have been learned� With CCFS� it is much more

di�cult to ascertain exactly what features are important for modeling the data�

The discussion suggests that if e�ciency is the main objective� then CCFS is a better

choice� whereas if readable features are the objective� then IFS is the choice� In terms of

accuracy� neither feature selection strategy consistently outperforms the other�

���



Chapter �

Limitations of the Maximum

Entropy Framework

Probability models estimated under the maximum entropy framework perform well in

practice� but have certain limitations that may lead to poor prediction accuracy� or may

prevent the framework from capturing relevant facts about the data� The major limitation

is that the exact maximum likelihood�maximum entropy solution does not exist under

certain circumstances� in which case� the probability distribution resulting from the GIS

algorithm may lead to poor prediction accuracy� Another� somewhat minor� disadvantage

is that some facts about natural language may not be expressible through binary�valued

features� and cannot therefore be represented in our current implementation of the maxi�

mum entropy framework� We discuss how these limitations are handled in practice�

��� Convergence Problems

In order to satisfy a constraint on feature expectations� the training data may require

the solution to achieve p�ajb� � � for some a� b pair� In such cases� the exact solution

does not exist in the form of the probability model �
���� and the model parameters will

not converge under the GIS algorithm� Furthermore� the probability estimates from the

resulting model are not what one typically desires from a learning technique� We �rst

give examples where the parameters both converge and diverge� and describe how their

�
�



interaction leads to undesirable results� We also discuss other smoothing methods in the

literature for dealing with this problem�


���� Exact Solution Exists� Parameters Converge

Suppose that our space of predictions is A � f�� �g� and our space of contexts is limited

to B � fxg� Our task is to observe some context in B �which trivially consists of one

element�� and predict the probability of seeing it with a � f�� �g� Assume that we are

given two features fx� and fx��

fx��a� b� �

���
��

� if a � � and b � x

� otherwise

and

fx��a� b� �

���
��

� if a � � and b � x

� otherwise

and assume that we are given the following training sample T �

f��� x�� ��� x�� ��� x�� ��� x�� ��� x�g� The features do not overlap� and by using equa�

tion 
��� we see that the maximum entropy probability model� over the constraints

Epfx� � �
 and Epfx� � ��� will yield p��jx� � �
 and p��jx� � ��� This trivial case

represents what is usually encountered in the natural language processing tasks� namely�

some context x that is ambiguous between two or more outcomes� in this case f�� �g�


���� Exact Solution does not exist� Parameters Diverge

Again suppose that A � f�� �g� and that B � fxg� and suppose that our training sample

is T � f��� x�g� Assume that we are given the one feature fx�� as de�ned above� In order

to meet the constraint Epfx� � �� it must be the case that p��jx� � �� However� when we

expand the probability model and try to explicitly calculate p��jx�� we get

p��jx� � �x�

�x� � �

Clearly� the above formula cannot achieve p��jx� � � exactly with �nite values for �x��

Because the model	s expectation Epfx� will always be under �� the GIS algorithm will

always increase the value of �x� on each iteration� and will drive the value of p��jx� closer

�
�



to �� but will never actually reach it� The reason for the divergence of �x� to �� is that

x is not ambiguous� it only ever appears with ��


���� Parameter Interaction

Unambiguous contexts yield strange results when used together with ambiguous contexts�

Suppose that A � f�� �g� and B � fx� y� xyg� and that we are given two features fx�� fy��

Furthermore� suppose that our training set T consists of N elements

T � f��� y�� ��� x� � � � ��� x�� ��� x�g

where N is some very large number� say ���������� When we expand the probability

model�

p��jy� � �y�

�y� � �

and

p��jx� � �x�

�x� � �

In order to meet the constraint Epfy� � �
N � �y� will diverge to ��� but in order to meet

the constraint Epfx� � N��
N � �x� will converge to some �nite value� The probability for

seeing the prediction � with both x and y� or p��jxy�� is given by�

p��jxy� � �y�

�y� � �x�

The term �y� diverges to ��� and will always dominate the term �x�� This property

is highly non�intuitive and unattractive� since the outcome and context pair ��� x� occurs

