1,350 research outputs found

    Sampling decomposable graphs using a Markov chain on junction trees

    Full text link
    Full Bayesian computational inference for model determination in undirected graphical models is currently restricted to decomposable graphs, except for problems of very small scale. In this paper we develop new, more efficient methodology for such inference, by making two contributions to the computational geometry of decomposable graphs. The first of these provides sufficient conditions under which it is possible to completely connect two disconnected complete subsets of vertices, or perform the reverse procedure, yet maintain decomposability of the graph. The second is a new Markov chain Monte Carlo sampler for arbitrary positive distributions on decomposable graphs, taking a junction tree representing the graph as its state variable. The resulting methodology is illustrated with numerical experiments on three specific models.Comment: 22 pages, 7 figures, 1 table. V2 as V1 except that Fig 1 was corrected. V3 has significant edits, dropping some figures and including additional examples and a discussion of the non-decomposable case. V4 is further edited following review, and includes additional reference

    Computing symmetry groups of polyhedra

    Full text link
    Knowing the symmetries of a polyhedron can be very useful for the analysis of its structure as well as for practical polyhedral computations. In this note, we study symmetry groups preserving the linear, projective and combinatorial structure of a polyhedron. In each case we give algorithmic methods to compute the corresponding group and discuss some practical experiences. For practical purposes the linear symmetry group is the most important, as its computation can be directly translated into a graph automorphism problem. We indicate how to compute integral subgroups of the linear symmetry group that are used for instance in integer linear programming.Comment: 20 pages, 1 figure; containing a corrected and improved revisio

    Virtual Network Embedding Approximations: Leveraging Randomized Rounding

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The Virtual Network Embedding Problem (VNEP) captures the essence of many resource allocation problems. In the VNEP, customers request resources in the form of Virtual Networks. An embedding of a virtual network on a shared physical infrastructure is the joint mapping of (virtual) nodes to physical servers together with the mapping of (virtual) edges onto paths in the physical network connecting the respective servers. This work initiates the study of approximation algorithms for the VNEP for general request graphs. Concretely, we study the offline setting with admission control: given multiple requests, the task is to embed the most profitable subset while not exceeding resource capacities. Our approximation is based on the randomized rounding of Linear Programming (LP) solutions. Interestingly, we uncover that the standard LP formulation for the VNEP exhibits an inherent structural deficit when considering general virtual network topologies: its solutions cannot be decomposed into valid embeddings. In turn, focusing on the class of cactus request graphs, we devise a novel LP formulation, whose solutions can be decomposed. Proving performance guarantees of our rounding scheme, we obtain the first approximation algorithm for the VNEP in the resource augmentation model. We propose different types of rounding heuristics and evaluate their performance in an extensive computational study. Our results indicate that good solutions can be achieved even without resource augmentations. Specifically, heuristical rounding achieves 77.2% of the baseline’s profit on average while respecting capacities.BMBF, 01IS12056, Software Campus GrantEC/H2020/679158/EU/Resolving the Tussle in the Internet: Mapping, Architecture, and Policy Making/ResolutioNe

    Moment-angle complexes, monomial ideals, and Massey products

    Full text link
    Associated to every finite simplicial complex K there is a "moment-angle" finite CW-complex, Z_K; if K is a triangulation of a sphere, Z_K is a smooth, compact manifold. Building on work of Buchstaber, Panov, and Baskakov, we study the cohomology ring, the homotopy groups, and the triple Massey products of a moment-angle complex, relating these topological invariants to the algebraic combinatorics of the underlying simplicial complex. Applications to the study of non-formal manifolds and subspace arrangements are given.Comment: 30 pages. Published versio

    Parameterized Compilation Lower Bounds for Restricted CNF-formulas

    Full text link
    We show unconditional parameterized lower bounds in the area of knowledge compilation, more specifically on the size of circuits in decomposable negation normal form (DNNF) that encode CNF-formulas restricted by several graph width measures. In particular, we show that - there are CNF formulas of size nn and modular incidence treewidth kk whose smallest DNNF-encoding has size nΩ(k)n^{\Omega(k)}, and - there are CNF formulas of size nn and incidence neighborhood diversity kk whose smallest DNNF-encoding has size nΩ(k)n^{\Omega(\sqrt{k})}. These results complement recent upper bounds for compiling CNF into DNNF and strengthen---quantitatively and qualitatively---known conditional low\-er bounds for cliquewidth. Moreover, they show that, unlike for many graph problems, the parameters considered here behave significantly differently from treewidth

    Marginal and simultaneous predictive classification using stratified graphical models

    Full text link
    An inductive probabilistic classification rule must generally obey the principles of Bayesian predictive inference, such that all observed and unobserved stochastic quantities are jointly modeled and the parameter uncertainty is fully acknowledged through the posterior predictive distribution. Several such rules have been recently considered and their asymptotic behavior has been characterized under the assumption that the observed features or variables used for building a classifier are conditionally independent given a simultaneous labeling of both the training samples and those from an unknown origin. Here we extend the theoretical results to predictive classifiers acknowledging feature dependencies either through graphical models or sparser alternatives defined as stratified graphical models. We also show through experimentation with both synthetic and real data that the predictive classifiers based on stratified graphical models have consistently best accuracy compared with the predictive classifiers based on either conditionally independent features or on ordinary graphical models.Comment: 18 pages, 5 figure

    Directed expected utility networks

    Get PDF
    A variety of statistical graphical models have been defined to represent the conditional independences underlying a random vector of interest. Similarly, many different graphs embedding various types of preferential independences, such as, for example, conditional utility independence and generalized additive independence, have more recently started to appear. In this paper, we define a new graphical model, called a directed expected utility network, whose edges depict both probabilistic and utility conditional independences. These embed a very flexible class of utility models, much larger than those usually conceived in standard influence diagrams. Our graphical representation and various transformations of the original graph into a tree structure are then used to guide fast routines for the computation of a decision problem’s expected utilities. We show that our routines generalize those usually utilized in standard influence diagrams’ evaluations under much more restrictive conditions. We then proceed with the construction of a directed expected utility network to support decision makers in the domain of household food security

    Equations defining probability tree models

    Full text link
    Coloured probability tree models are statistical models coding conditional independence between events depicted in a tree graph. They are more general than the very important class of context-specific Bayesian networks. In this paper, we study the algebraic properties of their ideal of model invariants. The generators of this ideal can be easily read from the tree graph and have a straightforward interpretation in terms of the underlying model: they are differences of odds ratios coming from conditional probabilities. One of the key findings in this analysis is that the tree is a convenient tool for understanding the exact algebraic way in which the sum-to-1 conditions on the parameter space translate into the sum-to-one conditions on the joint probabilities of the statistical model. This enables us to identify necessary and sufficient graphical conditions for a staged tree model to be a toric variety intersected with a probability simplex.Comment: 22 pages, 4 figure
    • …
    corecore