36,928 research outputs found

    A SYSTEMS VIEW OF SOFTWARE REQUIREMENT VOLATILITY

    Get PDF
    Mitigating the risk due to requirement volatility requires that we treat this as a systemic problem and understand what handles project managers can manipulate for management of project risk. In this paper we propose a systems view of this problem using existing theory on user involvement and qualitative research conducted among experienced project managers. Augmenting an existing model of software project dynamics with elements of our understanding, we show that requirement volatility can occur as an outcome of uncontrolled user involvement defeating the very purpose for which user involvement is solicited. Project managers normally treat user involvement as a pre-requisite for obtaining software project success. What-if analysis with the model generates patterns of requirement volatility reported in literature. These insights into the relationship among user involvement, requirement volatility, and project performance are expected to assist project managers in devising user management strategies for controlling project risk

    Requirement Volatility, Standardization and Knowledge Integration in Software Projects: An Empirical Analysis on Outsourced IS Development Projects

    Get PDF
    Information systems development (ISD) projects are highly complex, with different groups of people having  to collaborate and exchange their knowledge. Considering the intensity of knowledge exchange that takes place in outsourced ISD projects, in this study a conceptual model was developed, aiming to examine the influence of four antecedents, i.e. standardization, requirement volatility, internal integration, and external integration, on two dependent variables, i.e. process performance and product performance. Data  were collected from 46 software companies in four big cities in Indonesia. The collected data were examined to verify the proposed theoretical model using the partial least square structural equation modeling (PLS-SEM) technique. The results show that process performance is significantly influenced by internal integration and standardization, while product performance is  significantly influenced by external integration and  requirement volatility. This study contributes  to a better understanding of how knowledge integration can be managed in outsourced ISD projects in view of increasing their success

    Looking for Reasons behind Success in Dealing with Requirements Change

    Get PDF
    During development, requirements of software systems are subject to change. Unfortunately, managing changing requirements can take a lot of time and effort. Yet some companies show a better management of changes in requirements than others. Why? What is it that makes some projects deal with changing requirements better than others? We pursue the long term goal of understanding the mechanisms used to successfully deal with change in requirements. In this paper we gather knowledge about the state-of-the-art and the state-of-practice. We studied eight software development projects in four different companies --large and small, inclined toward structured and toward agile principles of development--, interviewing their project managers and analyzing their answers. Our findings include a list of practical (rather than theoretical) factors affecting the ability to cope with small changes in requirements. Results suggest a central role of size as a factor determining the flexibility showed either by the organization or by the software development team. We report the research method used and validate our results via expert interviews, who could relate to our findings

    ArchOptions: A Real Options-Based Model for Predicting the Stability of Software Architectures

    Get PDF
    Architectural stability refers to the extent an architecture is flexible to endure evolutionary changes in stakeholders\' requirements and the environment. We assume that the primary goal of software architecture is to guide the system\'s evolution. We contribute to a novel model that exploits options theory to predict architectural stability. The model is predictive: it provides \"insights\" on the evolution of the software system based on valuing the extent an architecture can endure a set of likely evolutionary changes. The model builds on Black and Scholes financial options theory (Noble Prize wining) to value such extent. We show how we have derived the model: the analogy and assumptions made to reach the model, its formulation, and possible interpretations. We refer to this model as ArchOptions

    Evaluating architectural stability with real option theory

    Get PDF

    Applying ArchOptions to value the payoff of refactoring

    Get PDF
    ArchOptions is a real-options based model that we have pro-posed to value the flexibility of software architectures in response to future changes in requirements. In this paper, we build on ArchOptions to devise an options-based model, which values the architectural flexibility that results from a refactoring exercise. This value assists in understanding the payoff of investing in refactoring: if the refactored system results in an architecture that is more flexible, such that the expected added value (in the form of options) due to the en-hanced flexibility outweighs the cost of investing in this exer-cise, then refactoring is said to payoff. We apply our model to a refactoring case study from the literature

    The financial clouds review

    No full text
    This paper demonstrates financial enterprise portability, which involves moving entire application services from desktops to clouds and between different clouds, and is transparent to users who can work as if on their familiar systems. To demonstrate portability, reviews for several financial models are studied, where Monte Carlo Methods (MCM) and Black Scholes Model (BSM) are chosen. A special technique in MCM, Least Square Methods, is used to reduce errors while performing accurate calculations. The coding algorithm for MCM written in MATLAB is explained. Simulations for MCM are performed on different types of Clouds. Benchmark and experimental results are presented for discussion. 3D Black Scholes are used to explain the impacts and added values for risk analysis, and three different scenarios with 3D risk analysis are explained. We also discuss implications for banking and ways to track risks in order to improve accuracy. We have used a conceptual Cloud platform to explain our contributions in Financial Software as a Service (FSaaS) and the IBM Fined Grained Security Framework. Our objective is to demonstrate portability, speed, accuracy and reliability of applications in the clouds, while demonstrating portability for FSaaS and the Cloud Computing Business Framework (CCBF), which is proposed to deal with cloud portability
    corecore