N � �� ���� ��� times in the training data� but yet the parameter based only on one

occurrence of y takes precedence� In e�ect� the model gives in�nite con�dence to contexts

that are not ambiguous with respect to the predictions with which they occur� regardless

of their frequency�

In natural language� contexts that occur once or very infrequently are not as reliable as

frequently occurring contexts� If the above model were implemented for language� where A
represented some binary linguistic category and where B represented word occurrences� it

would most likely have very low prediction accuracy� since it gives in�nite con�dence to an

unreliable event� The count cuto� feature selection strategy used in this thesis allows us to

�





ignore this problem in practice� since infrequent features� i�e�� those that occur less than �

or �� times� are discarded� Most of the remaining frequent features are either ambiguous�

and do not su�er from diverging parameter values� or tend to be reliable� and do not cause

a loss in prediction accuracy� E�g�� if the pair y� � occurs ��� times in the training data�

and y� � never occurs� the model will place in�nite con�dence in the feature fy�� but we are

unlikely in practice to su�er a loss in prediction accuracy as a result of such con�dence�


���	 Smoothing

Other work has relied on smoothing techniques to cope with the situation in which the

exact solution does not exist�

!Lau� ���
" reports results on experiments with the fuzzy maximum entropy frame�

work� in which the objective is to maximize the sum of the entropy function and a penalty

function� subject to linear constraints on feature expectations� The penalty function is

heuristically selected to penalize deviations from unreliable �infrequently observed� con�

straints more than deviations from reliable �frequently observed� constraints� In e�ect� the

constraints are �soft�� so that strict equality of the model	s feature expectation and the

observed expectation is not required�

!Lau� ���
" also applies Good�Turing discounting to the observed feature expectation�

E�g�� using the above example� the model then would not meet the constraint Epfy� � ��

but instead would meet the constraint Epfy� � ��	� where 	 is determined with the formula

in !Katz� ����"� However� in this approach� there is no guarantee that the constraints are

consistent with each other� since they no longer represent counts drawn from training data�

Both techniques allow the maximum entropy solution to exist without requiring the

probability model to achieve p�ajb� � ��

��� Binary�Valued features

All of the features sets in this thesis consist of binary�valued features� which return � or �

depending on the presence or absence of certain contextual evidence and a certain outcome�

�This framework was developed by Steven Della Pietra and Vincent Della Pietra at the IBM TJ Watson
Research Center�

�
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While such features are su�cient to capture information on the word or sentence level�

they are not as useful for capturing information on the document level� in which word

frequency� as opposed to word presence or absence�is an important source of evidence�

Word frequency information can be captured in a somewhat ad hoc manner using quantized

predicates� E�g�� for our text categorization task� we might want a feature like

fw�a� b� �

���
��

� if a � yes and count�w� b� �� ��

� otherwise

where a is an outcome� b is a document� and where count�w� b� returns the frequency of

word w in the document b� Alternatively� our the features can be generalized to return

integer values� e�g��

fw�a� b� �

���
��

count�w�b� if a � yes and w � b

� otherwise

The limitation to binary�valued features is an implementation choice� and not an inherent

property of the framework�

��� Conclusion

Probability models under the maximum entropy framework used in this thesis have a

natural limitation in that they cannot model data that requires p�ajb� � � or p�ajb� � ��

In order to overcome this limitation� others have either modi�ed the framework to allow

soft constraints� or have applied smoothing techniques to the observed expectations� In

our work� the features most likely to cause problems as a result of these limitations are the

low�count features� and our use of a feature selection technique that discards low�count

features greatly reduces the chance of adverse modeling e�ects� Our implementation has

the drawback that it only uses binary�valued features to represent facts about the data�

