10,685 research outputs found

    A system for sign language recognition using fuzzy object similarity tracking

    Get PDF
    As a part of natural language understanding, sign language recognition is considered an important area of research. The applications of such a system range from human-computer interaction in virtual reality systems to auxiliary tools for deaf-mute to communicate with ordinary people through computer. A great deal of research is done so far but fewer researchers have extended it to Arabic sign language recognition. In this paper, we have presented a system that performs vision based isolated Arabic sign language recognition using hidden Markov models together with EM algorithm for parameters estimation. An approach to track hands in subsequent frames is proposed using a fuzzy object similarity measure based on a number of geometrical features of hands. Moreover, we have used the centroid of the signer's face to centralize the body coordinates instead of fixing the signer's position or using position tracker device. The overall accuracy of the recognition task is 98% over a dataset of 50 signs including single hand and two-handed signs

    A system for sign language recognition using fuzzy object similarity tracking

    Get PDF
    As a part of natural language understanding, sign language recognition is considered an important area of research. The applications of such a system range from human-computer interaction in virtual reality systems to auxiliary tools for deaf-mute to communicate with ordinary people through computer. A great deal of research is done so far but fewer researchers have extended it to Arabic sign language recognition. In this paper, we have presented a system that performs vision based isolated Arabic sign language recognition using hidden Markov models together with EM algorithm for parameters estimation. An approach to track hands in subsequent frames is proposed using a fuzzy object similarity measure based on a number of geometrical features of hands. Moreover, we have used the centroid of the signer's face to centralize the body coordinates instead of fixing the signer's position or using position tracker device. The overall accuracy of the recognition task is 98% over a dataset of 50 signs including single hand and two-handed signs

    A system for learning statistical motion patterns

    Get PDF
    Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy k-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction

    A system for learning statistical motion patterns

    Get PDF
    Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy k-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction

    Hierarchical fuzzy logic based approach for object tracking

    Get PDF
    In this paper a novel tracking approach based on fuzzy concepts is introduced. A methodology for both single and multiple object tracking is presented. The aim of this methodology is to use these concepts as a tool to, while maintaining the needed accuracy, reduce the complexity usually involved in object tracking problems. Several dynamic fuzzy sets are constructed according to both kinematic and non-kinematic properties that distinguish the object to be tracked. Meanwhile kinematic related fuzzy sets model the object's motion pattern, the non-kinematic fuzzy sets model the object's appearance. The tracking task is performed through the fusion of these fuzzy models by means of an inference engine. This way, object detection and matching steps are performed exclusively using inference rules on fuzzy sets. In the multiple object methodology, each object is associated with a confidence degree and a hierarchical implementation is performed based on that confidence degree.info:eu-repo/semantics/publishedVersio

    Multimedia information technology and the annotation of video

    Get PDF
    The state of the art in multimedia information technology has not progressed to the point where a single solution is available to meet all reasonable needs of documentalists and users of video archives. In general, we do not have an optimistic view of the usability of new technology in this domain, but digitization and digital power can be expected to cause a small revolution in the area of video archiving. The volume of data leads to two views of the future: on the pessimistic side, overload of data will cause lack of annotation capacity, and on the optimistic side, there will be enough data from which to learn selected concepts that can be deployed to support automatic annotation. At the threshold of this interesting era, we make an attempt to describe the state of the art in technology. We sample the progress in text, sound, and image processing, as well as in machine learning

    A Survey of Applications and Human Motion Recognition with Microsoft Kinect

    Get PDF
    Microsoft Kinect, a low-cost motion sensing device, enables users to interact with computers or game consoles naturally through gestures and spoken commands without any other peripheral equipment. As such, it has commanded intense interests in research and development on the Kinect technology. In this paper, we present, a comprehensive survey on Kinect applications, and the latest research and development on motion recognition using data captured by the Kinect sensor. On the applications front, we review the applications of the Kinect technology in a variety of areas, including healthcare, education and performing arts, robotics, sign language recognition, retail services, workplace safety training, as well as 3D reconstructions. On the technology front, we provide an overview of the main features of both versions of the Kinect sensor together with the depth sensing technologies used, and review literatures on human motion recognition techniques used in Kinect applications. We provide a classification of motion recognition techniques to highlight the different approaches used in human motion recognition. Furthermore, we compile a list of publicly available Kinect datasets. These datasets are valuable resources for researchers to investigate better methods for human motion recognition and lower-level computer vision tasks such as segmentation, object detection and human pose estimation

    Detection and Recognition of Traffic Sign using FCM with SVM

    Get PDF
    This paper mainly focuses on Traffic Sign and board Detection systems that have been placed on roads and highway. This system aims to deal with real-time traffic sign and traffic board recognition, i.e. localizing what type of traffic sign and traffic board are appears in which area of an input image at a fast processing time. Our detection module is based on proposed extraction and classification of traffic signs built upon a color probability model using HAAR feature Extraction and color Histogram of Orientated Gradients (HOG).HOG technique is used to convert original image into gray color then applies RGB for foreground. Then the Support Vector Machine (SVM) fetches the object from the above result and compares with database. At the same time Fuzzy Cmeans cluster (FCM) technique get the same output from above result and then  to compare with the database images. By using this method, accuracy of identifying the signs could be improved. Also the dynamic updating of new signals can be done. The goal of this work is to provide optimized prediction on the given sign
    corecore