
Citation: Chella, A.; Gaglio, S.; Pilato,

G.; Vella, F.; Zammuto, S. A Quantum

Planner for Robot Motion.

Mathematics 2022, 10, 2475. https://

doi.org/10.3390/math10142475

Academic Editor: Jan Słdkowski

Received: 1 April 2022

Accepted: 9 July 2022

Published: 16 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Quantum Planner for Robot Motion
Antonio Chella 1,2 , Salvatore Gaglio 1,2 , Giovanni Pilato 2 , Filippo Vella 2,* and Salvatore Zammuto 1

1 Dipartimento di Ingegneria (DID), Università degli Studi di Palermo, 90128 Palermo, Italy;
antonio.chella@unipa.it (A.C.); salvatore.gaglio@unipa.it (S.G.);
salvatore.zammuto@community.unipa.it (S.Z.)

2 Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR), Consiglio Nazionale delle Ricerche (CNR),
Via Ugo La Malfa 153, 90146 Palermo, Italy; giovanni.pilato@icar.cnr.it

* Correspondence: filippo.vella@icar.cnr.it

Abstract: The possibility of integrating quantum computation in a traditional system appears to be a
viable route to drastically improve the performance of systems endowed with artificial intelligence.
An example of such processing consists of implementing a teleo-reactive system employing quantum
computing. In this work, we considered the navigation of a robot in an environment where its
decisions are drawn from a quantum algorithm. In particular, the behavior of a robot is formalized
through a production system. It is used to describe the world, the actions it can perform, and the
conditions of the robot’s behavior. According to the production rules, the planning of the robot
activities is processed in a recognize–act cycle with a quantum rule processing algorithm. Such a
system aims to achieve a significant computational speed-up.

Keywords: quantum computing; planning; robotics

MSC: 81P68; 68T20; 68Q12

1. Introduction

The planning of the actions that a robot can accomplish to reach a defined goal is a
traditional problem that has been tackled since the first robots were built [1]. In the case of
motion planning, the robot moves in a known environment and it has to perform suitable
actions to reach a goal destination [2,3]. The actions that the robot can perform are bound
to the degrees of freedom of the robot. In the formulation we consider, the movements
are executed on a plane where impenetrable and immovable obstacles are present. If b
is the number of possible actions that the robot can choose and d is the number of steps,
the complexity is bound to O(bd). Here, we consider a mobile robot placed on a map that
through suitable movements, chosen by a quantum algorithm, has to reach a target position.
This path planning problem can be equivalently formulated either as the computation of
the trajectory the robot will take or as the sequence of actions (i.e., the moves) the robot
should carry out to reach the goal. We chose to operate in accordance with the latter of
the two formulations since it best assimilates the philosophy of a production system [4]. A
production system is a computational formalism that is extremely popular in AI due to its
inherent capability of modeling a human-like flow of thought when it comes to the activity
of problem solving [5] and is equivalent to the Universal Turing Machine (UTM) [6].

A production model essentially relies upon the cyclic application of production rules,
i.e., condition-action pairs where a system is transformed into a specific state when the
current state has validated one (or more) condition(s) and, according to the predefined
productions, suitable action are applied. This process is done iteratively until either no
further condition is met or when a specific target state has been reached. Such a procedure
is also referred to as the recognize–act cycle (RAC).

As reported by [7], the task of identifying the best actions to achieve a given goal
requires significant use of computing capabilities. This statement is even more relevant

Mathematics 2022, 10, 2475. https://doi.org/10.3390/math10142475 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10142475
https://doi.org/10.3390/math10142475
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-8625-708X
https://orcid.org/0000-0002-5480-2100
https://orcid.org/0000-0002-6254-2249
https://orcid.org/0000-0002-2502-0062
https://orcid.org/0000-0002-3364-6866
https://doi.org/10.3390/math10142475
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10142475?type=check_update&version=2