However� this limitation is not severe since we have not found that integer�valued features

would have been useful for representing facts on the word and sentence level�

�





Chapter �	

Conclusion

The experiments in this thesis support our claims about accuracy� knowledge�poor features�

and reusability� Table ���� summarizes the tasks� and describes the probability models

that were implemented for each task� The tasks in Table ���� di�er dramatically in their

outcomes and contextual predicates� and there is no reason to suspect any underlying

similaries between the contextual predicates for one model� such as POS tagging� and any

other model� such as the parser	s build model� However� the same modeling technique�

along with practically the same feature selection strategy� performs accurately on all of

these tasks� We provide detailed arguments below that describe how the experiments in the

thesis have ful�lled our claims about accuracy� knowledge�poor features� and reusability�

�
�� Accuracy

We claim that the use of maximum entropy models for a wide variety of natural language

learning tasks gives highly accurate results� We have presented maximum entropy probabil�

ity models for end�of�sentence detection� part�of�speech tagging� parsing� and prepositional

phrase attachment that perform near or at the state�of�the art� without any substantial

task�speci�c tuning� The maximum entropy probability models for prepositional phrase at�

tachment and text categorization outperform the decision tree package C��� when trained

and tested under identical or similar conditions� The few results that exceed those pre�

sented here either require additional linguistic resources �in the form of annotation or

�
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Task Outcomes �A� Contextual Predicates
�B�

Feature Selection

EOS Detection yes� no text before and after
candidate punctuation
mark

Count cuto� of ��

POS Tagging Tagset of 
�
part�of�speech
categories

word� pre�x� su�x�
surrounding words�
previous tags

Count cuto� of ��

Parsing�
chunk model

StartX�

JoinX� Other



 words and POS
tags

Count cuto� of �

Parsing� build
model

StartX�

JoinX

uni��bi��and tri�grams
of head words of 


constituents� punctua�
tion

Count cuto� of �

Parsing�
check model

yes� no last head� �rst head�
bigram of last head
and other head in cur�
rent constituent� sur�
rounding words� CFG
rule

Count cuto� of �

Prepositional
Phrase At�
tachment
�unsupervised�

All possible
prepositions

Bigrams of head words Count cuto� of � and �

Prepositional
Phrase At�
tachment
�supervised�

f N�V g ��
���
�grams of head
words

Count cuto� of
��Tuned count cuto�

Text Catego�
rization

yes� no Words Count cuto� of �

Table ����� Summary of maximum entropy models implemented in this thesis
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linguistic databases�� or require additional research on building task�speci�c statistical

models� Furthermore� it is usually possible to incrementally increase accuracy by adding

more interesting features as they are discovered�

�
�� Knowledge�Poor Feature Sets�

We claim that these high accuracies can be obtained with knowledge�poor feature sets� By

knowledge�poor� we mean that the features do not require linguistic expertise� and that

they test only for simple co�occurrences of words and linguistic material in the context�

The feature sets do not rely upon manually constructed linguistic or semantic classes

besides those already pre�existing in the training corpus annotation� The feature sets are

knowledge�poor by design� our objective has been to impart as little knowledge as possible

to the computer� and force it to learn as much as possible from the data�

While it is conceivable that knowledge�rich features could improve the accuracy� our

studies have been restricted to knowledge�poor features since they are very inexpensive to

implement� and can be ported to other genres and languages more easily than knowledge�

rich features�

We discuss why the feature sets used in the tasks of Table ���� all represent advances

in that they require less supervision� knowledge� or preprocessing from the researcher than

competing approaches in the literature� yet perform better or comparable to the competing

approaches� In section ���
��� we discuss why a count cuto� works well as a feature selection

strategy�

������ End�of�sentence detection

Our approach for this task uses only word spellings� and optionally� an abbreviation list�

whereas other approaches� such as !Palmer and Hearst� ����"� require part�of�speech tags

in addition to these features� Since we do not use part�of�speech tags� our approach is far

more portable to other languages than previous approaches�

�
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������ Part�of�speech tagging

The tagger in this thesis automatically derives features for tagging unknown words from the

training corpus� and uses them together with the usual features for tagging known words

