3 research outputs found

    Improving the Flexibility and Robustness of Machine Tending Mobile Robots

    Get PDF
    While traditional manufacturing production cells consist of a fixed base robot repetitively performing tasks, the Industry 5.0 flexible manufacturing cell (FMC) aims to bring Autonomous Industrial Mobile Manipulators (AIMMs) to the factory floor. Composed of a wheeled base and a robot arm, these collaborative robots (cobots) operate alongside people while autonomously performing tasks at different workstations. AIMMs have been tested in real production systems, but the development of the control algorithms necessary for automating a robot that is a combination of two cobots remains an open challenge before the large scale adoption of this technology occurs in industry. Currently popular docking based methods require a mount point for the docking station and considerable time for the robot to locate and park. These limitations necessitate the consideration and implementation of more modern robot control and path planning techniques. This work proposes and implements a simulation testbed that uses a contemporary whole-body control, OCS2, to perform more flexible pick-and-place tasks. Within this testbed, an Industry 5.0 based pick-and-place framework is deployed, fine-tuned and tested. This system supports the one-shot lead-through based assignment of a prepick position by an operator, thus enabling the cobot to drive to this position and successfully pick up the part agnostic of base orientation and/or position. The proposed system allows robot path planning experimentation and assessment against a variety of cost and constraint values, and is capable of being modified to support various vision based part locating algorithms

    A Quantum Planner for Robot Motion

    Get PDF
    The possibility of integrating quantum computation in a traditional system appears to be a viable route to drastically improve the performance of systems endowed with artificial intelligence. An example of such processing consists of implementing a teleo-reactive system employing quantum computing. In this work, we considered the navigation of a robot in an environment where its decisions are drawn from a quantum algorithm. In particular, the behavior of a robot is formalized through a production system. It is used to describe the world, the actions it can perform, and the conditions of the robot's behavior. According to the production rules, the planning of the robot activities is processed in a recognize-act cycle with a quantum rule processing algorithm. Such a system aims to achieve a significant computational speed-up
    corecore