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Abstract. A variety of statistical graphical models have been defined to represent the con-
ditional independences underlying a random vector of interest. Similarly, many different
graphs embedding various types of preferential independences, such as, for example, con-
ditional utility independence and generalized additive independence, have more recently
started to appear. In this paper, we define a new graphical model, called a directed
expected utility network, whose edges depict both probabilistic and utility conditional
independences. These embed a very flexible class of utility models, much larger than
those usually conceived in standard influence diagrams. Our graphical representation and
various transformations of the original graph into a tree structure are then used to guide
fast routines for the computation of a decision problem’s expected utilities. We show that
our routines generalize those usually utilized in standard influence diagrams’ evalua-
tions under much more restrictive conditions. We then proceed with the construction of a
directed expected utility network to support decision makers in the domain of household
food security.
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1. Introduction
The Bayesian paradigm provides a coherent platform
to frame the beliefs and the preferences of decision
makers (DMs). Once a DM has specified these in the
form of a probability distribution and a utility function,
thenunder the subjective expectedutility paradigmshe
would act rationally by choosing a decision that maxi-
mizesherexpectedutility, i.e., theexpectationof theutil-
ity function with respect to the probability distribution
elicited from her. Although other paradigms express-
ing different canons of rationality exist (e.g., Giang and
Shenoy 2005,Hong andChoi 2000, Smets 2002), applied
decision making problems have been most commonly
addressed within this Bayesian framework (Gómez
2004, Heckerman et al. 1995).
One of the reasons behind the widespread use of

Bayesianmethods is the existence of formally justifiable
methodsthatcanbeusedtodecomposeutility functions

and probability distributions into several others, each
of which has a smaller dimension than those of a
naive representation of the problem. This decomposi-
tion offers both computational advantages and more
focused decision making, since the DM needs only
to elicit beliefs on small dimensional subsets of vari-
ables. This in turn has led to larger and larger problems
being successfully and accurately modelled within this
Bayesian framework.

The decomposition of the probabilistic part of the
world is usually achieved via the notion of condi-
tional independence (Dawid 1979). It was long ago
recognized that graphical representations of the rela-
tionships between random variables directly express
a collection of conditional independences. These in-
dependences enabled large dimensional joint prob-
abilities to be formally written as products of local
distributions of smaller dimension, needing many
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fewer probability specifications than a direct, full spec-
ification. Many formal statistical graphical models
were subsequently defined, most notably Bayesian net-
works (BNs) (Pearl 1988, Smith 2010), that exploited
these conditional independences to represent the qual-
itative structure of a multivariate random vector
through a directed graph.
There are also many independence concepts related

to utility that can be used to factorize a utility function
into terms with a smaller number of arguments. Stan-
dard independence concepts are based on the notion of
(generalized) additive independence and (conditional)
utility independence (Keeney and Raiffa 1993). These
both entail some additive or multiplicative decom-
position of the utility function. Fairly recently it was
recognized that sets of such statements could also be
represented by a graph, which in turn could be used
to develop fast elicitation routines (see, e.g., Abbas and
Howard 2005; Abbas 2009, 2010, 2011; Braziunas and
Boutilier 2005; Engel and Wellman 2008; Gonzales and
Perny 2004).

The influence diagram (ID; Howard and Matheson
2005, Nielsen and Jensen 2009, Smith and Thwaites
2008) was one of the first graphical methods to contem-
poraneously depict probabilistic dependence, the form
of the utility function, and the structure of the underly-
ing decision space. Fast routines to compute expected
utilities and identify optimal decisions that exploit
the underlying graph have been defined for a long
while (e.g., Jensen et al. 1994, Shachter 1986). However,
these are almost exclusively designed to work when
the utility can be assumed to factorize additively, i.e.,
assuming that the utility can bewritten as a linear com-
bination of smaller dimensional functions over disjoint
subsets of the decision problem’s attributes. An excep-
tion is the multiplicative influence diagram (Leonelli
et al. 2017), whose evaluation algorithmworks not only
for additive factorizations but also for more general
multiplicative ones (Keeney 1974).

In this paper, we develop a class of graphical mod-
els that can depict both probabilistic independence and
sets of (conditional) utility independence statements
expressible by a utility diagram (Abbas 2010). We call
these directed expected utility networks (DEUNs). We here
develop two fast algorithms for the computation of
expected utilities using these diagrams. The first one

applies to anyDEUNand consists of a sequential appli-
cation of a conditional expectation operator, analogous
to the chance node removal of Shachter (1986). The sec-
ond algorithm is valid only for a subset of DEUNs, ones
that we call here decomposable. After a transformation
into a new junction tree representation of the problem,
this routine computes the overall expected utility via
variable elimination just as in Jensen et al. (1994), but
now applied to our much more general family of util-
ities. We are able to demonstrate that the elimination
step in DEUNs almost exactly coincides with that of
standard ID’s evaluation algorithms. Therefore, both
additional theoretical results, as, for example, approx-
imated propagation, and code already available for
IDs, designed originally for use with additive utili-
ties, can be fairly straightforwardly generalized to be
used in conjunction with a much more general utility
structure.

The motivation for this work stems from a deci-
sion support system we are currently building to help
local authorities evaluate the impacts of different poli-
cies in the light of endemic food poverty (Smith et al.
2015a, b). In the initial study by Barons et al. (2016)—
to keep the analysis as simple as possible—the under-
lying preferential structure was assumed to factor-
ize additively, as commonly assumed in ID modelling
and many applied decision analyses. Discussions dur-
ing the elicitation process, however, showed that this
assumption was far from ideal in this application. Cur-
rently available technology would not enable us to for-
mally perform a decision analysis under the required
much milder preferential conditions. We have thus
taken on this challenge and developed new algorithms
for the computation of expected utilities that enable
DMs to perform much more general decision analyses.

The only other attempt in the literature we are aware
of to represent utility and probabilistic dependence in
a unique graph is the expected utility network of La
Mura and Shoham (1999). This is an undirected graph-
ical model with two types of edges to represent prob-
abilistic and preferential dependence. However, this
method is built on a nonstandard notion of a condi-
tional utility function. Furthermore, no fast routines
for the computation of the associated expected utility
have yet been developed using this framework. In con-
trast, DEUNs are based on commonly used concepts
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of utility independences characterized by various pref-
erence relationships and so directly apply to standard
formulations of decision problems.
This paper is structured as follows. In Section 2

we review the Bayesian paradigm for decision mak-
ing. In Sections 3 and 4 we review independence con-
cepts and their graphical representations for probabil-
ities and utilities, respectively. In Section 5 we define
our DEUN graphical model, and in Section 6 we
develop algorithms for the computation of the DEUN’s
expected utilities. Section 7 presents an application
of DEUNs to household food security. In Section 8
we demonstrate that our algorithms can be straight-
forwardly adapted to decision problems described by
what we will call a canonical bidirected expected util-
ity network (BDEUN), which is capable of representing
even more flexible utility structures. We conclude in
Section 9 with a discussion.

2. Bayesian Decision Making
Let d be a decision within some set � of available
decisions, n ∈ � and [n] � {1, . . . , n}. Let Y � (Yi)i∈[n]
be an absolutely continuous random vector includ-
ing the attributes of the problem, i.e., the arguments
over which a utility function u is defined. For a subset
A ⊆ [n], we let YA � (Yi)i∈A, �A �

�
i∈A �i , where �i is

the sample space of Yi , and we denote with yi and yA
instantiations of Yi and YA, respectively, i ∈ [n]. Last,
let y[n] � y and �[n] ��.
In this paper, we assume the utility function u to

be continuous and normalized between zero and one
so that u: � ×�→ [0, 1]. In addition, we assume that
for each attribute Yi there are two reference values
y0

i , y∗i ∈ �i such that u(y∗i ,y−i , d)> u(y0
i ,y−i , d) for every

d ∈�, where, for a set A ⊂ [n], y−A � (y j) j∈[n]\A.
The expected utility ū(d) of a decision d ∈ �—the

expectation of u(y, d)with respect to a probability den-
sity p(y | d)—is then

ū(d)� Ɛ(u(y, d))�
∫
�

u(y, d)p(y | d)dy. (1)

A rational decision maker would then choose to enact
an optimal decision d∗ � arg maxd∈�{ū(d)}.

This framework, though conceptually straightfor-
ward, can become very challenging to apply in prac-
tice. As soon as the number of attributes grows even
moderately, a faithful elicitation of the probability and

utility functions becomes prohibitive. In addition to
the knowledge issues in eliciting multivariate func-
tions, the computation of the expected utility in Equa-
tion (1) requires an integration over an arbitrary large
space �, which again may become infeasible in high-
dimensional settings. For these two reasons, various
additional models and independence conditions have
been imposed. We review these types of conditions in
the next two sections.

For ease of notation in the following, we leave im-
plicit the dependence of all arguments of functions of
interest on the decision d ∈ �. On one hand we can
assume that both the probabilistic and the utility inde-
pendence structure are invariant to the choice of d ∈�.
This is an assumption commonly made in standard
influence diagram modelling. Now p(y | d) and u(y, d)
may well be functions of d ∈ �—we simply assume
that the underlying conditional independence struc-
ture and preferential independences are shared by all
d ∈ �. But for any finite discrete space �, we could
alternatively apply our methods under the more gen-
eral assumption that, for each d ∈�, the DM’s problem
could be depicted by a possibly different network. We
could then apply the theory we develop below to each
of these networks in turn and finally optimize over
these separate evaluations.