�e�g�� the previous tag� the previous two tags� in a uni�ed probability model� It di�ers

from taggers like !Brill� ���
"� which uses separate learners for tagging known and unknown

words� and di�ers from !Weischedel et al�� ����"� which needs manually pre�speci�ed su�x

lists to tag unknown words�

������ Parsing

The features of the parser are knowledge�poor in the sense that they are derived from

four� fairly shallow� intuitions about parsing� The parser also requires less pre�processing

and linguistic information than other parsers built with general learning algorithms� For

example� it di�ers from the decision tree parsers of !Black et al�� ����� Jelinek et al�� ���
�

Magerman� ����" in that it does not require preprocessing of the words into statistically�

derived word classes� It also di�ers from the decision tree�decision list parser of

!Hermjakob and Mooney� ����" in that it does not use a hand�constructed knowledge base�

And because the parser uses a general learning algorithm� its features do not need to be

as carefully selected as those used in other approaches based on parsing�speci�c learning

frameworks� such as !Collins� ����� Goodman� ����� Charniak� ����� Collins� ����"�

�����	 Unsupervised Prepositional Phrase Attachment

The features used in this model are derived from data that has been annotated with part�

of�speech tags and morphology information� but not attachment information� It di�ers

from all previous approaches� which have all used either treebanks or parsers to obtain the

relevant statistics�

������ Why Count Cuto�s Work

The feature sets for all the tasks discussed above have been obtained with count cuto�

feature selection� It will be illustrative to know why a simple count cuto� su�ces as a

�
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feature selection strategy� despite the fact that it discards information� We use a count

cuto� of K � � for most of the tasks� but use K � � for the unsupervised prepositional

phrase attachment� The exact count cuto� is determined by the nature of the feature set�

Feature sets that use K � � consist of very speci�c features as well as less speci�c� or

generalized features� In contrast� the feature set that uses K � � consists only of speci�c

features �namely� head word bigrams�� These properties suggest the conditions for how

best to select K�

Use K � � when the feature set has both speci�c and generalized features� Most of the

features discarded will be speci�c features� since such features will tend to have low

frequencies� We discard them on the hypothesis that such features are unreliable

sources of evidence� Therefore both speci�c and generalized features will be used to

model an event only if the speci�c features are frequent �and hence reliable�� whereas

only generalized features will be used if the speci�c features corresponding to that

event have been discarded� Our discussion has been limited to two kinds of features�

�speci�c� and �generalized�� but in practice� the feature set consists of many kinds

of features of varying degrees of generality� Using a non�zero count cuto� is an easy

way of automatically selecting the levels of generality that are to be included in the

feature set�

The optimal cuto� K can usually be found semi�automatically� by evaluating the

performance of several models on held�out data� where each model corresponds to a

di�erent value of K� For the tasks in this thesis� we have not invested much e�ort

on �nding the optimal K for each task� K � � and K � �� appear to work well for a

variety of tasks� However� it is possible that more careful tuning of K could further

boost accuracies�

Use K � � when the feature set consists of only speci�c features �and no generalized

features�� In this case� using K � � will actually throw away valuable information�

since the model cannot fall back on generalized features� if the necessary speci�c

features do not exist�

�
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In most of our applications� there will exist a hierarchy of features of varying generality� and

using K � � will be appropriate� The point of maximum entropy modeling is to combine

di�erent kinds of evidence� maximum entropy models that use homogeneous forms of

evidence can be implemented with much simpler techniques� e�g�� the clbigram classi�er for

unsupervised prepositional phrase attachment in Chapter ��

�
�� Software Re�usability

An advantage of the maximum entropy framework is that its software implementation is

highly reusable� The theory of the maximum entropy framework is independent of any

one particular natural language task� In practice� since we are not using any task�speci�c

modi�cations� the software developed for one task can be re�used for other tasks that are

implemented under this framework� A single software implementation can train all of the

maximum entropy probability models in this thesis� �We actually used two versions in

this thesis� the �rst one was written in C��� and the second one was written in Java to

increase portability to other platforms��

�
�� Discussion

Our claims have important practical rami�cations for researchers in natural language pro�

cessing� Researchers can view the maximum entropy framework as a re�usable� general

purpose modeling tool for any natural language problem that can be reformulated as a

machine learning task� They can encode their data with knowledge�poor features� and our

experiments suggest that they can expect high performance on their unseen test sets� As a

consequence� researchers need only concentrate e�ort on the discovery of the information

that is necessary to solve the problem� and need not spend time on �nding specialized

models that combine the information that was discovered�

However� in theory� any general purpose machine learning algorithm should be able

to ful�ll our claims of reusability� knowledge�poor features� and accuracy across tasks�

However� few general learning algorithms in the computational linguistics literature have

been demonstrated to work this accurately across tasks� and to scale up to problems as large
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as parsing� For example� decision trees have been applied extensively for solving problems

in natural language processing� but the technique used in this thesis outperforms a popular

decision tree package on both the prepositional phrase attachment and text categorization

tasks� This thesis is not the �rst application of the maximum entropy technique to natural

language� but it is the only study of the framework that has demonstrated consistently

high accuracies across di�erent tasks with the same feature selection strategy�

�
�� Future Work

In future work� we intend to apply natural language learning techniques to corpora that

are linguistically deeper� as well as corpora that are not linguistically annotated�

Statistical approaches to natural language have often been criticized for their inability

to deal with problems deeper than syntax and shallow semantics� We believe this criticism

merely re�ects the nature of the available annotated data� and not the approach itself� An

interesting future direction is to annotate text with a deeper level of semantic informa�

tion� in the hope that it can be learned with the application of statistical techniques and

knowledge�poor features� Such corpora would enable statistical techniques to return anal�

yses for natural language that are both semantically deeper� and hopefully more accurate

than those that are returned by current statistical techniques�

Secondly� all the tasks in this thesis� excluding Chapter �� have assumed the existence

of a large� annotated training set� Linguistic annotation is expensive� and limits the

portability of supervised natural language learning methods� It is therefore in the interest

of the natural language processing community to develop unsupervised methods that learn

linguistic information without using time�intensive linguistic annotation� so that natural

language problems can be solved for other genres of English� and other languages as well�

The results in Chapter � suggest that unsupervised methods for inducing certain kinds

of grammatical relations hold promise� and it will be interesting to see if such methods

can accurately predict all types of grammatical relationships� in both English and other

languages�
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Appendix A

Some Relevant Proofs

A�� Non�Overlapping Features

As mentioned in Section 
����� we give a proof to show that the probability estimate p�ajb�
can be computed in closed form� without need for an iterative algorithm� if the features

do not overlap�

Suppose B is the space of possible contexts� and let cp� � � � cpm be a set of m predicates

that partition B� i�e�� 	b � B �cp cp�b� � true and for any given b � B� if cp��b� � true

and cp��b� � true� then cp� � cp�� If A is the space of possible predictions� assume we

have mjAj features of the form�

fcp�a��a� b� �

���
��

� if a � a� and cp�b� � true

� otherwise

Here� fcp�a� denotes a feature that tests for the predicate cp together with prediction a��

Theorem � 
Non�Overlapping Features�� Let A denote the possible predictions� and

let B denote space of possible contexts� If the predicates cp� � � � cpm partition B� and if

we are given mjAj features fcp�a�� where cp � fcp� � � � cpmg and a� � A� we can use the

following closed�form solution for p�a�jb��

p�a�jb� � E�pfcp�a�

E�p!cp�b� � true"

��




where

E�p!cp�b� � true" �
X
b

 p�b�
X
a

fcp�a��a� b�

E�pfcp�a� �
X
a�b

 p�a� b�fcp�a��a� b�

and where cp is the �unique� predicate such that cp�b� � true� and where fcp�a� is the

