
Evaluating Architectural Stability with Real Options Theory
Rami Bahsoon and Wolfgang Emmerich

Dept. of Computer Science, University College London
Gower Street, WC1E 6BT, London, UK

{r.bahsoon | w.emmerich} @cs.ucl.ac.uk

Abstract
Architectural stability refers to the extent to which a soft-
ware architecture is flexible enough to respond to changes
in stakeholders’ requirements and the environment. We
contribute to a novel model that exploits options theory to
evaluate architectural stability. We describe how we have
derived the model: the analogy and assumptions made; its
formulation and possible interpretations. We use a refac-
toring case study to empirically evaluate the model. The
results show that the model can provide insights into archi-
tectural stability and investment decisions related to the
evolution of software systems.

Keywords. Economics-driven software engineering; rela-
tionship between requirements and software architecture.

1. Introduction
Architectural stability refers to the extent to which an
architecture is flexible enough to endure evolutionary
changes in stakeholders’ requirements and the environ-
ment, while leaving the architecture intact and adding to
the system and/or the enterprise a value [1, 2]. In an evolu-
tionary context, there is a pressing need for stable software
architectures. In this context, requirements are generally
volatile; they are likely to change and evolve over time.
The change is inevitable as it reflects changes in stake-
holders’ needs and the environment in which the software
system works. The change may “break” the architecture
necessitating changes to the architectural structure (e.g.,
changes to components and interfaces), architectural topol-
ogy (e.g., architectural style), or even changes to the under-
lying architectural infrastructure (e.g., middleware). It may
be expensive and difficult to change the architecture as
requirements evolve. Consequently, failing to accommo-
date the change leads ultimately to the degradation of the
usefulness of the system.
 From an economic perspective, the volatility of re-
quirements may be regarded as a major source of uncer-
tainty that confront an architecture during evolution. It
places the investment in a particular architecture at risk. To
cope with uncertainties and mitigate risks in the invest-
ment, there is a critical need for evaluating the stability of
software architectures. Such evaluation is necessary for
valuing the long-term investment in a particular architec-
ture; analysing trade-offs between two or more candidate
software architectures; analysing the strategic position of
the enterprise- if the enterprise is highly centred on the

software architecture (as it is the case in web-based com-
panies); and validating the architecture for evolution.

The novel contribution of this paper is an approach for
evaluating the stability of software architectures with real
options theory [8,9]. The approach assumes that the soft-
ware architecture’s goal is to guide the system’s evolution.
The approach views software evolution as a process in
which a software system is undergoing a change (an incre-
mental) and seeking a value. The approach attributes the
added value to the flexibility of the architecture to respond
to the change(s). Means for achieving flexibility are typical
architectural mechanisms or strategies that are built-in or
adapted into the architecture with the objective of facilitat-
ing evolution and future growth. For example, consider a
functionality that is likely to change and evolve over time:
“componentizing” the functionality and hiding it behind
negotiable and configurable interfaces is a simple example
of such a mechanism. In this context, the flexibility of an
architecture to endure changes in stakeholders’ require-
ments and the environment has a value that can assist in
predicting the stability of software architectures. More spe-
cifically, flexibility adds to the architecture values in the
form of real options, that give the right but not a symmetric
obligation- to evolve the software system and enhance the
opportunities for strategic growth by making future follow-
on investments. The added value is strategic in essence and
may not be immediate. It takes the form of (i) accumulated
savings through enduring the change without “breaking”
the architecture; (ii) supporting reuse; (iii) enhancing the
opportunities for strategic “growth” (e.g. regarding an ar-
chitecture as an asset and instantiating the asset to support
new market products); and (iv) the ability to respond to
competitive forces and changing market conditions. Spe-
cifically, we contribute to a model that exploits Black and
Scholes options theory (Nobel Prize winning) [3] to assess
flexibility- as a way to predict architectural stability. The
model provides “insights” into architectural stability and
investment decisions related to the evolution of software
systems. This is based on examining a set of likely changes
and how valuable is the embedded or adapted flexibility in
responding to the changes. We describe how we have de-
rived the model: the analogy and assumptions made with
[3]; its formulation; and possible interpretations. We refer
to this model as ArchOptions. To evaluate the model, we
apply it to a refactoring example. Our observations verify
that the theory, the model, and its interpretations are sensi-
ble.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/1669371?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The paper is further structured as follows. Section 2
shows how we exploit options theory to predict architec-
tural stability. Section 3 evaluates the model. Section 4
previews closest related work. Section 5 concludes.