3. Probability Factorizations
The concept used in probabilistic modelling to simplify
density functions is conditional independence (Dawid
1979). For three random variables Yi , Yj , and Yk with
strictly positive joint density, we say that Yi is condi-
tional independent of Yj given Yk , and write Yi ⊥⊥Yj |Yk

if the conditional density of Yi can be written as a func-
tion of Yi and Yk only, i.e., p(yi | y j , yk) � p(yi | yk). This
means that the only information to infer Yi from Yj

and Yk is from Yk .
Sets of conditional independence statements can

then be depicted by a graph whose vertices are associ-
ated to the random variables of interest.We next briefly
introduce some terminology from graph theory and
then define one of the most common statistical graphi-
cal models, namely, the Bayesian network.

3.1. Graph Theory
A directed graph G is a pair G � (V(G),E(G)), where
V(G) is a finite set of vertices, and E(G) is a set of
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ordered pairs of vertices, called edges. A directed path
of length m from i1 to im in a graphG is a sequence of m
vertices such that for any two consecutive vertices i j

and i j+1 in the sequence, (i j , i j+1) ∈ E(G). If there is a
directed path from i to j in G, we write i→ j. We use
the symbol i9 j if there is no such directed path in G.
Conversely, an undirected path is a sequence of ver-
tices such that either (i j , i j+1) ∈ E(G) or (i j+1 , i j) ∈ E(G).
A cycle is a directed path with the additional condi-
tion that i1 � im . For i , j ∈ V(G), we say that i and j
are connected if there is an undirected path between i
and j. A graph G is connected if every pair of vertices
i , j ∈V(G) are connected. A directed acyclic graph (DAG)
is a directed graph with no cycles. For these graphs
the labelling of the vertices can be constructed, not
uniquely, so that i < j if (i , j) ∈ E(G).

Now let G be a DAG. If (i , j) ∈ E(G) we say that i is a
parent of j and that j is a child of i. The set of parents of i
is denoted by Πi . A vertex of a DAG with no children
is called leaf, while a root is a vertex with no parents.
A DAG is said to be decomposable if all pairs of parents
of the same child are joined by an edge. A subset C
of V(G) is a clique of G if any pair i , j ∈ C is connected
by an edge and there is no other C′ ⊆ V(G) with the
same property such that C ⊂ C′. Let G have m cliques
{C1 , . . . ,Cm} � C, and suppose the elements of C are
ordered according to their indexing. A separator Si of G,
i ∈ [m]\{1}, is defined as Si � Ci ∩

⋃i−1
j�1 C j . The cliques

of G are said to respect the running intersection prop-
erty if Si ⊆ C j for at least one j < i, i ∈ [m]\{1}.
Example 1. The directed graph in Figure 1(a) can be
clearly seen to be a DAG with a vertex set equal to [5].
This is decomposable since the two parents of vertex 3,
i.e., 1 and 2, are connected by an edge. This DAG is also
connected since every two vertices are connected by an
undirected path. The cliques of the DAG in Figure 1(a)
are C1 � {1, 2, 3}, C2 � {2, 4}, and C3 � {1, 5} and its

Figure 1. Example of Two DAGs

1

5

3

2 4

(a) A decomposable, connected DAG

1

3

2

(b) A directed tree

separators S2 � {2} and S3 � {1}. So with this indexing,
the cliques of this DAG respect the running intersection
property.

A graph of interest in this paper is the directed tree T .
This is a DAG with the following two properties: it has
a unique vertex with no parents called root, and all
other vertices have exactly one parent. The DAG in Fig-
ure 1(b) can be clearly seen to be a directed tree with
root 1 and leaves 2 and 3.

3.2. Bayesian Networks
We are now ready to define the statistical graphi-
cal model that underpins the probabilistic part of the
DEUN model we define below.

Definition 1. A BN model for a random vector Y� (Yi)i∈[n]
is defined by

• n − 1 conditional independence statements of the
form Yi ⊥⊥Y[i−1]\Πi

|YΠi
, where Πi ⊆ [i − 1];

• a DAG G with vertex set V(G) � [n] and edge set
E(G)� {(i , j): j ∈ [n], i ∈Π j};

• conditional distributions p(yi | yΠi
) for i ∈ [n].

It can be shown (e.g., Lauritzen 1996) that the density
of a BN can then be written as

p(y)�
∏
i∈[n]

p(yi | yΠi
).

Example 2. Consider the DAG in Figure 1(a). A BN
with this associated graph implies the conditional in-
dependences Y4 ⊥⊥ (Y1 ,Y3) |Y2 and Y5 ⊥⊥ (Y2 ,Y3 ,Y4) |Y1.
The probability distribution then factorizes as p(y) �
p(y5 | y1)p(y4 | y2)p(y3 | y1 , y2)p(y2 | y1)p(y1).

4. Utility Factorizations
4.1. Independence and Factorizations
While conditional independence is universally ac-
knowledged as the gold standard to simplify proba-
bilistic joint densities, for utility functions, a variety
of independence concepts have been used. One very
common assumption is that a utility has additively
independent attributes implying the additive utility
factorization

u(y)�
∑
i∈[n]

ki u(yi), (2)

where ki � u(y∗i ,y0
−i) is a criterion weight and u(yi) �

u(yi ,y∗−i) � u(yi ,y0
−i), i ∈ [n]. A generalization of this

independence concept applies to subsets of [n] that
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are possibly nondisjoint (Braziunas and Boutilier 2005,
Fishburn 1967).
A second approach for defining multivariate utility

factorizations is to first identify utility independences.
For this purpose we introduce the conditional utility
function of yA given y−A, A ⊂ [n],

u(yA | y−A)�
u(y) − u(y0

A ,y−A)
u(y∗A ,y−A) − u(y0

A ,y−A)
,

where y0
A � (y0

i )i∈A and y∗A � (y∗i )i∈A.

Definition 2. We say that YA is utility independent of YB

given YC , denoted YA UI YB |YC , for A ∪ B ∪ C � [n], if
and only if

u(yA | yB ,yC)� u(yA | yC).

Utility independences then imply joint utility func-
tions that have a simpler form. Let A ⊆ [n] be a totally
ordered set, and let, for each i ∈ A, iP and iF be the set
of indices that precede and follow i in A, respectively.
Let � 0∗

A be the set comprising all possible instantiations
of YA, where each element is either y0

i or y∗i , i ∈ A,
and let y0∗

A be an element of � 0∗
A . Abbas (2010) showed

that by sequentially applying conditional utility inde-
pendence statements according to the order of the ele-
ments in A, any utility function can then be written as

u(y)�
∑

y0∗
A ∈�

0∗
A

u(y 0∗
A ,y−A)

∏
i∈A

g(yi | y0∗
iP ,yiF), (3)

where

g(yi |y0∗
iP ,yiF)�

{
u(yi |y0∗

iP ,yiF), if yi � y∗i in u(y0∗
A ,y−A),

û(yi |y0∗
iP ,yiF), otherwise,

and û(yi | y0∗
iP ,yiF) � 1 − u(yi | y0∗

iP ,yiF) is the disutility
function. So, for example, if each Yi is utility indepen-
dent of Y−i , then Equation (3) can be reexpressed as

u(y)�
∑

y0∗∈�0∗
u(y0∗)

∏
i∈[n]

g(yi | y0
−i). (4)

This special case can be identified as the well-
known multilinear utility factorization Keeney and
Raiffa (1993).

Figure 2. Example of a Directional Utility Diagram

1

5

3

2 4

4.2. Utility Diagrams
Graphical models depicting various types of preferen-
tial independences have now begun to appear. In this
paper we consider a specific class of models called util-
ity diagrams (Abbas 2010).

Definition 3. A utility diagram is a directed graph with
vertex set [n], and its edge set is such that the absence
of an edge (i , j), i , j ∈ [n], implies Yj UI Yi |Y−i j .

Note that Abbas (2010) defined utility diagrams as
bidirectional graphs. However, given that our defini-
tion of a directed graph allows vertices to be connected
by more than one edge, the model in Definition 3 is
equivalent to the one of Abbas (2010) where a bidi-
rected edge between two vertices is replaced by two
edges, one pointing in each direction.

A utility diagram with an empty edge set corre-
sponds to a multilinear factorization of the utility func-
tion as in Equation (4). Here we introduce a subclass of
utility diagrams that has some important properties.

Definition 4. A utility diagram is said to be directional
if its graph is a DAG.

Example 3. The utility diagram in Figure 2 is direc-
tional and implies the following conditional utility
independences:

Y1 UI Y2 |Y3 ,Y4 ,Y5 , Y1 UI Y3 |Y2 ,Y4 ,Y5 ,
Y1 UI Y4 |Y2 ,Y3 ,Y5 , Y1 UI Y5 |Y2 ,Y3 ,Y4 ,
Y2 UI Y3 |Y1 ,Y4 ,Y5 , Y2 UI Y4 |Y1 ,Y3 ,Y5 ,
Y2 UI Y5 |Y1 ,Y3 ,Y4 , Y3 UI Y2 |Y1 ,Y4 ,Y5 ,
Y3 UI Y4 |Y1 ,Y2 ,Y5 , Y3 UI Y5 |Y1 ,Y2 ,Y4 ,
Y4 UI Y3 |Y1 ,Y2 ,Y5 , Y4 UI Y5 |Y1 ,Y2 ,Y3 ,
Y5 UI Y2 |Y1 ,Y3 ,Y4 , Y5 UI Y3 |Y1 ,Y2 ,Y4 ,
Y5 UI Y4 |Y1 ,Y2 ,Y3.

Directional utility diagrams have the unique prop-
erty that their utility function can bewritten in terms of
criterion weights and univariate utility functions only.
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Although not explicitly depicted by a utility graph,
such a property underlies the algorithms developed in
Leonelli and Smith (2015) that apply to some specific
generalized additively independent models only.

Lemma 1. For a directional utility diagram there exists an
expansion order over [n] such that Equation (3) is a linear
combination of terms involving only criterion weights and
conditional utility functions having as argument a single
attribute.