�unique� feature that corresponds to the pair a� b�

Proof� We use the fact that the fcp�a� partition A � B� and that only one parameter will

ever be active on any a� b pair� Rewrite Epfcp�a� �

Epfcp�a� �
X
a�b

 p�b�p�ajb�fcp�a��a� b�

�
X

a�b
fcp�a��a�b���

 p�b�p�ajb� �A���

�
X

a�b
fcp�a��a�b���

 p�b�
�cp�a�

Zcp
�A�
�

�
�cp�a�

Zcp

X
a�b
fcp�a��a�b���

 p�b� �A���

� p�ajb�
X
a�b

 p�b�fcp�a��a� b�

Here� Zcp �
P

a �cp�a� Equation A�� simply re�arranges the summation to only sum over

those a� b for which fcp�a��a� b� � �� and equation A�
 follows from the fact that only one

parameter will be used in computing p�ajb�� for any a� b� since the fcp�a� partition A� B�
As a result� p�ajb� can be moved out of the sum� as in A��� It follows that

p�ajb� � E�pfcp�a

E�p!cp�b� � true"

A�� Maximum Likelihood and Maximum Entropy

The purpose of this section is to be a supplement to Chapter 
� in the hopes of making the

thesis self�contained� We give proofs that the notions of conditional maximum likelihood
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and conditional maximum entropy are equivalent under the circumstances discussed in

Chapter 
� The proofs given here for conditional models are mostly identical to the proofs

for joint models given elsewhere!Della Pietra et al�� ����"�

The following few de�nitions introduce some notation used in the proofs� They assume

the existence of a training set

T � �a�� b�� � � � �aN � bN �

where each element �a� b� � T consists of a possible prediction a and a context� or history�

b� We use  p�a� b� to denote the observed probability of a� b in the set T � and we use

 p�b� �
P

a  p�a� b� to denote the observed probability of the context b in T � In the proofs

that follow� we assume that  p�b� � � for any b � B� but we later discuss the consequences

if  p�b� � ��

De�nition � 
Relative Entropy over Training Set�� The relative entropy D between

two conditional probability distributions p and q is given by�

D�p k q� �
X
a�b

 p�b�p�ajb� log p�ajb�
q�ajb�

De�nition � 
NonNegativity�� For any two conditional probability distributions p and

q�

D�p k q� � �

with equality if and only if p � q� assuming  p�b� � � for any b � B�

See !Cover and Thomas� ����" for a proof�

De�nition � 
Set of consistent probability models�� The set of conditional proba�

bility models that are consistent with the k observed feature expectations is denoted by P �

P � fp j Epfj � E�pfj� j � f� � � � kgg
E�pfj �

X
a�b

 p�a� b�fj�a� b�

Epfj �
X
a�b

 p�b�p�ajb�fj�a� b�

��




De�nition � 
Form of log�linear models�� The set of conditional probability models

of log�linear form is denoted by Q�

Q � fp j p�ajb� � �

Z�b�

kY
j��

�
fj�a�b�
j g

Z�b� �
X
a

kY
j��

�
fj�a�b�
j

De�nition 	 
Entropy over Training Set�� The entropy H�p� of a conditional proba�

bility distribution p over a training set T is de�ned as�

H�p� � �
X
a�b

 p�b�p�ajb� log p�ajb�

It is useful to note that H�p� � �D�p k 
� � Constant where 
 is the uniform condi�

tional distribution�

De�nition � 
Log�likelihood of Training Set�� The log�likelihood L�p� of a conditional

probability distribution p over a training set T is de�ned as�

L�p� �
X
a�b

 p�a� b� log p�ajb�

It is useful to note that L�p� � �D� p k p� � Constant�

The following Lemma is called the Pythagorean property� since it resembles the Pythagorean

theorem if p� q� and p� represent vertices� and if the relative entropy measure is replaced

by the squared distance�

Lemma � 
Pythagorean Property�� If p � P � q � Q� and p� � P �Q�

D�p k q� � D�p k p�� �D�p� k q�

Proof� Use the following term for convenience

h�p� q� �
X
a�b

 p�b�p�ajb� log q�ajb�

so that D�p k q� � h�p� p�� h�p� q��
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For any p � P � q � Q� rewrite h�p� q��

h�p� q� �
X
a�b

 p�b�p�ajb�!log
Y
j

�
fj�a�b�
q�j � log

�

Zq�b�
"