2. Evaluating Architectural Stability with
an Options Analogy
Real options theory, an emerging financial theory, is well
suited to address many Software Engineering problems
from a value-based engineering perspective [5, 6]. Real
options theory provides an analysis paradigm that empha-
sizes the value-generating power of flexibility under uncer-
tainty [6]. An option is an asset that provides its owner the
right without a symmetric obligation to make an investment
decision under given terms for a period of time into the
future ending with an expiration date [9]. If conditions fa-
vorable to investing arise, the owner can exercise the op-
tion by investing the strike price defined by the option. A
call option gives the right to acquire an asset of uncertain
future value for the strike price. A real option is an option
on non-financial (real) asset, such as a parcel of land or a
new product design. In traditional applications, real options
analysis recognizes that the value of the capital investment
lies not only in the amount of direct revenues that the in-
vestment is expected to generate, but also in the future op-
portunities flexibility creates. These include, abandonment
or exit, delay, exploration, learning, and growth options.
We view stability as a strategic architectural quality that
adds to the architecture values in the form of growth op-
tions. A growth option is a real option to expand with stra-
tegic importance [8]. Growth options are common in all
infrastructure-based (as it is the case of software architec-
tures) or strategic industries with multiple-product genera-
tions or applications [8]. As many early investments can be
prerequisites or links in chain of interrelated projects,
growth options set the path for the future opportunities [8].
In the architectural context, growth opportunities are linked
to the flexibility of the architecture to respond to future
changes. Since the future changes are generally unantici-
pated, the value of the growth options lies in the enhanced
flexibility of the architecture to cope with uncertainty; oth-
erwise, the change may be expensive to pursue and oppor-
tunities may be lost.

The search for a potentially stable architecture requires
finding an architecture that maximizes the yield in the
added value, relative to some future changes in require-
ments. As we are assuming that the added value is attrib-
uted to flexibility, the problem becomes maximizing the
yield in the embedded or adapted flexibility in a software
architecture relative to these changes. We derive a predic-
tive model from Black & Scholes [3] options theory. A
likely future change in requirement is said to be analogous
to buying an option on an asset, with an exercise price cor-
responding to the cost of implementing the change. For a
likely change in requirements, the model constructs a call

option to value the flexibility of the architecture to accom-
modate the change- as a way to make the value of stability
tangible. The value of the call option indicates the ability of
an architecture to unlock future growth opportunities and
enhance the upside potentials of the architecture.

Under the Black and Scholes model, five parameters are
needed to determine the option price: the current stock
price (S), the strike price (X), the time to expiration (T), the
volatility of the stock price (σ), and the free-risk interest
rate(r). The price of the stock option is a function of the
stochastic variables underlying stock’s price and time. The
strike price (X) is the price for which the holder may exer-
cise a contract for the purchase/sale of the underlying
stock; also referred to as the exercise price. The volatility
of the stock price (σ) is a statistical measure of the stock
price fluctuation over a specific period of time; it is a
measure of how uncertain we are about the future of the
stock price movements. The value of a call option on an
asset depends on the value of the asset itself and the cost of
exercising the option. The payoff from a call option is the
amount by which the stock price exceeds the strike price, if
S exercised at some time in the future. Call options, there-
fore, become more valuable as the stock price increase and
less valuable as the strike price increases. The expected
value of a European call option is given by E [max (St- X,
0)], where E denotes the expected value of a European call
option and St denotes the stock price at time t. The Euro-
pean call option price, C, is the value discounted at the
risk-free rate of interest. It calculates to equation (1):

C = e –r (T-t) E [max (St- X, 0)] (1)

In a risk-neutral world, ln St has the following probability
distribution given by (2),

ln St ~ φ [ln S + (r-σ2/2)(T-t), σ(T-t)1/2] (2)

where φ [m, s] denotes a normal distribution with mean
m, and standard deviation S. Evaluating the right-hand side
of (1)- in application of integral calculus- results in Black
and Scholes valuation of a call option.