Mathematics 2022, 10, 2475 2 of 29

when agents act in complex environments. With this in mind, Manin [8] proposed to
employ quantum computing processes. In [7], a possible problem-solving technique is
introduced, approached from the point of view of quantum computation. The proposed
approach also starts from considerations raised in Ying [9], regarding the link between
artificial intelligence and quantum computation and is based on the theory of production
systems. This formalism, proposed by Post [4], introduces computational procedures and
exploits problem-solving primitives. Production systems are widely used in the context of
classical artificial intelligence and cognitive psychology. In particular, they describe how
to construct a sequence of actions that, from an initial state, leads to a goal state. This
formalism is also one of the most successful computer models for representing human
behavior in problem-solving cases [10]. A classical production system consists of rules, also
called “productions”. One of the most common planning methodologies is the Stanford
Research Institute Problem Solver (STRIPS) technique, introduced in [11]. This kind of
production system can be represented with a search tree, that is rooted at the current
system state and has a branching factor given by the actions that can be applied at each
state [12]. It is clear that, as the depth of the tree increases, the number of reached states
grows exponentially. Many traditional algorithms afford the search in these trees and
they range from brute force search to most refined techniques. Quantum search in trees is
described in [13,14]. A model capable of solving instances of the n-puzzle, was proposed
in [7]. The initial state is the root node, the branches of each node represent the possible
rules that can be applied in a particular state, while the goal(s) are encoded in a subset
of the leaf nodes. Such a model combines a quantum search mechanism with production
system theory. In particular, it exploits the quantum superposition principle, exploring all
possible combinations of initial configurations and paths according to the desired depth
level. A quantum backtracking search, that can be seen as a depth-first search in a tree with
a pruning of dead-end nodes, is proposed in [15]. A random walk to solve backtracking
algorithms has been proposed in [16,17].

In this paper, we illustrate a methodology which integrates quantum computation
in a traditional robotic system. We explore a robot navigation task in an environment,
such as the one shown in Figure 1, where the robot takes its decisions by using a quantum
approach. In particular, the technique is based on Grover’s algorithm [18] and it is used
to plan the movements of the robot on the map where it lives. The behavior of a robot is
formalized through a production system, which is used to describe the world, the actions
it can perform, and the conditions of its behavior. According to the production rules,
the planning of the robot activities is processed in a recognize-act cycle with a quantum
rule processing algorithm. Such an approach can significantly improve the computational
performance of systems endowed with artificial intelligence. The employment of quantum
algorithms in this framework is motivated by the strong affinity between quantum theory
and the inner mechanics of (human) reasoning, due mainly to its characteristic parallel
processing. From the implementation point of view, the idea is to study the feasibility of
the methodology, realizing a proof-of-concept prototype in an emulated environment or
exploiting a set of proper calls to the IBM Qiskit service [19].

The contributions of this work are: (1) a formulation of the path-planning problem that
solves through a quantum algorithm; (2) the application of Grover’s theoretical procedure
to a practical problem, together with some strategies to tackle them; (3) the evaluation of the
conditions for effectiveness of the quantum search algorithm for the search in a tree used to
model the robotic path planning. In addition, in Section 2.1 we present a general approach
for encoding traditional Boolean combinatorial networks into equivalent quantum circuits
exploiting the quantum parallelism property of superposed quantum states. We also
examine the constraints of quantum circuit design, such as the optimal choice of circuit
gates and the reversibility constraint of quantum computation. After the descriptions of
the quantum path planning procedure, in Section 7 we provide an extensive discussion
on the efficacy and success probability of the approach, along with its effectiveness for the
state-of-the-art quantum hardware and simulation technologies. A novel technique that

Mathematics 2022, 10, 2475 3 of 29

enables the classical simulation of complex quantum circuits, reusing qubits and reducing
the needed memory resources is also described.

Figure 1. Example of the environment the robot lives in. The cell rstart denotes the starting cell, while
the cell labeled as g refers to the goal destination.

2. Materials and Methods

In the following subsections, we illustrate the basic concepts about quantum gates
and how they can be used to implement traditional Boolean logic, together with the role of
quantum computation in tree-search procedures and an overview of the role of Grover’s
algorithm in search problems.

2.1. Quantum Computation and Boolean Networks

The possibility to adopt quantum computation for traditional tasks enables to rethink
computing models and speed up cumbersome computations [12,13,20–23]. The charac-
teristics of quantum computing allow us to solve traditional problems with models that
manage multiple configurations of the variables at the same time and select, in a single
step, the problem solution, implementing the usually called quantum parallelism [21,24].
This capability is based on the property of physical quantities, as the elements of quantum
mechanics, to combine or superpose two or more quantum states, creating a new valid
quantum state in accordance with the Schrödinger equation.