This result follows by observing that the terms
u(y0∗

I ,y−I) in Equation (3) coincide with u(y0∗) since
the expansion can be performed over all the attributes.
These terms are functions of criterion weights. Further-
more, the conditional independence structure under-
lying a directed utility diagram is such that there
is an expansion order where Yi UI YiF |YiP . Thus,
g(yi | y0∗

iP ,yiF) in Equation (3) is equal to g(yi | y0∗
iP) for

every i ∈ [n].

Example 4. The utility factorization associated to the
diagram in Figure 2 is equal to the sum of the entries of
Table 1, where rI , I ⊆ [n], is equal to u(y∗I ,y0

−I). This in
general consists of 2n terms each made of n +1 indeter-
minates, where n is number of vertices in the diagram.

The subclass of directed utility diagrams has the
great computational advantage of enabling the com-
putation of expected utilities through an associated
backward inductive routine that at each step computes
a finite number of integrals of univariate functions.

Table 1. Terms in the Utility Expansion Associated to the Utility Diagram in Figure 2

r� û(y1)û(y2 | y0
1)û(y3 | y0

1)û(y4 | y0
1 , y0

2)û(y5 | y0
1) r1u(y1)û(y2 | y∗1)û(y3 | y∗1)û(y4 | y∗1 , y0

2)û(y5 | y∗1)
r2 û(y1)u(y2 | y0

1)û(y3 | y0
1)û(y4 | y0

1 , y∗2)û(y5 | y0
1) r3 û(y1)û(y2 | y0

1)u(y3 | y0
1)û(y4 | y0

1 , y0
2)û(y5 | y0

1)
r4 û(y1)û(y2 | y0

1)û(y3 | y0
1)u(y4 | y0

1 , y0
2)û(y5 | y0

1) r5 û(y1)û(y2 | y0
1)û(y3 | y0

1)û(y4 | y0
1 , y0

2)u(y5 | y0
1)

r12u(y1)u(y2 | y∗1)û(y3 | y∗1)û(y4 | y∗1 , y∗2)û(y5 | y∗1) r13u(y1)û(y2 | y∗1)u(y3 | y∗1)û(y4 | y∗1 , y0
2)û(y5 | y∗1)

r14u(y1)û(y2 | y∗1)û(y3 | y∗1)u(y4 | y∗1 , y0
2)û(y5 | y∗1) r15u(y1)û(y2 | y∗1)û(y3 | y∗1)û(y4 | y∗1 , y0

2)u(y5 | y∗1)
r23 û(y1)u(y2 | y0

1)u(y3 | y0
1)û(y4 | y0

1 , y∗2)û(y5 | y0
1) r24 û(y1)u(y2 | y0

1)û(y3 | y0
1)u(y4 | y0

1 , y∗2)û(y5 | y0
1)

r25 û(y1)u(y2 | y0
1)û(y3 | y0

1)û(y4 | y0
1 , y∗2)u(y5 | y0

1) r34 û(y1)û(y2 | y0
1)u(y3 | y0

1)u(y4 | y0
1 , y0

2)û(y5 | y0
1)

r35 û(y1)û(y2 | y0
1)u(y3 | y0

1)û(y4 | y0
1 , y0

2)u(y5 | y0
1) r45 û(y1)û(y2 | y0

1)û(y3 | y0
1)u(y4 | y0

1 , y0
2)u(y5 | y0

1)
r123u(y1)u(y2 | y∗1)u(y3 | y∗1)û(y4 | y∗1 , y∗2)û(y5 | y∗1) r124u(y1)u(y2 | y∗1)û(y3 | y∗1)u(y4 | y∗1 , y∗2)û(y5 | y∗1)
r125u(y1)u(y2 | y∗1)û(y3 | y∗1)û(y4 | y∗1 , y∗2)u(y5 | y∗1) r134u(y1)û(y2 | y∗1)u(y3 | y∗1)u(y4 | y∗1 , y0

2)û(y5 | y∗1)
r135u(y1)û(y2 | y∗1)u(y3 | y∗1)û(y4 | y∗1 , y0

2)u(y5 | y∗1) r145u(y1)û(y2 | y∗1)û(y3 | y∗1)u(y4 | y∗1 , y0
2)u(y5 | y∗1)

r234 û(y1)u(y2 | y0
1)u(y3 | y0

1)u(y4 | y0
1 , y∗2)û(y5 | y0

1) r235 û(y1)u(y2 | y0
1)u(y3 | y0

1)û(y4 | y0
1 , y∗2)u(y5 | y0

1)
r245 û(y1)u(y2 | y0

1)û(y3 | y0
1)u(y4 | y0

1 , y∗2)u(y5 | y0
1) r345 û(y1)û(y2 | y0

1)u(y3 | y0
1)u(y4 | y0

1 , y0
2)u(y5 | y0

1)
r1234u(y1)u(y2 | y∗1)u(y3 | y∗1)u(y4 | y∗1 , y∗2)û(y5 | y∗1) r1235u(y1)u(y2 | y∗1)u(y3 | y∗1)û(y4 | y∗1 , y∗2)u(y5 | y∗1)
r1245u(y1)u(y2 | y∗1)û(y3 | y∗1)u(y4 | y∗1 , y∗2)u(y5 | y∗1) r1345u(y1)û(y2 | y∗1)u(y3 | y∗1)u(y4 | y∗1 , y0

2)u(y5 | y∗1)
r2345 û(y1)u(y2 | y0

1)u(y3 | y0
1)u(y4 | y0

1 , y∗2)u(y5 | y0
1) r12345u(y1)u(y2 | y∗1)u(y3 | y∗1)u(y4 | y∗1 , y∗2)u(y5 | y∗1)

More general utility dependence structures are exam-
ined in Section 8, where we adapt one of the algorithms
for DEUNs to graphs embedding nondirectional utility
diagrams.

5. Directed Expected Utility Networks
We are now ready to define our graphical model,
which embeds both probabilistic and utility indepen-
dence statements.

Definition 5. A directed expected utility network G con-
sists of a set of vertices V(G)� [n], a probabilistic edge
set Ep(G), denoted by solid arrows, and a utility edge
set Eu(G), denoted by dashed arrows, such that

• (V(G),Ep(G)) is a BN model;
• (V(G),Eu(G)) is a directional utility diagram such

that if (i , j) ∈ Eu(G) then j9 i in (V(G),Ep(G)).

Example 5. Consider the diagrams in Figure 3. Fig-
ure 3(a) includes a graph that is not a DEUN since there
is a utility edge from 4 to 1. This edge would make the
computation of expected utilities via backward induc-
tion impossible. Figures 3(b) and (c) are DEUNs since
for these (V(G),Ep(G)) is a BN and (V(G),Eu(G)) is
a directed utility diagram, both including only edges
(i , j) such that j9 i in (V(G),Ep(G)). Note that all three
diagrams embed the BN in Figure 1(a), while only the
diagram in Figure 3(c) embeds the utility diagram in
Figure 2.

We next introduce a subclass of DEUNs that entails
fast computation routines.
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Figure 3. Graphical Representations of Probabilistic and Utility Independences

1

5

3

2 4

(a) Not a directed expected utility
network

1

5

3

2 4

(b) A generic directed expected
utility network

1

5

3

2 4

(c) A decomposable directed expected
utility network

Definition 6. A DEUN is said to be decomposable if
• (V(G),Ep(G)) is decomposable;
• (i , j) ∈ Eu(G) only if i→ j in (V(G),Ep(G)).

Example 6. The DEUN in Figure 3(b) is not decompos-
able since (2, 5) ∈ Eu(G) but these two vertices are not
connected by a directed path in the underlying BN.
Conversely, the network in Figure 3(c) is decompos-
able. Note that the semantics of our model permit two
vertices to be connected by both probabilistic and util-
ity edges, by just one of the two, or potentially none.
So, for example, (1, 2) ∈ Ep(G) and (1, 2) ∈ Eu(G), while
(1, 4) < Ep(G) and (1, 4) ∈ Eu(G).

Just as in the triangulation step for probabilistic
propagation (e.g., Lauritzen 1996), it can be easily
shown that any nondecomposable DEUN can be trans-
formed into a decomposable one.

Proposition 1. Let G be a nondecomposable DEUN with
vertex set V(G) and edges Eu(G) and Ep(G). Let G′ be a
DEUN with vertex set V(G′) � V(G) and edges Eu(G′) �
Eu(G) and Ep(G′)� Ep(G) ∪ B1 ∪ B2, where

B1 � {(i , j) ∈ Eu(G): i9 j in (V(G),Ep(G))},
B2 � {(i , j): (i , k) and ( j, k) ∈ Ep(G) ∪ B1 , k ∈V(G)}.

Then G′ is decomposable.

This holds by noting that the set B1 simply adds a
probabilistic edge connecting two vertices linked by
a utility edge which breaks the decomposability con-
dition. The set B2 then simply transforms the graph
(V(G),Ep(G) ∪ B1) into a decomposable DAG.

Example 7. For the nondecomposable network in Fig-
ure 3(b), the decomposability condition is achieved by
simply adding (2, 5) to Ep(G).

6. Computation of Expected Utilities
We next consider the computation of expected utilities
for both nondecomposable and decomposable DEUNs
and define algorithms based on backward inductive
routines. All these routines have in common an oper-
ation applied to vectors of (expected) utility functions
that we define next. Let Πu

i and Πp
i be the parent sets

of i with respect to Eu(G) and Ep(G), respectively.We let
ui(yi | y0∗

Πu
i
) � (u(yi | y0∗

Πu
i
), û(yi | y0∗

Πu
i
))y0∗

Πu
i
∈�0∗
Πu

i

be the vec-
tor comprising the conditional utilities and disutilities
given all possible combinations of the parents at the
reference values and u0(y0∗)� (u(y0∗))y0∗∈�0∗ .