 C = S N (d1) – Xe –r (T-t) N (d2) (3)

where,
 d1 = ln(S/X) + (r +σ2/2)(T-t)

 σ(T-t) ½

 d2 = ln(S/X) + (r -σ2/2)(T-t) = d1 -σ(T-t)1/2

 σ(T-t) ½
N (x) is the cumulative probability distribution function for
a standardized normal variable (i.e., it is the probability that
such a variable will be less than x).

To assess flexibility, we map the economic characteris-
tics of the architecture (under development or evolution)
onto the parameters of the option model of (1)- as shown in
Table 1. The economic characteristics include the devel-
opment (evolution) effort, schedule, and budget. We ex-
ploit (2) and (3) to valuation.

Table 1. Financial/real options/ArchOptions analogy
Option on
stock

Real option on a
project

ArchOptions

Stock Price Value of the ex-
pected cash flows

Value of the architectural potential
of the change (xiV)

Exercise
Price

Investment cost Estimate of the likely cost to ac-
commodate the change (Cei)

Time-to-
expiration

Time until oppor-
tunity disappears

Time indicating the decision to
implement the change (t)

Volatility Uncertainty of the
project value

“Fluctuation” in the return of value
of V over a specified period of
time (σ)

Risk-free
interest rate

Risk-free interest
rate

Interest rate relative to budget and
schedule (r)

Let us assume that the value of the system is V. As the
software evolves, a change in future requirement ii is as-
sumed to enhance the system value by xi% with a follow-on
investment of Cei, where Cei corresponds to an estimate of
the likely cost to accommodate the change. This is similar
to a call option to buy (xi%) of the base project, paying Cei
as exercise price. Thus, the investment opportunity in the
system can be viewed as a base-scale investment plus call
options on the future opportunities, where a future oppor-
tunity corresponds to the investment to accommodate some
future requirement(s). The payoff of the constructed call
option gives an indication of how valuable the flexibility of
an architecture to endure some likely changes in require-
ments. The value of the system having a particular architec-
ture, materializes to ArchOptions- given by (4)- accounting
for V and both the expected value and exercise cost to ac-
commodate ii, for i ≤ n. The expectation E is valued using
(2) and (3). We assume that the interest rate is zero for the
simplicity of exposition.

 n

 V + ∑ E [max (xiV - Cei, 0)] (4)

Estimating x

 i=0

For a likely change in requirement k, we interpret (4):
(a) The option is in the money: if xkV exceeds the exer-

cise cost (i.e. max (xkV - Cek, 0) >0), then the architecture is
said to be potentially stable with respect to ik. The more the
option is in the money, the more valuable is the embedded
flexibility; hence, the better are the potentials for the stabil-
ity of the architecture with respect to the change. In real
situations, the architect/analyst is interested in selecting an
architecture that maximizes the yield in options relative to
some likely changes. An optimal selection could be when
the option value approaches the maximum, indicating an
optimal payoff in an investment in flexibility. The analyst
may perform sensitivity analysis and analyze when such a
situation is likely to occur.
 (b) The option is out of money: if the value of the call
option sinks to zero (i.e. max (xkV - Cek, 0) =0), then the
flexibility of the architecture in response to the change is
not likely to add a value. The architecture is likely to be
unstable for this change (i.e., stability is when flexibility

adds value). Two interpretations might be possible: (i) the
architecture is overly flexible in the sense that its response
to the change has not “pulled” the options. This implies
that the embedded flexibility (or the resources invested in
implementing flexibility) are wasted and unutilized to re-
veal the options relative to this change. In other words, the
degree of flexibility provided is much more than the flexi-
bility demanded for this change. This case has the prospect
in providing an insight on how much do we need to invest
in flexibility to achieve stability relative to the likely future
changes, while not sacrificing much of the resources; (ii)
the other case is when the architecture is inflexible relative
to the change. This is when the cost of accommodating the
change is much more than the cumulative expected value
of the architecture responsiveness.