A single unit of information |ψ〉, or qubit, is represented by a vector in a 2D Hilbert
space and thus requires a total of two complex numbers α, β ∈ C to encode its coordinates
with respect to one of the space’s bases, usually the so-called computational (or Z-) basis,
related to the observable states of the form {|0〉 , |1〉}. A state, that is a linear combination
of the Z-basis, such as |ψ〉 = α |0〉 + β |1〉, can be arbitrarily transformed into another
state until a measurement is performed, which collapses the wavefunction to one of the
observables, each with probability amplitudes α and β.

These amplitudes satisfy the unitarity constraint of probability |α|2 + |β|2 = 1 [25].
The two complex numbers α and β, whose combination is a fixed-magnitude vector in a 3D
Euclidean space, trace out a geometric locus that corresponds to a unitary sphere, namely,
the Bloch sphere [26] (Figure 2).

Mathematics 2022, 10, 2475 4 of 29

Figure 2. A representation of the Bloch sphere. The image [27] has license Creative Commons Attribution-
Share Alike 3.0 Unported.

A single-qubit gate is thus a unitary (and subsequently reversible) operator (see
Section 2.2 for a discussion on quantum gates reversibility) that performs some rotation
of the input state over the Bloch sphere around one or more of the X, Y, and Z axes.
An example is given by the Pauli-X gate, which is associated to a rotation of π radians
around the X axis of the sphere, a behavior, that when applied to a computational-basis
state, is equivalent to the classical NOT operation. Another quantum gate of interest is
the Hadamard gate H, which performs a π/2 rotation around the Y axis, followed by
a π rotation around the X axis. For this reason, the H gate often serves the purpose of
preparing an (observable) input state as a uniform superposition, one where |α|2 = |β|2,
since it operates by bringing a point from the Z-axis to the XY plane, exactly halfway
between the |0〉 and |1〉 states of the sphere. Applying an Hadamard operation on |0〉
results in a |+〉 = H |0〉 = 1/

√
2 |0〉+ 1/

√
2 |1〉 state that is a combination of the individual

outputs of the gate as if they had been transformed one at a time, which realizes the
aforementioned property of quantum parallelism of quantum circuits. This effect is more
noticeable for n-qubit gates, where a single application of an operator acts simultaneously
on all of the 2n components of the input state. At the time of measurement, only one of
such states is selected, according to its relative probability amplitude. For this reason,
the quantum circuits that implement quantum algorithms are designed in the interest of
exploiting the constructive or destructive interference phenomena that occur when multiple
wavefunctions are combined, so that the probability of measuring a desired solution is
increased, while everything else is being diminished.

This methodology allows the quantum programmer to process, in a single step, an ex-
ponential number of input configurations—where the exponent is given by the number of
the input qubits—and select among them the values that produce the desired output. At the
same time, conceiving an algorithm that harnesses this quantum parallelism needs some
specific settings to shape the computation strictly in terms of the constraints of quantum
technology, such as unitarity and thus reversibility of quantum operators. Here, the qubit
information is processed through quantum gates that have been composed to implement
a logical computation over its corresponding quantum circuit. As such, not all the tradi-
tional logic gates are directly available and some of them, such as the logical OR, must be
mapped to the existing quantum gates. One way of implementing a traditional method
with a quantum computer is to construct a classical Boolean network and then substitute
its logic with quantum gates. This is completed by either directly replacing the gates, when
available, or by performing Boole algebra manipulations on the starting logic with the
objective of obtaining an expression that contains just the operators that can be mapped to
the accessible quantum gates.