�
X
j

Epfj log�q�j �
X
b

 p�b� log
�

Zq�b�

where the parameters are written as �q�j and Zq�b� to indicate that they correspond to the

probability distribution q�

Also note that for any p�� p� � P � and any q � Q�

h�p�� q� �
X
j

Ep�fj log�q�j �
X
b

 p�b� log
�

Zq�b�

�
X
j

Ep�fj log�q�j �
X
b

 p�b� log
�

Zq�b�

� h�p�� q�

Using the above substitution� where p � P � and q � Q� and p� � P � Q� we rewrite

D�p k p�� �D�p� k q��

D�p k p�� �D�p� k q� � h�p� p�� h�p� p�� � h�p�� p��� h�p�� q�

� h�p� p�� h�p�� p�� � h�p�� p��� h�p� q�

� h�p� p�� h�p� q�

� D�p k q�

The following two lemmas use Lemma � to prove properties about any p� � P � Q�

We assume that an exact solution exists� i�e�� that P � Q �� �� although we later discuss

situations in which this assumption is false�

Lemma �� If p� � P �Q� then

p� � argmax
q�Q

L�q�
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Proof� Let q � Q� and show that L�p��� L�q� � ��

L�p��� L�q� � D� p k q��D� p k p��
� !D� p k p�� �D�p� k q�"�D� p k p��
� D�p� k q�
� �

Lemma �� If p� � P �Q� then

p� � argmax
p�P

H�p�

Proof� Let p � P � and let 
 � Q be the uniform conditional distribution� Show that

H�p���H�p� � ��

H�p���H�p� � D�p k 
��D�p� k 
�
� !D�p k p�� �D�p� k 
�"�D�p� k 
�
� D�p k p��
� �

Theorem 
 shows that the maximum likelihood model of log�linear form is also a

maximum entropy model over the set of linear constraints on feature expectations�

Theorem � 
Maximum Likelihood � Maximum Entropy�� If (p � argmaxq�QL�q��

then (p � argmaxp�P H�p�

Proof� If (p � argmaxq�Q L�q� then L�(p�� L�q� � � for any q � Q� Let p� � P �Q�

L�(p�� L�p�� � D� p k p���D� p k (p�

� D� p k p��� !D� p k p�� �D�p� k (p�"

� �D�p� k (p�

� �
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which implies that D�p� k (p� � � and p� � (p� By Lemma �� p� � (p � argmaxp�P H�p��

Using similar arguments� we can also show equivalence in the other direction�

Theorem � 
Maximum Entropy � Maximum Likelihood�� If (p � argmaxp�P H�p�

then (p � argmaxq�Q L�q�

Proof� If (p � argmaxp�P H�p�� then H�(p��H�p� � � for any p � P � Let p� � P �Q� and

let 
 � Q be the uniform conditional distribution�

H�(p��H�p�� � D�p� k 
��D�(p k 
�
� D�p� k 
�� !D�(p k p�� �D�p� k 
�"
� �D�p� k (p�

� �

which implies that D�p� k (p� � � and p� � (p� By Lemma 
� p� � (p � argmaxq�Q L�q��

Theorems 
 and � assume that  p�b� � � for any b � B� although in practice� this is

usually not the case� If  p�b� � � for any b � B� we can show �using Lemma �� that the

maximum likelihood�maximum entropy solution p� � P � Q is unique� Otherwise� the

solution p� is not unique and it is be possible to have some p�� p� � Q that are both

maximum likelihood estimates over the contexts of the training set �those b such that

 p�b� � ��� but di�er for some context b such that  p�b� � ��

Theorems 
 and � assume that P � Q is non�empty� but the constraints that de�ne

P may require the solution to have the value p�ajb� � � for some pair a� b� No model in

Q with �nite parameters can achieve a value of � �or �� due to its log�linear form� and

hence P �Q will be empty� and the exact solution will not exist� leading to the problems

discussed in Chapter ��

!Della Pietra et al�� ����" deal with this problem in theory by using the closure of Q�

or Q� and show that it must be the case that P � Q �� �� In practice� when the exact
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solution does not exist� we use the inexact solution returned by the GIS algorithm as a

probability model for the data� Chapter � discusses why an inexact solution is not likely

to cause adverse modeling e�ects�
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