Estimating Cei. Estimating cost is a well-established
component in software engineering; it is outside the scope
of our work. For example, it is feasible to use existing met-
rics to cost estimation (e.g., COCOMO-II [7]). Another
approach is to build on architectural level dependency
analysis (e.g., [13]) research to extract cost estimates of
accommodating ii, guided by some structural criteria.

iV. Black and Scholes is an arbitrage-
based technique. The technique requires knowledge of the
value of the asset in question in span of the market. Soft-
ware architectures, however, are (non-traded) real assets.
Real options may be valued similarly to financial options,
though they are not traded [9]. Real options valuation
based on arbitrage determines the value of an asset in ques-
tion in span of the market value using a correlated twin
asset [9]. The twin asset is an asset that has the same risks
the asset in question will have when the investment has
been completed [9]. We calibrate changes in requirements
with their market value, when available. We argue that
valuation based on man-month does implicitly hold market-
based data and is still done in relation with the market. We
adopt a viewpoint-oriented framework for making such
calibration implicit or explicit, as detailed in [2].

The application of [3] assumes that the stock option is a
function of the stochastic variables underlying stock’s price
and time. We assume that V moves stochastically bounded
to two extreme values: optimistic and pessimistic. This
assumption appears to be plausible: (i) it tends to account
for all possible values within the bound, yielding to a better
approximation when opposed to an ad-hoc type of estima-
tion; (ii) the value of an (evolvable) system changes over
time; it tends to change in uncertain way due to changes in
requirements.

3. Case Study
We empirically simulate the proposed theory, demonstrate
the applicability of the model, and validate its interpreta-
tions. We summarize the simulation rationale as follows:
(a) embed flexibility in the software structure (b) observe
the responsiveness of the structure to some random

changes in requirements following action (a); (c) quantify
flexibility and interpret it relative to likely future changes
as a way for understanding stability. To achieve the simula-
tion rationale, we use refactoring, a preventive change.
Refactoring can be seen as an upfront investment to embed
flexibility, given by Ie. The objective is to “clear up” much
of the system degraded structure and enhance its upside
potentials by making it more accommodating for likely
future changes. Refactoring may add value to the structure.
The added value could take the form of growth options,
enhancing the flexibility of the structure with respect to
future changes. Future changes following refactoring will
tell us how valuable these options are. But, the benefits due
to refactoring are uncertain as the demand on future
changes are uncertain. This makes refactoring a good can-
didate to reason using option “thinking”. We use the refac-
toring case study of a traffic light system published in [10],
which proposes a framework to predict the return on in-
vestment (ROI) for a planned refactoring using cost-benefit
analysis. We recast the problem into an option problem: we
consider the benefits of refactoring to be uncertain as the
demand for future changes -following refactoring- is uncer-
tain. We restrict architectural information to data and con-
trol dependency for this example. Table 2 summarizes the
structural changes upon evolving S0 (the initial structure) to
S1 (the refactored structure) of the traffic light system. Ta-
ble 2 shows that refactoring has transformed the structure
into a more flexible state through the decrease of both con-
trol and data dependencies. The decrease in dependencies
in S1 means less complexity and better prospects for ac-
commodating future changes.

Table 2. Aggregate results: the change (%)- evolving S0 to S1

 S0 S1 Change (%)

Size in SLOC 740 602 -19%

No. of Modules 29 38 31%

Avg. SLOC Per Module 26 16 -38%

Data Dependency 147 112 -23.60%

Control Dependency 101 73 -19.40%

We apply the model: we construct a call option for the

likely changes following refactoring, accounting for Ie. The
model materializes to - Ie + ∑ i=1…n E [max (xiV - Cei, 0)]
[2]. To estimate xiV, we restrict the valuation to the devel-
opment perspective. We use the expected savings in devel-
opment effort for likely futures changes due to refactoring.
We use $2000 for man-month to cast the effort into cost.

Estimating (Ie). Table 3 reports the refactoring effort
(man-month), cost ($), and schedule (month) based on the
refactoring plan presented in [10]. Table 3 provides three
values: optimistic, likely, and pessimistic for each parame-
ter. All are calculated using COCOMO II.