Example 8. The vector u5(y5 | y0∗
Πu

5
) for the DEUN in

Figure 3(c) has as its components

u(y5 | y∗1), u(y5 | y0
1), û(y5 | y∗1), û(y5 | y0

1), (5)

while the vector u4(y4 | y0∗
Πu

4
) has the utility components

u(y4 | y∗1 , y∗2), u(y4 | y0
1 , y∗2), u(y4 | y∗1 , y0

2),
u(y4 | y0

1 , y0
2), û(y4 | y∗1 , y∗2), û(y4 | y0

1 , y∗2),
û(y4 | y∗1 , y0

2), û(y4 | y0
1 , y0

2).
(6)

We next introduce an elementwise operation, de-
noted by ◦, which multiplies an element of one vector,
ui( · ), with any element of another vector, u j( · ), if these
have compatible instantiations, i.e., if the common con-
ditioning variables are instantiated to the same value.

Example 9. Consider the vectors u5(y5 | y0∗
Πu

5
) and

u4(y4 | y0∗
Πu

4
) of Example 8 and suppose we need to com-

pute u5(y5 | y0∗
Πu

5
) ◦ u4(y4 | y0∗

Πu
4
). The terms u(y5 | y∗1) and

û(y5 | y∗1) in Equation (5) are multiplied to any term in
Equation (6) conditioning on y∗1: namely, u(y4 | y∗1 , y∗2),
u(y4 | y∗1 , y0

2), û(y4 | y∗1 , y∗2), and û(y4 | y∗1 , y0
2). Con-

versely, u(y5 | y0
1) and û(y5 | y0

1) multiply the remain-
ing four entries of u4(y4 | y0∗

Πu
4
), i.e., those conditioning
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on y0
1 . So the product u5(y5 | y0∗

Πu
5
) ◦u4(y4 | y0∗

Πu
4
) returns a

vector with entries

u(y5 | y∗1)u(y4 | y∗1 , y∗2), u(y5 | y∗1)u(y4 | y∗1 , y0
2),

u(y5 | y∗1)û(y4 | y∗1 , y∗2), u(y5 | y∗1)û(y4 | y∗1 , y0
2),

û(y5 | y∗1)u(y4 | y∗1 , y∗2), û(y5 | y∗1)u(y4 | y∗1 , y0
2),

û(y5 | y∗1)û(y4 | y∗1 , y∗2), û(y5 | y∗1)û(y4 | y∗1 , y0
2),

u(y5 | y0
1)u(y4 | y0

1 , y∗2), u(y5 | y0
1)u(y4 | y0

1 , y0
2),

u(y5 | y0
1)û(y4 | y0

1 , y∗2), u(y5 | y0
1)û(y4 | y0

1 , y0
2),

û(y5 | y0
1)u(y4 | y0

1 , y∗2), û(y5 | y0
1)u(y4 | y0

1 , y0
2),

û(y5 | y0
1)û(y4 | y0

1 , y∗2), û(y5 | y0
1)û(y4 | y0

1 , y0
2).

If the vertices i and j are such that Πu
i ∩Πu

j �� and
ui( ·) and u j( ·) include, respectively, ni and n j elements,
then ui( ·) ◦u j( ·) returns a vector of ni×n j entries
consisting of all possible multiplications between ele-
ments of the vectors. This operation can be encoded
by defining the vectors to have elements appropriately
ordered so that the standard elementwise multiplica-
tion returns only terms having compatible instantia-
tions, just as in Leonelli et al. (2017).

6.1. Computations in Generic Directed Expected
Utility Networks

The expected utility associated to any DEUN can now
be computed via a backward induction, which at each
step computes a conditional expectation, just as in the
chance node removal step of Shachter (1986). This is
formalized in the following theorem. Let, for a vector
a, |a| denote the sum of its elements.

Theorem 1. The expected utility score ū associated to a
DEUN G can be computed according to the following
algorithm:
1. compute:

ūn �

∫
�n

un(yn | y0∗
Πu

n
)p(yn | yΠp

n
)dyn , (7)

2. for i from n − 1 to 1, compute:

ūi �

∫
�i

(ūi+1 ◦ui(yi | y0∗
Πu

i
))p(yi | yΠp

i
)dyi , (8)

3. return:
ū � |u0(y0∗) ◦ ū1 |. (9)

The above algorithm can be applied directly to any
DEUN and computes expected utilities relatively fast
and in a distributed fashion bymarginalization of indi-
vidual random variables. However, we also notice that

the speed of such a routine can be improved since the
computation and transmission of terms that it uses are
not strictly necessary. To see this, consider the network
in Figure 3(c). The algorithm starts from vertex 5 and
computes a marginalization of u(y5 | y1) with respect
to the density p(y5 | y1). The result of this operation,
ū5 is then a function of y1 only. In the algorithm in
Theorem 1, ū5 is then passed to 4, and a marginaliza-
tion with respect to density p(y4 | y2) is computed over
ū5 ◦u4(y4 | y2 , y1). But ū5 is not a function of y4. It there-
fore does not carry any information about this variable
that would need to be formally accounted for during
its marginalization. Furthermore, since u4(y4 | y2 , y1) is
a function of not only y1 but also y2, the ◦ product
computes a potentially very large number of terms that
are not relevant at this stage of the evaluation. This
inefficiency becomes even larger for nonconnected net-
works, since the contribution of each of the compo-
nents can be collated together at the very end of the
evaluation. This is because the only joint information
these provide lies in the terms u(y0∗).

6.2. Computations in Decomposable Directed
Expected Utility Networks

To address these inefficiencies, we introduce next a
much faster algorithm that works over a transforma-
tion of the original graph into a tree structure, just as
in standard junction tree algorithms (see, e.g., Jensen
et al. 1994, for BNs and IDs). Let C � {Ci : i ∈ [m]} be
the cliques of the DAG (V(G),Ep(G)), let S2 , . . . , Sm be
its separators, and assume the cliques are ordered to
respect the running intersection property.

Definition 7. We call the junction tree of a decompos-
able DEUN G the directed tree T with vertex set
V(T )�C and edges (Ci ,C j) for one i ∈ [ j−1] such that
S j ⊆ Ci , j ∈ [m].

Note that to construct such a tree we can apply in
a straightforward way any of the algorithms already
devised for both BNs and IDs (see, e.g., Cowell et al.
2007). Furthermore, as for BNs and IDs, a DEUN can
have more than one junction tree representation.

Example 10. The junction tree associated to the DEUN
in Figure 3(c) is shown in Figure 4.

In contrast to an algorithm based directly on The-
orem 1, we instead propagate using “potentials,” just
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as in many propagation algorithms of BNs and IDs.
This enables us to demonstrate that our evaluation
algorithm mirrors those commonly used to compute
expected utilities in IDs, but now for utility functions
that are not necessarily additive.
Recall that a potential ΦA, A ⊂ [n], is a function

ΦA: �A → �. Just as for IDs, we have two types of
potentials: utility and probability potentials. For a
clique C ∈ C\{C1} with an associated separator S, its
probability potential ΦC and its utility potentialΨC are
defined as

ΦC �
∏

i∈C\S
p(yi | yΠp

i
), ΨC �◦i∈C\Su(yi | y0∗

Πu
i
),

and ΦC1
�

∏
i∈C1

� p(yi | yΠp
i
) and ΨC1

� u(y0∗) ◦
◦i∈C1

u(yi | y0∗
Πu

i
). Call ΦT �

∏
C∈CΦC andΨT � |◦C∈CΨC |

and note that p(y)�ΦT and u(y)�ΨT .
Now let Ci be the parent of C j in T . We say that Ci

absorbs C j if the utility potential of Ci , ΨCi
, maps to

Ψ
C j

Ci
where

Ψ
C j

Ci
�ΨCi

◦
∫
�C j \Sj

ΨC j
ΦC j

dyC j\S j
. (10)

For a leaf L of T , call ΦT \L and ΨT \L the probability
and utility potentials, respectively, of the junction tree
obtained by absorbing L into its parent and removing
L from T .

Theorem 2. After absorption of a leaf L with separator S
into its parent, we have∫

�L\S

ΦTΨT dyL\S �ΦT \LΨT \L .

Theorem 2 provides the basic step for computing the
expected utility of a decomposable DEUN. Suppose
the junction tree is connected. Then, by sequentially
absorbing leaves into parents (for example, by follow-
ing in reverse order the indices of the cliques), we
obtain a tree consisting of a vertex/clique only, coin-
ciding with the initial root of the junction tree. LetΨC2

C1
be its utility potential resulting from the absorption of

Figure 4. Junction Tree Representation of the DEUN in
Figure 3(c)

1, 5 1, 2, 3 2, 4

all the other cliques, assuming C2 was the last clique to
be absorbed. It then follows that the overall expected
utility ū is given by

ū �

∫
�C1

ΦC1
|ΨC2

C1
|dyC1

�

���� ∫
�C1

ΦC1
Ψ

C2
C1
dyC1

����. (11)

If, on the other hand, the junction tree is not con-
nected, and this is the case whenever the DEUN is not
connected, ū simply equals the ◦ product of the contri-
butions of the roots of each nonconnected component
after all other vertices have been absorbed. More for-
mally, let R1 , . . . ,Rk be the roots of the nonconnected
components of the junction tree, and let ΨCi

Ri
be their

utility potentials resulting from the absorption of all
other cliques, where Ci was the last child of Ri to be
absorbed, for i ∈ [k]. We then have that

ū �

���� ∫
�R1

ΦR1
Ψ

C1
R1
dyR1
◦ · · · ◦

∫
�Rk

ΦRk
Ψ

Ck
Rk
dyRk

����.
It is interesting to highlight that the junction tree

evaluations of DEUNs and IDs follow the same back-
ward inductive routine, formalized in Theorem 2,
which sequentially absorbs a leaf of the tree. Given
our definition of the clique potentials, this absorption
for DEUNs entails an updating of the utility poten-
tial only, which consists of an ◦ product. In contrast,
for standard IDs, this operation corresponds to a sim-
ple sum. To see this, suppose that for an ID with m
cliques, the utility potential for Ci , i � 2, . . . ,m, isΨCi

�∑
j∈Ci\Si

k j u(y j), and that for C1 is ΨC1
�

∑
j∈C1

k j u(y j).
Let ΨT �

∑
C∈CΨC . The absorption of a clique C j , sup-

posing C j includes only chance nodes, into its parent
Ci in an ID with these potentials then transforms ΨCi

into
ΨCi

+

∫
�C j \Sj

ΨC j
ΦC j

dyC j
. (12)

Equation (12) can be seen to be almost identical to
Equation (10), which specifies the absorption step in
DEUNs. The only difference lies in the different opera-
tion: a sum for IDs and a ◦ product for DEUNs.