With this in mind, in this work we choose to exploit the elementary quantum gates
{X, CCX, CX} (respectively, the X gate, the Toffoli gate and the CNOT gate), together with

Mathematics 2022, 10, 2475 5 of 29

the functional completeness of the set of connectives C = {NOT, AND} to realize our
Boolean logic as a quantum combinatorial circuit through the association:

C ∪ {XOR} = {NOT, AND, XOR} ←→ {X, CCX, CX} (1)

In particular:

• the NOT directly translates to the X gate, which flips the phase of its input around the
X axis of the Bloch sphere;

• the Toffoli (CCX) acts on the target qubit when both of its control bits are set to 1. This
is the same behavior of a reversible AND operation;

• the classical XOR operation can be implemented reversibly with a 3-qubit gate, where
two CNOTs, one for each input, control the same output bit (rightmost subfigure
of Figure 3).

Figure 3. Structure of the {NOT, AND, XOR} gates as quantum circuits. From left to right: the
X gate; the Toffoli, and the XOR gate. The target qubit of the Toffoli gate, |q2〉, stores the values
|q2 ⊕ (q0 · q1)〉. For the XOR gate, |output0〉 stores |output0 ⊕ (input0 ⊕ input1)〉. In the last two
cases, in order to preserve the actual value of the operations, the qubits that store the result, namely
|q2〉 and |output0〉, are initialized to |0〉, so that their state after the gate is simply |q0 · q1〉 and
|input0 ⊕ input1〉.

Expression (1) sums up the aforementioned strategy for the adaptation of traditional
logic to a quantum network: we take advantage of the universality of the C = {NOT, AND}
set by reducing the classical combinatorial logic in terms of these operations, and then
replacing them with their quantum equivalents, {X, CCX}, which are thereupon also uni-
versal [28]. In consideration of the fact that the C set is functionally complete, any other
set that contains it must also be complete, this is why, for convenience reasons, we also
incorporate the XOR gate in our translation scheme, since it is a recurrent operation in our
path-planning logic and it is useful to have a fixed reference to it and its quantum gate
realization. Not unexpectedly, there exist many universal sets of quantum gates [21,29],
some of which have elements that do not have a classical logical analogue and that can also
be used to design a quantum algorithm that solves problems of the same kind. Nonetheless,
they might not be as suitable in respect of design complexity concerns, in the sense that tra-
ditional logic offers a more solid frame of work to build highly-composite networks, along
with well-explored optimization techniques that are particularly significant in the context
of quantum algorithms, as discussed in Section 7. Additionally, out of the {X, CCX, CX}
set we considered only CCX, the Toffoli gate, that is a non-Clifford gate, since it is built
on T gates (π/4 rotation about the Z axis), which do not belong to the Clifford group [30].
The Gottesman–Knill theorem [31] states that gates outside of the Clifford group cannot be
efficiently simulated by classical machines, therefore, a quantum circuit that minimizes the
number of non-Cliffords gates can also benefit from better-performing classical simulations.
In the implementations of Sections 4 and 5, we show that indeed the great majority of
heavy-duty computation is composed of the X and CX Clifford gates, with the Toffoli gate
being involved mainly in aggregation and marking operations, which are much rarer if
compared to the actual computation of the movements and position of the robot in the
path-planning procedure.

Mathematics 2022, 10, 2475 6 of 29

2.2. Gate Reversibility

Reversibility is a core aspect of quantum mechanics [32,33] and studies on pure
quantum states, as those related to the no-hiding theorem [34], observed that no information
is lost during a state’s evolution in time; also, it is not possible for two different starting
states to evolve to the same state through the same Hamiltonian.

Furthermore, quantum mechanics is unitary. Mathematically, unitarity means that
any (simple or complex) U operation must satisfy U†U = UU† = I, that also implies the
condition of reversibility [21]. In any quantum algorithm, whether we consider the general
operators or the exact Boolean functions they implement, reversibility, almost in all cases,
requires the employment of additional ancillary qubits. This is because traditional gates
often perform many-to-one bit mapping, with more general operations implementing a
function f : {0, 1}k −→ {0, 1}l for some fixed k, l number of input and output bits [7,35].
A configuration where k 6= l prevents the bijection that allows to uniquely recover the
input from the produced output. It follows that, in order to render a given irreversible
operation reversible, supplementary bits within the gate are needed so that k = l. One
straightforward example is the classical AND operation, famously not reversible, and its
quantum equivalent, the previously mentioned Toffoli gate, which takes a total of 3 bits as
input (and output) against the 2 inputs and 1 output of the classical counterpart.