Estimating (xiV). To value the architectural potential
of S1 due to refactoring, we use twenty random changes to
stress S1 with cost given as Cei. The twenty changes are of

an adaptive nature; they are generated based on percentage
estimates of design, integration, and code to be modified
per change. The same likely changes were used to stress S0.
The objective is to calculate the difference (i.e., savings-if
any) in effort/cost of S1 over S0. The aim is to quantify the
responsiveness of the structure due to the embedded flexi-
bility, from the development perspective. We use
COCOMO II to estimate the effort/cost for the twenty
changes on each structure. xiV corresponds to the differ-
ence- as reported in Table 4. Expected savings, due to
refactoring, are in the range of $12806 (optimistic) to
$7433 (pessimistic) for the twenty changes.
 Estimating volatility (σ), Exercise time (t) and free
risk interest rate(r). We take the percentage of the stan-
dard deviation of the three xiVs estimates-the optimistic,
likely, and pessimistic values- to calculate σ. As a simula-
tion assumption, we set the exercise time to three years. We
set the free risk interest rate to zero (i.e., assuming that the
value of money today is equal to that in three years time).
Table 3. Refactoring effort, schedule, and cost

 Effort Schedule Iei

Op Lik Pes Op Lik Pes Op Lik Pes

Refactoring 0.9 1.2 1.5 3.6 3.9 4.2 1893 2366 2958

Observation 1. Flexibility creates options: S1 is more
flexible than S0 (due to decrease in dependencies as a result
of refactoring); S1 has created more options when com-
pared to S0.

Table 5 shows that S1 is in the money in response to
the twenty random changes, relative to the development
perspective. The results read that refactoring (i.e. as the
embedded flexibility in S1) is likely to enhance the option
value by an excess of $5979 (pessimistic) to $10593 (op-
timistic) over S0, if the twenty changes need to be exercised
following refactoring. Thus, as flexibility is improved, S1 is
likely to add value in the form of options in response to the
twenty changes.

Table 4. Options on S1 relative to S0 ($) for the twenty changes

 Pessimistic Likely Optimistic

Cei T xiV Cei T xiV Cei T xiV

 1454 3 7433 1817 3 9292 2212 3 12806

Option 5979.09 7474.6 10593

Observation 2. How worthwhile is it “buying” flexibility
to achieve architectural stability?

Let us take the average value of the twenty changes.
The objective is to simulate the responsiveness of S1 to one
likely average change. The result of table 5 implies that
though S1 is flexible, one change has not “pulled” the op-
tions. S1 is said to be out of the money for this change. This
implies that the embedded flexibility (or the resources in-
vested in implementing flexibility) are wasted and unuti-
lized to reveal the options relative to this change. In other
words, the degree of flexibility provided is much more than

the flexibility demanded for this change. S1 is unstable for
one average change, for flexibility does not add a value, if
this change needs to be exercised. Intuitively, if an archi-
tecture does not reveal an added value upon the evolution
of the software, it could be far from being considered sta-
ble. We repeat the above experiment, but stressing S1 with
two, three, four, and then ten average changes at a time.
Using two average likely changes, the options reported
zero values. Again, two likely average changes have not
“pulled” the options. Interestingly, S1 has just about pulled
the options for three changes. For four, five, and nine
changes, S1 reveals the options; however, flexibility is not
likely to payoff as (- Ie + ∑ i=1…n E [max (xiV - Cei, 0)] S1 <
0). For ten changes, refactoring is expected to payoff as (-
Ie + ∑ i=1…n E [max (xiV - Cei, 0)] S1 >0). Thus, flexibility is
likely to add to the system a value, if ten or more changes
need to be exercised during the next three years. Hence, S1
is likely to reveal stability, as the embedded flexibility is
likely to add value for these changes.

Table 5. Options on S1 for one to ten changes at a time

xiV Options
Changes σ Pes. Lik. Op. Pes. Lik. Op.

1Req.Ch. 1.4 371.7 464.6 640.3 0 0 0

2 Req.Ch. 2.7 743.3 929.2 1280.6 0 0 0

3 Req.Ch. 4.1 1115.0 1393.8 1920.9 0+ 0+ 1.2

4 Req.Ch. 5.5 1486.6 1858.4 2561.2 73.6 92.45 334.9

5 Req.Ch. 6.8 1858.3 2323.0 3201.5 405.6 507.6 989.07

9 Req. Ch. 12.2 3339 4181.4 5760 1885 2364 3547

10 Req. Ch. 13.6 3717 4640 6400 2263 2823 4188

This case has the prospect of providing an insight into how
much we have to invest in flexibility to achieve stability
relative to the likely future changes, while not sacrificing
much of our resources. In real situations, an optimal stabil-
ity could be when the option value approaches the maxi-
mum, indicating an optimal payoff in an investment in
flexibility. The analyst may conduct sensitivity analysis to
manipulate the model variables and analyze when such a
situation is likely to occur.