7. An Application in Food Security
To illustrate the construction process of a DEUN, we
next discuss a decision analysis in a food security appli-
cation. The resulting DEUN is then used to illustrate
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the workings of our algorithms in practice. Food inse-
curity, defined as the “limited or uncertain availability
of nutritionally adequate and safe foods or limited or
uncertain ability to acquire acceptable foods in socially
acceptable ways” (Bickel et al. 2000, p. 6), is not only
an endemic issue in third world countries, but also a
growing threat to wealthy nations. To support UK local
governments tackling the complexity of the evaluation
of various policies to ensure household food security,
we have started building a probabilistic decision sup-
port tool modelling the food system.

7.1. Network Structure
After a series of decision conferences with local author-
ities, stakeholders, and potential decision makers,
Barons et al. (2016) identified three areas that are im-
pacted by increasing household food insecurity: edu-
cational attainment (YE), health (YH), and social cohe-
sion (YS). Of course the cost (YC) associated with the
enactment of any policy is deemed relevant in this
domain. Measurable indices were then developed for
each of these areas; for instance, educational attain-
ment was assessed by the percentage of pupils not fail-
ing a combination of UK school examinations. Suppose
these indices take values in [0, 100]. Details about the
form of the various attributes are beyond the scope
of this paper, and we refer the reader to Barons et al.
(2016) for a discussion of these.
Of course, such a decision support system needs to

model the probabilistic dependence over a much larger
vector of variables to be accounted for in a reliable
description of the food system. But for the illustrative
purposes of this example, we assume the dependence
structure between the four indexes above is summa-
rized by the DEUN in Figure 5. This states that the
variable cost is independent of all others and that,
given a specific value of the health index, educational
attainment and social cohesion are independent. For
the preferential part, although a plausible assumption
might be that the utilities of both health and social
cohesion do not change when all the other attributes
are varied, the utility of various levels of educational
attainment did appear to sometimes be a function
of health. Similarly, the utility of the costs associated
with policies’ implementations appeared to be a func-
tion of both educational attainment and health. These
assumptions are represented in the DEUN in Figure 5

Figure 5. DEUN Representing the Food Security Example of
Section 7

YS YH

YE YC

by the dashed arcs, depicting an underlying directional
utility diagram.

For this illustrative example, we consider a decision
space � including three policies: an increase (d0), a de-
crease (d1), and no change (d2) of the number of pupils
eligible for free school meals nationally. The UK gov-
ernment has already implemented this type of policy
to give pupils a healthy start in life, since evidence
seems to point toward an improvement in the devel-
opment and social skills of young children who eat
a healthy meal together at lunchtime (Kitchen et al.
2013). In this setting, we define the variables YE, YH ,
and YS as the variation in two years time of the corre-
sponding current index value, while YC measures the
change in the percentage of the government budget for
the free school meal program. We assume that each
policy directly influences YH , YE, and YC , while YS is
only affected indirectly by a decision taken.

Initial discussions during the elicitation process sug-
gested that a simple normal regression model could be
sufficient to depict the probabilistic part of the system.
This is defined by the distributions

YH ∼N (θd
0H , σ

d
H), YE |YH ∼N (θd

0E + θ
d
HEYH , σ

d
E),

YC ∼N (θd
0C , σ

d
C), YS |YH ∼N (θ0S + θHSYH , σS),

where the parameters θ and σ take values in � and �+,
respectively, and a superscript d denotes a different
parameter value for each available policy. Notice that
the above definitions are compatible with the underly-
ing BN of Figure 5.

We assume the utilities to be exponentials and of the
form specified in Table 2, where the parameters δ take
values �+. These then need to be normalized. For an
attribute Y, this can be done using the formula u(y) �
( Ûu(y) −m)/(M −m), where Ûu is the unnormalized util-
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Table 2. Unnormalized Utility Functions of the Free School
Meals Example

Ûu(yC | y0
E , y0

H)� exp(−δ00
C yC) Ûu(yE | y0

H)� exp(δ0
E yE)

Ûu(yC | y0
E , y∗H)� 1− exp(δ0∗

C yC) Ûu(yE | y∗H)� exp(δ∗E yE)
Ûu(yC | y∗E , y0

H)� 1− exp(δ∗0C yC) Ûu(yH)� exp(δH yH)
Ûu(yC | y∗E , y∗H)� 1− exp(δ∗∗C yC) Ûu(yS)� exp(δS yS)

ity function, m � min( Ûu(y)) and M � max( Ûu(y)). So,
for example, Figure 6 shows the normalized version of
the utility functions of costs conditional on the bound-
ary values of educational attainment and health, for a
specific choice of the parameters δ. Again these utility
definitions are compatible with the DEUN structure of
Figure 5.

7.2. The Algorithm
Given the definitions of the DEUN structure and of the
specific form of the probability and utility functions,
we can now proceed with an illustration of our eval-
uation algorithm. Notice that the DEUN in Figure 5
is nondecomposable. For this reason, we first illustrate
the evaluation algorithm in Theorem 1 that works over
any DEUN. In Section 7.3, we consider the evaluation

Figure 6. Utility Functions of YC | {YE ,YH}0∗

−100 −50 0 50 100

0.0

0.2

0.4

0.6

0.8

1.0

YC

u(
Y

C
)

Notes. Full line, y0
E , y0

H ; dotted line, y∗E , y0
H ; dashed line, y0

E , y∗H ; dotted
dashed line, y∗E , y∗H .

algorithm based on Theorem 2 for a decomposable ver-
sion of our DEUN in Figure 5. There are many variable
orderings that the algorithm could follow, but we here
choose the sequence (YE ,YS ,YH ,YC).

First notice that the vector uE consists of the four
entries u(yE | y0

H), û(yE | y0
H), u(yE | y∗H), and û(yE | y∗H).

The first step of the algorithm, as formalized in Equa-
tion (7), computes the expectation of these utilities
with respect to the conditional probability function
of YE given YH . This consists of the computation of
the moment generating function of a normal random
variable. Recall that for a normal random variable Y
with mean µ and variance σ and a t ∈ �, we have that
Ɛ(exp(tY))� exp(tµ+ 0.5t2σ2). Thus,

ūE �

(
E0

d −m0
E

M0
E −m0

E

,
M0

E −E0
d

M0
E −m0

E

,
E∗d −m∗E
M∗

E −m∗E
,

M∗
E −E∗d

M∗
E −m∗E

)
where ME and mE, with the appropriate superscript,
denote the maximum and the minimum of the utility
function, respectively, and

E0
d � exp

(
δ0

Eθ
d
0E + δ

0
Eθ

d
HEYH + 0.5(δ0

Eσ
d
E)2

)
,

E∗d � exp
(
δ∗Eθ

d
0E + δ

∗
Eθ

d
HEYH + 0.5(δ∗Eσd

E)2
)
.

Next the algorithm considers the node YS. As spec-
ified by Equation (8), it first computes ūE ◦ uS, where
uS � (u(yS), 1 − u(yS)). This ◦ product is given by
(ūEu(yS), ūE(1− u(yS))) since ūE is not a function of YS.
Then Equation (8) computes ūS as the expectation of
each entry of ūE ◦ uS with respect to p(yS | yH). This
gives the vector

ūS �
(
ūE(S−mS)/(MS −mS), ūE(MS − S)/(MS −mS)

)
,

where S � exp(δS(θ0S + θHS yH)+ 0.5δ2
Sσ

2
S).

At this point, the algorithm moves to YH and com-
putes ūS ◦uH . Notice that ūS is already a function of YH .
Specifically the first, second, fifth, and sixth entries
of ūS refer to y0

H and therefore need to be multiplied
by 1 − u(yH), while the others need to be multiplied
by u(yH). Then Equation (8) computes the expectation
of this product with respect to p(yH), giving an eight-
dimensional vector ūH whose entries ūH(i), i ∈ [8], are
given in Appendix C.1 with indeterminates defined in
Appendix C.2.
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The algorithm thenmoves to node YC . Since ūH is not
a functionofYC , ūH ◦u(yC | y0∗

E , y0∗
H ) returns theelements

ūH(1)u(yC | y∗E , y0
H), ūH(2)u(yC | y0

E , y0
H),

ūH(3)u(yC | y∗E , y∗H), ūH(4)u(yC | y0
E , y∗H),

ūH(5)u(yC | y∗E , y0
H), ūH(6)u(yC | y0

E , y0
H),

ūH(7)u(yC | y∗E , y∗H), ūH(8)u(yC | y0
E , y∗H),

ūH(1)û(yC | y∗E , y0
H), ūH(2)û(yC | y0

E , y0
H),

ūH(3)û(yC | y∗E , y∗H), ūH(4)û(yC | y0
E , y∗H),

ūH(5)û(yC | y∗E , y0
H), ūH(6)û(yC | y0

E , y0
H),

ūH(7)û(yC | y∗E , y∗H), ūH(8)û(yC | y0
E , y∗H).