2.3. Quantum Path Planning

In the context of our problem, we designed a path-planning procedure starting from
the traditional Boolean representation of the production rules that dictate the behavior of a
robot’s movement. Then, we built the corresponding quantum network according to the
translation scheme of Section 2.1, along with the adaptation to reversible computation of
Section 2.2. In order to perform an exhaustive search across the entire map, the production
rules that transform the state of the robot (that is, the position of the map cell it is located
in) in a single RAC iteration, are of the type:

i f the rightmost cell is accessible −→ move to it

and
i f the nearby cell is not accessible −→ stay in the same position,

where a cell is considered “accessible” if it is within the walls of the map and does not
have an obstacle in it. Rules of this kind are used to determine the behavior for each of the
directions that movement is allowed towards.

In accordance with the forward-chaining nature of the repeated application of the RAC,
it should be trivial to see that the overall control architecture of the system we just described
results in a tree-like structure [12], with the initial state being the root node, the branches of
each node representing the possible actions that can be carried out from that particular state,
and the goal(s) being encoded in a subset of the leaf nodes. The computation halts in the case
of target-state realization or, also, if no defined rule can be applied. In this sense, planning
the optimal path from the robot’s starting position to the goal is equivalent to finding the
shortest path from the root to a leaf node that corresponds to a target state, which can in turn
be interpreted as a classical tree-search procedure, that our methodology solves through the
application of the quantum search algorithm, namely, Grover’s algorithm.

2.4. Grover’s Algorithm

Grover’s algorithm [18] was conceived to solve the unstructured search problem
through quantum processing [21]. Traditional unstructured search, or search on an unsorted
database, requires a cost of O(N) in time, with N being the size of the search space.
Quantum search provides a quadratic speed-up over its classical counterparts and it can be
used to efficiently solve the NP-complete problems that require an exhaustive coverage
of the search space. Considering a set of N entries, the algorithm works within an N-

Mathematics 2022, 10, 2475 7 of 29

dimensional Hilbert space encoded by n = dlog2Ne qubits. The states that correspond to
the entries are represented as

{|0〉 , |1〉 , |2〉 , . . . |N − 1〉} (2)

Like many other quantum algorithms, quantum searching is based on constructing
an operator that evolves the initial input state into a specific target state. Specifically,
the Grover operator G takes as input |ψ〉, the initial superposition of the elements in the
search space, and then evolves it into the solution state |ω〉 according to the Hamiltonian
H = |ω〉 〈ω|+ |ψ〉 〈ψ|. If there is more than one solution, |ω〉 will be a combination of all
the individual solution states [21]. The effect of such transformation is the rotation of the
initial |ψ〉 vector towards the solution |ω〉.

This computation is implemented on a quantum computer by noticing that, since
|ψ〉 and |ω〉 belong to the same N-dimensional Hilbert space, we can easily perform
a Gram–Schmidt orthonormalization to express |ψ〉 in terms of the orthonormal basis
{|ω〉 , |ν〉}, so that:

|ψ〉 = α |ω〉+ β |ν〉 (3)

for some α and β with |α|2 + |β|2 = 1. Expression (3) can also be interpreted as follows:
given that the initial |ψ〉 is the superposition of all the states in the search space, |ω〉must
also be contained in such superposition. We can therefore express |ψ〉 as the combination
of the solution state |ω〉, weighted with probability |α|2, together with a state that contains
everything that is not a solution, |ν〉, that has a probability 1− |α|2 = |β|2 of being measured.

On the hypothesis that the initial superposition of the N elements of the search space
is uniform, and considering a generic number of solutions S of the problem, we can refactor
expression (3) as

|ψ〉 =
√

S
N
|ω〉+

√
N − S

N
|ν〉 (4)

with |ω〉 = 1√
S

∑
x∈Ω
|x〉 and |ν〉 = 1√

N − S ∑
x∈Ωc
|x〉, where Ω is the set of all of the solution

states (|Ω| = S) and Ωc is its complement (|Ωc| = N− S). Since we assumed the uniformity
of the starting superposition, if we were to perform measurement at time t = 0, the system’s
state would collapse into any of the search states with equal probability 1

N . It is through the
amplitude amplification technique that the quantum search algorithm is able to significantly
enhance the probability of measuring a solution state, and, at the same time, due to unitarity
of probability, to lower the expectation of non-solutions.

