18,699 research outputs found

    Community Detection via Semi-Synchronous Label Propagation Algorithms

    Full text link
    A recently introduced novel community detection strategy is based on a label propagation algorithm (LPA) which uses the diffusion of information in the network to identify communities. Studies of LPAs showed that the strategy is effective in finding a good community structure. Label propagation step can be performed in parallel on all nodes (synchronous model) or sequentially (asynchronous model); both models present some drawback, e.g., algorithm termination is nor granted in the first case, performances can be worst in the second case. In this paper, we present a semi-synchronous version of LPA which aims to combine the advantages of both synchronous and asynchronous models. We prove that our models always converge to a stable labeling. Moreover, we experimentally investigate the effectiveness of the proposed strategy comparing its performance with the asynchronous model both in terms of quality, efficiency and stability. Tests show that the proposed protocol does not harm the quality of the partitioning. Moreover it is quite efficient; each propagation step is extremely parallelizable and it is more stable than the asynchronous model, thanks to the fact that only a small amount of randomization is used by our proposal.Comment: In Proc. of The International Workshop on Business Applications of Social Network Analysis (BASNA '10

    Efficient Implementation of a Synchronous Parallel Push-Relabel Algorithm

    Full text link
    Motivated by the observation that FIFO-based push-relabel algorithms are able to outperform highest label-based variants on modern, large maximum flow problem instances, we introduce an efficient implementation of the algorithm that uses coarse-grained parallelism to avoid the problems of existing parallel approaches. We demonstrate good relative and absolute speedups of our algorithm on a set of large graph instances taken from real-world applications. On a modern 40-core machine, our parallel implementation outperforms existing sequential implementations by up to a factor of 12 and other parallel implementations by factors of up to 3

    Configuration of Distributed Message Converter Systems using Performance Modeling

    Get PDF
    To find a configuration of a distributed system satisfying performance goals is a complex search problem that involves many design parameters, like hardware selection, job distribution and process configuration. Performance models are a powerful tools to analyse potential system configurations, however, their evaluation is expensive, such that only a limited number of possible configurations can be evaluated. In this paper we present a systematic method to find a satisfactory configuration with feasible effort, based on a two-step approach. First, using performance estimates a hardware configuration is determined and then the software configuration is incrementally optimized evaluating Layered Queueing Network models. We applied this method to the design of performant EDI converter systems in the financial domain, where increasing message volumes need to be handled due to the increasing importance of B2B interaction
    corecore