The expectation of the above terms with respect to
p(yC) then follows by simply applying the moment
generating function relationships for normal random
variables, since ūH is not a function of YC . We denote
the resulting vector as ūC � (ūC(i))i∈[16].
As formalized in Equation (9), the algorithm then

terminates by taking the sum of the element of ūC

multiplied by the appropriate weighting term u(y0∗).
Specifically, the overall expected utility for a decision
d ∈� equals the sum of the terms

ūC(1)u(y∗E , y∗S , y0
H , y∗C), ūC(2)u(y0

E , y∗S , y0
H , y∗C),

ūC(3)u(y∗E , y∗S , y∗H , y∗C), ūC(4)u(y0
E , y∗S , y∗H , y∗C),

ūC(5)u(y∗E , y0
S , y0

H , y∗C), ūC(6)u(y0
E , y0

S , y0
H , y∗C),

ūC(7)u(y∗E , y0
S , y∗H , y∗C), ūC(8)u(y0

E , y0
S , y∗H , y∗C),

ūC(9)u(y∗E , y∗S , y0
H , y0

C), ūC(10)u(y0
E , y∗S , y0

H , y0
C),

ūC(11)u(y∗E , y∗S , y∗H , y0
C), ūC(12)u(y0

E , y∗S , y∗H , y0
C),

ūC(13)u(y∗E , y0
S , y0

H , y0
C), ūC(14)u(y0

E , y0
S , y0

H , y0
C),

ūC(15)u(y∗E , y0
S , y∗H , y0

C), ūC(16)u(y0
E , y0

S , y∗H , y0
C).

(13)

The exact form of the overall expected utility can
be shown to be a highly nonlinear function of the
problem’s parameters. But it has a closed-form expres-
sion, and this form is the same for all available deci-
sions. Thus, the identification of an optimal strategy
can then be carried out by simply plugging in the dif-
ferent numerical specifications associated to different
policies. In Appendix D, we give plausible values to the
parameters of the free school meal example. For such
values, the decision d0 of increasing the number of eli-
gible pupils would be optimal, having expected utility
score 0.29, compared to 0.19 and 0.21 for policies d1
and d2 respectively.

7.3. The Algorithm for Decomposable Networks
The same ranking of the available policies d ∈�would
have been achieved by evaluating the DEUN in Fig-
ure 5, after an appropriate transformation, with our

Figure 7. Decomposable Version of the DEUN in Figure 5

YS YH

YE YC

algorithm for decomposable DEUNs. A decompos-
able version of the original DEUN can be deduced
by simply adding the probabilistic edges (YH ,YC) and
(YE ,YC). This is shown in Figure 7. This new DEUN
consists of two cliques, C1 � {YC ,YE ,YH} and C2 �

{YS ,YH}, with separator S2 � {YH}. The associated junc-
tion tree is then one simply connecting the two cliques
by the edge (C1 ,C2).

To apply Theorem 2, we first need to define the prob-
ability and utility potentials that for this application
equal

ΦC1
� p(yC | yE , yH)p(yE | yH)p(yH), ΦC2

� p(yS | yH),

ΨC1
� u(yC | y0∗

E , y0∗
H ) ◦u(yE | y0∗

H ) ◦u(yH) ◦u(y0∗),

ΨC2
� u(yS).

Then the evaluation algorithm starts with the absorp-
tion of the leaf C2 into the root C1 by computing the
integral in Equation (10):∫

�C2\S2

ΦC2
ΨC2

dyC2\S2
�

∫
�S

u(yS)p(yS | yH)dyS

�

(
S−mS

MS −mS
,

MS − S
MS −mS

)
, (14)

where S � exp(δS(θ0S + θHS yH) + 0.5δ2
Sσ

2
S) as in Sec-

tion 7.2. At this stage, to compute ΨC2
C1

as in Equa-
tion (10), we need to ◦ multiply the right-hand side
of Equation (14) with ΨC1

. This operation returns the
vector with entries listed in Appendix E.1.

Since the junction tree of this example has one
root only, the evaluation algorithm ends by computing
Equation (11), which first entails the marginalization
of ΦC1

Ψ
C2
C1

with respect to yC1
and then the sum of the

entries of the resulting vector. To perform themarginal-
ization step, notice (from Sullivant et al. 2010) that the
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random vector (YH ,YE ,YC) follows a normal distribu-
tion with mean µ and covariance matrix Σ, where

µ� (βd
0H , β

d
0E + β

d
HEβ

d
0H , β

d
0C + βd

0Hβ
d
HC

+ βd
EC(βd

0E + β
d
HEβ

d
0H)),

Σ�
©«

σd
H βd

HEσ
d
H βd

HCσ
d
H + βd

ECβ
d
HEσ

d
H

βd
HEσ

d
H σd

E βd
HCσ

d
H + βd

ECβ
d
HEσ

d
H

Σ31 Σ32 σd
C

ª®¬ , where

Σ31 � β
d
HCσ

d
H + βd

ECβ
d
HEσ

d
H , Σ32 � β

d
ECσ

d
E + β

d
HCβ

d
HEσ

d
H

and the notation is straightforwardly adapted from
Section 7.2 to describe the DEUN in Figure 7. It can
be noticed that the entries of ΨC2

C1
in Section E.1 are a

linear combination of terms a exp(tTyC1
), for a ∈ � and

t ∈ �3, and thus, by the properties of normal vectors,
the marginalization maps each term a exp(tTyC1

) into
a exp(tTu + 0.5tTΣt). Using this result, it can be shown
that the entries of

∫
�C1
ΦC1
Ψ

C2
C1
dyC1

are equal to those
reported in Equation (13), and the overall expected util-
ity ū is then the sum of these terms.
The evaluation order of the variables in Section 7.2

was chosen to have the simplest notation, but for other
variables’ orders, the algorithm in Theorem 1 would
have required the transmission and computation of a
larger number of terms not relevant during the eval-
uation. Conversely, the algorithm for decomposable
DEUNs enables fast propagation routines to be applied
using the properties of random vectors and matrix cal-
culus, as briefly illustrated by this example.

8. Extensions
Although the algorithms presented in Section 6 allow
for the computation of expected utilities in settings
much more general than standard ID modelling, the
requirement of a directed utility diagram of the same
directionality of the underlying BN model might not
be entertained in some applications. For this reason,
here we first present a method to transform a triplet
(V(G),Ep(G),Eu(G)), where Eu(G) is a directional util-
ity diagram, into a DEUN. Second, we discuss an
extension of our DEUN framework that can accommo-
date more flexible utility structures but that can still
use a distributed routine in a fashion similar to that
in Theorem 1.

Figure 8. Illustration of the Edge Reversal Process

1

5

3

2 4

(a)  A triplet (V(�), Ep(�),
Eu(�)) not representing a

DEUN

1

5

3

2 4

(b) The DEUN obtained via
edge reversal from the graph in

Figure 8(a)

8.1. Edge Reversal in DEUNs
Changing the directionality of some of the probabilistic
edges of an ID model is an operation commonly done
to remove some vertices that are not strictly relevant
for the ranking of the available policies. However,when
one edge is reserved, some additional edgesmight have
to be included to prevent the new graph to represent
conditional independences that were not implied by
the original DAG. Such edge reversal operations can be
equally applied to the probabilistic side of DEUNs.

First we formalize the edge reversal operation. Let
G � (V(G),Ep(G)) be a DAG. For i , j ∈ V(G), let i ∈ Πp

j
and (i , j) be the only directed path between i and j.
Then G and G′ imply the same probability distribution
where V(G)� V(G′) and

E(G′)
�E(G)\{(i , j)} ∪ {(k , i): k ∈ {Πp

j ∪ j}\i}∪ {(k , j): k ∈Πp
i }.

In practice, an edge reversal of (i , j) entails the addition
of an edge from any parent of i to j and an edge from
any parent of j to i.
We next describe how this operation can be used to

transform a triplet (V(G),Ep(G),Eu(G)) into a DEUN.

Example 11. Consider the graph in Figure 8(a). It can
be noticed that this is not a DEUN since (2, 4) ∈ Ep(G)
and (4, 2) ∈ Eu(G). However, if we reverse the edge
(2, 4) ∈ Ep(G) and consequently add the edge (1, 4) to
Ep(G), since 1 ∈ Πp

2 , then the result graph is a DEUN.
This is shown in Figure 8(b).

The following result generalizes the transformation
illustrated in the above example.

Proposition 2. Any triplet (V(G),Ep(G),Eu(G)) can be
transformed into a DEUN if Eu(G) is a directional utility
diagram.
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This holds by noting that in the worst-case scenario
a sequential use of edge reversals can return a DAG
(V(G),Ep(G)) that is complete but with edges in the
same direction as in the utility diagram. Thus our algo-
rithms can be applied after a series of edge reversal
operations and, if required, a “triangulation step” to
make the resulting DEUN decomposable, whenever
Eu(G) is directional.

8.2. A Class of Nondirectional Utility Diagrams
Of course, in some applications the requirement of
a directional utility diagram can be too restrictive. It
is thus important to develop a methodology for the
quick and distributed computation of expected utili-
ties embedding more flexible utility structures. Such
a full theoretical development is beyond the scope of
this paper, although we refer to the discussion for
some details on how we believe this problem could be
approached. However, we note here that there happens
to be a class of bidirectional utility diagrams where
our evaluation algorithms can be used after some
small adaptations. Such diagrams are called canonical
in Abbas (2010). For a set K, let #K denote the number
of elements of K.