The system’s state |ψ〉 can be visualized in terms of the 2D subspace generated by
{|ω〉 , |ν〉} as a vector in the 2D plane spanned by |ω〉 and |ν〉, which are orthonormal by
construction, as seen in Figure 4.

Figure 4. Geometric interpretation of Grover’s algorithm.

Mathematics 2022, 10, 2475 8 of 29

Since S is typically much lower than N, the angle θ/2 between |ψ〉 and |ν〉 is small,
which is the same as saying that initially, measuring a state that is not a solution is much
more probable than measuring |ω〉.

One way of looking at the rotation induced by the H Hamiltonian that we introduced
at the start of this section, is by interpreting it as a double reflection, one with respect to |ν〉
and the other in the opposite direction, about the |ψ〉 vector. As such, we define G as the
Grover operator, i.e., the operator that rotates |ψ〉 according to the two reflections Uω and
Us so that G = UψUω. Employing this operator a certain number of times will eventually
rotate |ψ〉 until it overlaps with |ω〉, meaning that measurement at that time will output the
solution state with near-certainty. It can be shown [21], on the assumption that S < N/2,
that such procedure is able to evolve |ψ〉 to |ω〉 after a number R of rotations that has an
upper bound equal to

R ≤
⌈

π

4

√
N
S

⌉
(5)

Building a Grover operator, therefore, resolves to constructing the individual Uω and
Uψ operators, namely, the oracle and the diffuser.

In general terms, the oracle Uω is an operator that marks the solution(s) of the search
problem in accordance with the association [21]:

Uω : |x〉 |q〉 −→ |x〉 |q⊕ f (x)〉 (6)

where |x〉 is the register we want to search on, |q〉 is the oracle qubit, ⊕ denotes addition
modulo 2, and f (x) is a function such that f (x) is 1 if x = ω and 0 elsewhere; in other words,
f (x) flips the phase of the oracle qubit if x is a solution. As for |q〉, while we normally
initialize it to the |0〉 state, such that we can detect a marked state by checking if f (x) has
flipped it to the |1〉 state, it is useful, in order to take advantage of the phase kickback effect
within the context of the algorithmic procedure we are constructing, to set the initial state
of |q〉 as |q〉 = |−〉 with |−〉 = 1/

√
2(|0〉 − |1〉) [36]. When x is not a solution, applying

the oracle to |x〉 |q〉 leaves the state unchanged, whereas if x is a solution for the search
problem, |0〉 and |1〉 are interchanged, and the resulting state becomes − |x〉 |q〉, i.e.,

Uω : |x〉 |q〉 −→ (−1) f (x) |x〉 |q〉 (7)

On account of the fact that the state |−〉 itself is not affected by the controlled operation
(rather, it influences |x〉 through phase kickback), it can be omitted from the description,
so that the expression that describes the actual action of the oracle on the input register
now becomes:

Uω : |x〉 −→ (−1) f (x) |x〉 (8)

This is equivalent to saying that the oracle marks a solution by inverting its phase once
it recognizes it. The effect of applying Uω to |ψ〉 according to expression (8) geometrically
corresponds to the reflection of |ψ〉 about the |ν〉 vector. The other factor of the Grover
operator is the diffuser Uψ, whose job is to execute the second reflection about |ψ〉, which
is done with

Uψ = H⊗n(2 |0〉 〈0| − I)H⊗n = 2 |ψ〉 〈ψ| − I (9)

This results from a basis change of the state |ψ〉 to the computational or Z-basis
through the Hadamard transform H⊗n, subsequently applying a conditional phase shift,
that is, a phase shift of -1 to every element of the Z-basis except for |0〉, defined as

2 |0〉 〈0| − I (10)

that performs the mapping |x〉 −→ −(−1)δx0 |x〉, where δx0 is the Kronecker delta on the
states x and 0, and then re-applying H⊗n to get back to |ψ〉. This is achieved on a quantum

Mathematics 2022, 10, 2475 9 of 29

computer with the support of the MCZ gate, which inverts only the phase of the state
|11 . . . 1〉, so that (10) is associated with