4. Related Work
Economics approaches to software design appeal to the
concept of static Net Present Value (NPV) as a mechanism
for estimating value [5]. These techniques, however, are
not readily suitable for strategic reasoning of software de-
velopment as they fail to factor flexibility [5,6]. Real op-
tions theory has been adopted to address this problem. Sul-
livan [12] suggested that real options analysis can provide
insights concerning modularity, phased projects structures,
delaying of decisions and other dynamic software design
strategies. Sullivan et al. [11] argued that the structure and
value of modularity in software design creates value in the
form of real options. The value of such an option could be
realized by the module optimal experiment-and-replace
policy.

 In [7], Jazayeri takes a retrospective approach to
evaluating architectural stability using simple metrics such
as size, coupling, and color visualization to summarize the
evolution pattern of the software system across its succes-
sive releases. The evaluation requires information to be
kept for each release of the software. Yet, such data is not
commonly maintained, analyzed, or exploited.

5. Conclusions and Future Work
To sum up, following the argument of [11], such models
need not be perfect: what is essential is that they capture
the most important terms; their assumptions and operation
must be known and understood so that the analyst can
evaluate their predictions. The observations verify that the
theory and the model interpretations are reasonable. In real
situations, the changes may be exemplified using change
scenarios captured from stakeholders. Our future work en-
tails further evaluation of the model. The objectives are to
test the model on real scale projects and scenarios, explore
its potentials and limitations, observe, learn, and tune the
interpretations (if necessary).

6. References
[1] Bahsoon, R., Emmerich, W.: ArchOptions: A Real Options-Based Model for

Predicting the Stability of Software Architecture. In: Proceedings of the Fifth
ICSE Workshop on Economics-Driven Software Engineering Research (2003)

[2] Bahsoon, R., Emmerich, W.: Applying ArchOptions to Value the Payoff of
Refactoring. In: Proceedings of the Sixth ICSE Workshop on Economics-
Driven Software Engineering Research (2004)

[3] Black, F., Scholes, M.: The Pricing of Options and Corporate Liabilities.
Journal of Political Economy (1973)

[4] Boehm, B., Clark, B., Horowitz, E., Madachy,R., Shelby, R., Westland, C.:
The COCOMO 2.0 Software Cost Estimation Model. In: International Society
of Parametric Analysts (1995)

[5] Boehm, B., Sullivan, K. J.: Software Economics: A Roadmap. In: Finkelstein,
A. (ed.): The Future of Software Engineering (2000)

[6] Erdogmus, H., Boehm, B., Harriosn, W., Reifer, D. J., and Sullivan, K. J.:
Software Engineering Economics: Background, Current Practices, and Future
Directions. In: Proceeding of 24th International Conference on Software Engi-
neering, Orlando, FL. (2002)

[7] Jazayeri, M.: On Architectural Stability and Evolution. Lecture Notes in
Computer Science, Springer Verlag, Berlin (2002)

[8] Myers, S. C.: Finance Theory and Financial Strategy. Corporate Finance
Journal. Vol. 5(1).(1987) 6-13

[9] Schwartz, S., Trigeorgis, L.: Real options and Investment Under Uncertainty:
Classical Readings and Recent Contributions. MIT Press Cambridge, Massa-
chusetts (2000)

[10] Stroulia, E., Leitch R.: Understanding the Economics of Refactoring. In:
Proceedings of the Fifth ICSE Workshop on Economics-Driven Software En-
gineering Research (2003)

[11] Sullivan, K. J., Griswold, W., Cai, Y., Hallen, B.: The Structure and Value of
Modularity in Software Design. In: Proceedings of ESEC/FSE-9, Vienna,
Austria (2001) 99-108

[12] Sullivan, K. J.: Chalasani, P., Jha, S., Sazawal, V.: Software Design as an
Investment Activity: A Real Options Perspective. In: Real Options and Busi-
ness Strategy: Applications to Decision-Making. Trigeorgis L.(ed.) Risk
Books (1999)

[13] Zhao, J.: Using Dependence Analysis to Support Software Architecture Un-
derstanding: In M. Li (Ed.): New Technologies on Computer Software Inter-
national Academic Publishers, September (1997) 135-142

	Abstract
	1. Introduction
	S0
	S1
	4. Related Work
	6. References