Definition 8. Let K ⊆ [n] be the set comprising ver-
tices i for which Πu

i , [n]\i. A utility diagram is canon-
ical if

• #K < 2;
• if #K ≥ 2, there are no edges connecting any

two vertices in K.

The set K comprises the vertices that are utility inde-
pendent of at least one variable conditionally on all
others.

Example 12. Figure 9 reports two utility diagrams.
In Figure 9(a), K � {3, 4, 5}, while in Figure 9(b),
K � {4, 5}. The first diagram is not canonical since there
is an edge connecting 4 to 3. Conversely, the second

Figure 9. Illustration of the Difference Between Canonical
and Noncanonical Utility Diagrams

1

5

3

2 4

(a) A noncanonical utility diagram

1

5

3

2 4

(b) A canonical utility diagram

diagram is canonical since there is no edge between 4
and 5.

These diagrams entertain very convenient properties
for utility elicitation (Abbas 2010, for a discussion, see).
Importantly, for such diagrams, the utility factorization
is equal for any expansion order comprising the ver-
tices in K. Notice that this is not true for directional
utility diagrams since they are not canonical in gen-
eral. From Abbas (2010), the utility factorization of any
canonical utility diagram can be written as

u(y)�
∑

y0∗
K ∈�

0∗
K

u(y0∗
K ,y−K)

∏
i∈K

gi(yi | yΠu
i
,y0∗

iP),

where we recall that iP denotes the set of vertices that
precede i in the order. Notice that in contrast to direc-
tional utility diagrams, canonical utility diagrams have
utility factorizations including functions of more than
one attribute. For a discussion of the elicitation process
for such terms we refer to Abbas (2010).

Example 13. The utility factorization associated to the
canonical utility diagram in Figure 9(b) is

u(y)� u(y[3] , y0
4 , y0

5)(1− u(y5 | y1))(1− u(y4))
+ u(y[3] , y∗4 , y0

5)(1− u(y5 | y1))u(y4)
+ u(y[3] , y0

4 , y∗5)u(y5 | y1)(1− u(y4))
+ u(y[3] , y∗4 , y∗5)u(y5 | y1)u(y4).

We are now ready to define amodel comprising both
probabilistic and utility edges embedding utility dia-
grams that are not necessarily directional.

Definition 9. A canonical bidirected expected utility net-
work G consists of a set of vertices V(G) � [n], a prob-
abilistic edge set Ep(G), denoted by solid arrows, and
a utility edge set Eu(G), denoted by dashed arrows,
such that

• (V(G),Eu(G)) is a canonical utility diagram;
• (V(G),Ep(G)) is a BN model such that i < Πp

j for
any i ∈ K and any j ∈ [n]\K.

A BDEUN is such that there is no probabilistic edge
from any vertex in K to another one not in this set.

Example 14. Figure 10 reports the graphical represen-
tation of two triplets (V(G),Ep(G),Eu(G)), where in
both cases (V(G),Eu(G)) is the canonical utility dia-
gram in Figure 9(b). (For simplicity, we replaced two
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Figure 10. Graphical Representations of Probabilitistic and
(Canonical) Utility Structures

1

5

3

2 4

(a) A triplet (V(�), Ep(G), Eu(�))
not representing a canonical

BDEUN

1

5

3

2 4

(b) A canonical BDEUN embedding
the canonical utility diagram in

Figure 9(b)

dashed directed edges between the same two vertices
with an undirected one.) The diagram in Figure 10(a)
is not a canonical BDEUN since (5, 2) ∈ Ep(G)with 5 ∈K
and 2 ∈ [n]\K. Conversely, the diagram in Figure 10(b)
is a canonical BDEUN.

Notice that, just as for DEUNs, any triplet (V(G),
Ep(G), Eu(G)), where (V(G), Eu(G)) is a canonical utility
diagram and (V(G), Ep(G)) is a BN, can be transformed
into a canonical BDEUN via edge reversals.

Example 15. The diagram in Figure 10(a) can be con-
verted into a canonical BDEUN by reversing the edge
(5, 2) ∈ Ep(G). For this example, this operation does not
require the addition of any new probabilistic edge.

We are now ready to introduce an evaluation algo-
rithm for canonical BDEUNs.

Proposition 3. For a canonical BDEUN G, let j �

max{[n]\K}. The expected utility score ū associated to G
can be computed according to the following algorithm:
1. follow the algorithm in Theorem 1 until vertex j + 1

included;
2. compute

ū j �

∫
� j

(ū j+1 ◦u(y[n]\K ,y0∗
K ))p(y j | yΠp

j
)dy j ;

3. for i from j − 1 to 1, compute

ūi �

∫
�i

ūi+1p(yi | yΠp
i
)dyi ;

4. return |ū1 |.

The proof of this result follows steps almost iden-
tical to those of Theorem 1 and is thus not reported
here. The intuition behind the above algorithm is that
it exactly follows the steps of Theorem 1 until it reaches
a vertex outside the set K, say, j. At that point, it

computes the ◦ product between ū j+1 and those terms
u j(y[n]\K ,y0∗

K ) that would be associated to the criterion
weights in a DEUN. The contribution to the overall util-
ity function of all the terms not in K is then already
accounted for by u(y[n]\K ,y0∗

K ). Consequently, the algo-
rithm can be completed by simple marginalizations
over the variables Yi for i ∈ [n]\K.

Example 16. For the canonical BDEUN in Figure 10(b),
the algorithm in Proposition 3 follows the same steps
as in Theorem 1 for the computation of ū5 and ū4, since
for this BDEUN K � {4, 5}. At this stage, the algorithm
computes first u3(y[3] ,y0∗

K ) ◦ ū4 and then a marginaliza-
tion over Y3, since 3 is the first vertex not in K. The algo-
rithm then concludes by marginalizing over Y2 and Y1
and finally computing the sum of the entries of ū1.

9. Discussion
Graphical representations of both probabilistic and
preferential independences have received great atten-
tion in the literature. However, so far very little effort
has been applied to the study of how probabilistic
and preferential graphical models could be combined
to provide a graphical representation of the expected
utility structure of a decision problem. In this paper
we presented one of the first attempts to formally
define network models depicting both the probabilis-
tic and the utility relationships for a random vector
of attributes. We have demonstrated here how such
graphical representations then provide a framework
for the fast computation of the overall expected utility
through various distributed routines.

While the constraint of having only directed proba-
bilistic edges is very often met in practice, and indeed
BNs are the most common probabilistic graphical
model, restricting the class of underlying utility dia-
grams to only directional ones may be unreasonable in
some applications. We demonstrated here that it is still
possible to compute the expected utility of a decision
in a distributed fashion for a specific subclass of bidi-
rected utility diagrams, those usually called canonical.
However, for noncanonical utility diagrams, evaluation
algorithms are still to be developed. Such utility struc-
tures could be included by representing the probabilis-
tic structure via a probabilistic chain graph (Lauritzen
1996). Propagation algorithms also exist for this model
class, and therefore adaptations of these could enable
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the computation of expected utilities in this more gen-
eral class of models.
Finally, both DEUNs and canonical BDEUNs could

also be generalized to include decision nodes and
therefore fully represent the structure of a DM’s deci-
sion problem, just as influence diagrams extend BN
models. We envisage that the evaluation of such a net-
work could be performed by algorithms that share
many features with the ones presented here, but also
equippedwith optimization steps over decision spaces.

Appendix A. Proof of Theorem 1
Define for i ∈ [n]

ũi �◦ j∈[i]u j(y j | yΠu
j
),

and note that

ū �

∫
�

u(y)p(y)dy�

����u0(y0∗) ◦
∫
�

ũn p(y)dy
����. (A.1)

Now consider the second integral in Equation (A.1). We have
that∫

�

ũn p(y)dy

�

∫
�

(ũn−1 ◦u(yn | y0∗
Πu

n
))p(yn | yΠp

n
)p(y[n−1])dy

�

∫
�[n−1]

ũn−1p(y[n−1]) ◦
∫
�n

u(yn | y0∗
Πu

n
)p(yn | yΠp

n
)dyn dy[n−1]

�

∫
�[n−1]

ũn−1p(y[n−1]) ◦ ūn dy[n−1]

�

∫
�[n−1]

(ũn−1 ◦ ūn)p(y[n−1])dy[n−1] , (A.2)

where ūn is defined in Equation (7). By marginalizing out
yn−1, we can then deduce from Equation (A.2) that∫

�

ũn p(y)dy�

∫
�[n−2]

∫
�n−1

(ũn−2 ◦u(yn−1 | y0∗
Πu

n−1
) ◦ ūn)

· p(yn−1 | yΠp
n−1
)p(y[n−2])dyn−1 dy[n−2] (A.3)

�

∫
�[n−2]

ũn−2p(y[n−2]) ◦
∫
�n−1

(u(yn−1 | y0∗
Πu

n−1
) ◦ ūn)

· p(yn−1 | yΠp
n−1
)dyn−1 dy[n−2]. (A.4)

From Equation (8) of Theorem 1, it then follows that∫
�

ũn p(y)dy�

∫
�[n−2]

ũn−2p(y[n−2]) ◦ ūn−1 dy[n−2]

�

∫
�[n−2]

(ũn−2 ◦ ūn−1)p(y[n−2])dy[n−2]. (A.5)

By sequentially repeating the steps in Equations (A.3)–(A.5),
we can now deduce that after the marginalization of Y2,∫

�

ũn p(y)dy�

∫
�[1]

(ũ1 ◦ ū2)p(y[1])dy[1]

�

∫
�1

(u(y1) ◦ ū2)p(y1)dy1 � ū1. (A.6)

Therefore by plugging in Equation (A.6) into (A.1), we can
conclude that Equation (9) holds.