2 |0〉 〈0| − I ←→ −X⊗n(MCZ)X⊗n (11)

which means ignoring the global phase -1,

Uψ = H⊗nX⊗n(MCZ)X⊗n H⊗n (12)

This is a convenient formulation, since the diffusion operator is standardized and not
problem-specific, as opposed to the oracle Uω, whose design is the main concern when
applying Grover’s algorithm to a problem. The complete structure of a Grover operator
G is represented in Figure 5. Grover’s quantum search can be carried out with O(

√
N/S)

oracle calls, as expressed in (5), and since it is proven that no search algorithm can achieve
a complexity lower than

√
N/S, or it is Ω(

√
N/S), we know that the Grover procedure is

optimal [21,37].

Figure 5. Schema of the circuit for a single Grover iteration, as described in [21]. First, the Uω

oracle is applied in order to mark the solutions of the problem, then, the diffuser Uψ performs the
reflection about the |ψ〉 vector through a conditional phase shift, sandwiched between two Hadamard
transforms. The oracle workspace register contains additional qubits that may be needed to perform
the computation in the search space.

2.5. Harnessing the Quantum Advantage

The main reason behind the development of a quantum algorithm, apart from a
pure conceptual interest, is that of the prospect of being able to solve fundamentally hard
problems, such as path planning, both efficiently and in significantly reduced amounts
of time. Although the computational power of quantum systems is theoretically proven
to be superior with respect to any classically-achievable procedure [21,38], it is still un-
clear whether the actual construction of quantum machines powerful enough to achieve
quantum supremacy is practically feasible (see Section 7.1 for a discussion on the issues
of computation on quantum hardware). The authors of [39] simulated different instances
of the hybrid QAOA [40] applied to the Max-Cut problem, artificially introducing “noise
gates” to reproduce the effect of quantum decoherence of the physical quantum devices.
They showed that no significant speed-up is attainable for noisy machines unless several
hundreds of qubits are available. Although this is certainly not a promising outcome, it
is worth bearing in mind that the evaluated results are only restricted to a specific pro-
cedure applied to solve a specific problem, and no inference can be made on the general
computational capabilities of quantum computers whatsoever. More recently, Hlembot-
skyi et al. [41] investigated the performance of Grover’s algorithm on real quantum devices
equipped with ion-trap technology, presenting encouraging data that demonstrate the ac-
tual improvements of the quantum search algorithm, which exceeds any possible classical
approach even in the case of a single oracle call. Other studies have been made towards
the exploration of the effectiveness of Grover’s algorithm, such as [42–44], and even a
hardware efficient implementation has been proposed in [45], reducing the total depth and
gate count of the circuit for the quantum search algorithm. All such experimental clues tilt
the scales in favor of the actual, practical usefulness of Grover’s algorithm for real-world

Mathematics 2022, 10, 2475 10 of 29

applications once more powerful and stabler quantum technologies are built [46,47], which,
in the case of IBM’s quantum systems, should occur no longer than a handful of years,
according to their 2025 quantum roadmap [48].

3. Planning Environment

The objective of the presented case study is the planning of the movement activities of
a robotic entity that encode a path on a map through quantum computations. In that regard,
a path is interpreted as the sequence of movements of the robot within a square n× n grid
map with obstacles, from the initial rstart cell to the goal position g (see Figure 1).

This environment is nicely described as a taxicab geometry [49], with the individual
cells of the grid corresponding to the taxicab points and their adjacency being modeled by
the connections between neighbor nodes. The main advantage of looking at the problem
this way lies in the fact that the taxicab metric to quantify the distance between two points p
and q, which in our case are elements of a 2D vector space with fixed Cartesian coordinate
system, is the L1 Manhattan distance, defined as

d1(p, q) = ||p− q||1 = ∑
i
|pi − qi| (13)

whose ease of evaluation will come in handy while estimating the minimum number
of moves that the robot will need to apply in order to reach the goal, an information
required to localize the section of the Grover oracle that tests if a given state is a solution to
the problem.