Appendix B. Proof of Theorem 2
Call

Φ̄L �
∏

C∈C\L
ΦC , and Ψ̄L �◦C∈C\LΨC .

We have that∫
�L\S

ΦTΨT dyL\S

�

∫
�L\S

Φ̄LΦL( |ΨL ◦Ψ̄L | )dyL\S �

����∫
�L\S

Φ̄LΦL(ΨL ◦Ψ̄L\S)dyL\S

����
�

����Φ̄L

∫
�L\S

(ΦLΨL ◦Ψ̄L)dyL\S

����� ����Φ̄LΨ̄L ◦
∫
�L\S

ΦLΨL dyL\S

����.
(B.1)

Writing Ψ̄L �ΨΠL
◦ Ψ̂L , where ΨΠL

is the utility potential of
the parent clique of L and Ψ̂L �◦C∈C\L\ΠL

ΨC , it then follows
from Equation (B.1) that∫

�L\S

ΦTΨT dyL\S �

����Φ̄LΨ̂L ◦ΨΠL
◦
∫
�L\S

ΦLΨL dyL\S

����
� Φ̄L( | Ψ̂L ◦ΨL

ΠL
| )�ΦT \LΨT \L .

Appendix C. Expected Utility Vectors in
Section 7.2

C.1. Entries of ūH

ūH(1) �
[
MHES0

d −ESH0
d + mS(EH0

d −MH Ē0
d)

+ m0
E(SHd −MH S + mS(MH −Hd))

]
· [(M0

E −m0
E)(MS −mS)(MH −mH)]−1 ,

ūH(2) �
[
M0

E(MH S− SHd + mS(Hd −MH)) −MHES0
d

+ESH0
d + mS(MH Ē0

d −EH0
d)
]

·
[
(M0

E −m0
E)(MS −mS)(MH −mH)

]−1
,

ūH(3) �
[
ESH∗d −mHES∗d + mS(mH Ē∗d −EH∗d)

+ m∗E(mSHd − SH∗d + mH(S−mS))
]

·[(M∗
E −m∗E)(MS −mS)(MH −mH)]−1 ,

ūH(4) � [M∗
E(SHd −mH S + mS(mH −Hd)) −ESH∗d

+ mHES∗d + mS(EH∗d −mH Ē∗d)
]

· [(M∗
E −m∗E)(MS −mS)(MH −mH)]−1 ,
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ūH(5) �
[
MH(MSĒ0

d −ES0
d)+ESH0

d −MSEH0
d

+ m0
E(MS(Hd −MH)+ MH S− SHd)

]
·
[
(M0

E −m0
E)(MS −mS)(MH −mH)

]−1
,

ūH(6) �
[
M0

E(MS(MH −Hd) −MH S + SHd)
+ MS(EH0

d −MH Ē0
d)+ MHES0

d −ESH0
d

]
·
[
(M0

E −m0
E)(MS −mS)(MH −mH)]−1 ,

ūH(7) �
[
MS(EH∗d −mH Ē∗d) −ESH∗d + mHES∗d

+ m∗E(SH −MSH + mH(MS − S))
]

·
[
(M∗

E −m∗E)(MS −mS)(MH −mH)
]−1
,

ūH(8) �
[
M∗

E(MS(Hd −mH) − SHd + mH S)+ESH∗d
−mHES∗d + MS(mH Ē∗d −EH∗d)

]
·
[
M∗

E −m∗E)(MS −mS)(MH −mH)
]−1
.

C.2. Definition of the Indeterminates in Section C.1,
Where Ē∗d , EH∗d , ES∗d , and ESH∗d are Similarly
Defined

S � exp
(
δS(θ0S + θHSθ

d
0H)+ 0.5δ2

S(σ2
S + (θHSσ

d
H)2)

)
Ē0

d � exp
(
δ0

E(θd
0E + θ

d
HEθ

d
0H)

+ 0.5(δ0
E)2((σd

E)2 + (θd
HEσ

d
H)2)

)
Hd � exp

(
δHθ

d
0H + 0.5(δHσ

d
H)2

)
SHd � exp

(
δSθ0S + 0.5δ2

Sσ
2
S + (δSθHS + δH)θd

0H

+ 0.5(δSθHS + δH)2(σd
H)2

)
EH0

d � exp
(
δ0

Eθ
d
0E + 0.5(δ0

Eσ
d
E)2 + (δ0

Eθ
d
HE + δH)θd

0H

+0.5(δ0
Eθ

d
HE + δH)2(σd

H)2
)

ES0
d � exp

(
δSθ0S + δ

0
Eθ

d
0E + 0.5(δ2

Sσ
2
S + (δ0

Eσ
d
E)2)

+ (δSθHS + δ
0
Eθ

d
HE)θd

0H + 0.5(δSθHS + δ
0
Eθ

d
HE)2(σd

H)2
)

ESH0
d � exp

(
δSθ0S + δ

0
Eθ

d
0E + 0.5(δ2

Sσ
2
S + (δd

Eσ
d
E)2)

+ (δSθHS + δ
0
Eθ

d
HE + δH)θd

0H

+ 0.5(δSθHS + δ
0
Eθ

d
HE + δH)2(σd

H)2
)
.

Appendix D. Numerical Specifications for the Food
Security Example

Table D.1. Parameters Dependent on Decisions

θd
0H σd

H θd
0C σd

C θd
0E σd

E θd
HE

d0 1.5 5 30 8 5 40 7
d1 −2 4 −5 5 −6 20 2
d2 −0.5 3 10 4 3 15 7

Table D.2. Parameters Not Dependent on Decisions

δ00
C � 0.05, δ0

E � 0.01, θ0S � 5,
δ0∗

C � 0.005, δ∗E � 0.005, θHS � 17,
δ∗0C � 0.001, δS � 0.01, σS � 20,
δ∗∗C � 0.02, δH � 0.02.

Table D.3. Criterion Weights

u(y0
E , y0

S , y0
H , y0

C)� 0, u(y∗E , y0
S , y0

H , y0
C)� 0.25,

u(y0
E , y∗S , y0

H , y0
C)� 0.2, u(y∗E , y∗S , y0

H , y0
C)� 0.5,

u(y0
E , y0

S , y∗H , y0
C)� 0.5, u(y∗E , y0

S , y∗H , y0
C)� 0.75,

u(y0
E , y∗S , y∗H , y0

C)� 0.7, u(y∗E , y∗S , y∗H , y0
C)� 0.85,

u(y0
E , y0

S , y0
H , y1

C)� 0.05, u(y∗E , y0
S , y0

H , y1
C)� 0.3,

u(y0
E , y∗S , y0

H , y1
C)� 0.25, u(y∗E , y∗S , y0

H , y1
C)� 0.55,

u(y0
E , y0

S , y∗H , y1
C)� 0.55, u(y∗E , y0

S , y∗H , y1
C)� 0.8,

u(y0
E , y∗S , y∗H , y1

C)� 0.75, u(y∗E , y∗S , y∗H , y1
C)� 1.

Appendix E. Expected Utility Vectors in Section 7.3
E.1. Entries of the PotentialΨC2

C1
for the Evaluation of the

DEUN in Figure 7

u(y∗S , y∗E , y∗H , y∗C)u(yH)u(yE | y∗H)u(yC | y∗E , y∗H)(S−mS)/(MS −mS),
u(y∗S , y∗E , y∗H , y0

C)u(yH)u(yE | y∗H)û(yC | y∗E , y∗H)(S−mS)/(MS −mS),
u(y∗S , y∗E , y0

H , y∗C)û(yH)u(yE | y∗H)u(yC | y∗E , y∗H)(S−mS)/(MS −mS),
u(y∗S , y∗E , y0

H , y0
C)û(yH)u(yE | y∗H)û(yC | y∗E , y∗H)(S−mS)/(MS −mS),

u(y∗S , y0
E , y∗H , y∗C)u(yH)û(yE | y∗H)u(yC | y∗E , y∗H)(S−mS)/(MS −mS),

u(y∗S , y0
E , y∗H , y0

C)u(yH)û(yE | y∗H)û(yC | y∗E , y∗H)(S−mS)/(MS −mS),
u(y∗S , y0

E , y0
H , y∗C)û(yH)û(yE | y∗H)u(yC | y∗E , y∗H)(S−mS)/(MS −mS),

u(y∗S , y0
E , y0

H , y0
C)û(yH)û(yE | y∗H)û(yC | y∗E , y∗H)(S−mS)/(MS −mS),

u(y0
S , y∗E , y∗H , y∗C)u(yH)u(yE | y∗H)u(yC | y∗E , y∗H)(MS − S)/(MS −mS),

u(y0
S , y∗E , y∗H , y0

C)u(yH)u(yE | y∗H)û(yC | y∗E , y∗H)(MS − S)/(MS −mS),
u(y0

S , y∗E , y0
H , y∗C)û(yH)u(yE | y∗H)u(yC | y∗E , y∗H)(MS − S)/(MS −mS),

u(y0
S , y∗E , y0

H , y0
C)û(yH)u(yE | y∗H)û(yC | y∗E , y∗H)(MS − S)/(MS −mS),

u(y0
S , y0

E , y∗H , y∗C)u(yH)û(yE | y∗H)u(yC | y∗E , y∗H)(MS − S)/(MS −mS),
u(y0

S , y0
E , y∗H , y0

C)u(yH)û(yE | y∗H)û(yC | y∗E , y∗H)(MS − S)/(MS −mS),
u(y0

S , y0
E , y0

H , y∗C)û(yH)û(yE | y∗H)u(yC | y∗E , y∗H)(MS − S)/(MS −mS),
u(y0

S , y0
E , y0

H , y0
C)û(yH)û(yE | y∗H)û(yC | y∗E , y∗H)(MS − S)/(MS −mS).
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