The position of the robot is described through the binary encoding of the map cells,
that requires a number of qubits equal to

Nqb_pos(n) = dlog2n2e (14)

In relation to (14), we chose to work with n× n square maps where n is a power of
two. This choice is motivated by the following reasons: from (14), in the case that n was
not a power of 2, the ceiling function would still round up the resulting number of qubits,
with the states from |n2〉 through |(n + 1)2 − 1〉 being unused, leading to a waste of qubit
utilization; also, binary encoding words of length 2k offers convenient symmetries when
working with them, allowing optimizations and lowering the design complexity of the
quantum algorithm, as we shall see in the implementation sections. Considering that the
positions can be referred with row and column indexes, the position code takes the form
(r0, r1, r2, . . . , rNqb_pos(n)−1), where the first half of the position code is related to rows while
the second half encodes the column coordinates. Since n is a power of two, it is always
possible to split in exact halves the position code.

The actions that the robot can perform are listed and a binary code m = (m0, m1, . . .)
is associated to each of them. As for the position, the number of qubits needed to represent
such encoding is bound to the number of actions:

Nqb_action = dlog2(N_actions)e (15)

This encoding is the foundation for the quantum operators that implement the Grover
procedure that solves the path planning problem. Particularly, the block operators used
to compose the Grover oracle are the M and T blocks, respectively, those referred to the
quantum evaluation of the movements on the board and the test on whether the goal
position has been reached.

A control function, embedded within the M blocks, evaluates the moves from a
specific position according to the presence of walls and/or obstacles and checks whether
the subsequent action can be performed to reach the new position, in the production system
fashion. Particularly, M performs what we call a quantum move by applying one iteration of
the RAC: it takes as input the system state |r〉 |m〉, corresponding to the current position
state of the robot |r〉 together with the superposition of all the possible directions it can

Mathematics 2022, 10, 2475 11 of 29

move to, |m〉; it also sets up the validation of preconditions, checking which moves are
allowed according to the structure of the map and applies all the allowed actions according
to the validated rules, outputting the superposition of all of the valid positions that can be
reached from the input state. After a number of moves have been computed, the resulting
state is fed to the T block, that acts on the oracle qubit |q〉 while checking whether the
resulting superposition contains the |ω〉 solution state.

The approach is inspired to the work illustrated in [7]. The novelty is to apply such an
approach to a fundamental robotic problem, such as the path planning task. In particular,
the novelty consists in explicitly using a set of reactive rules that constantly monitor the
environment and take appropriate actions to achieve a goal, exploiting the advantages of
quantum computing.

In Sections 4 and 5, we show our quantum path planning algorithm directly through
the implementation of two use cases related to 2× 2 and 4× 4 environments, presenting
the rationale used in the construction of our modified Grover procedure, and focusing both
on the individual operators that constitute the oracle and on the global structure of the
quantum circuit that solves the path planning task.

4. Planning in a 2 × 2 Map

A simple case for the planning of the path of a robot is represented by the case where
the map has only four possible positions, each one of them being encoded with 2 bits
of information, with rstart representing the starting cell, while a different g represents
the goal position. Our objective is finding the actions that can bring the robot from rstart
to g. A plot of this environment is shown in Figure 6. The position along the rows is
encoded by a single bit r0, while the column index is represented by r1. In such a 2× 2 map,
movement can be encoded with a single bit mi, similarly to what is performed in [7], where
motion is interpreted as a clockwise or anticlockwise rotation; the i index of mi is such that
0 ≤ i ≤ µ− 1, µ being the total number of actions in the path.

Figure 6. Schema of a 2× 2 world. rstart depicts the robot in the (0, 0) cell, while g indicates the goal
cell. The planning goal is reached when the current position state contains the location (1, 1).

4.1. The M Block

The M block is the quantum computational operator that updates the current position
of the robot, represented by r = (r0, r1), according to the value of the move mi; it also takes
as input c0 and c1, the auxiliary qubits needed to achieve reversibility of the operation,
whose job is that of storing the evaluation result that would otherwise overwrite the
information of the position and move inputs. The new position is provided as the outputs
r′0 = c0 ⊕ f0 and r′1 = c1 ⊕ f1, whose expression has been extracted directly from the
examination of the resulting cell that the individual moves bring the robot into, converting
the behavior described in Table 1 to the Boolean expressions of (16).

r′ = (r′0, r′1) = (r1 ⊕m0, r0 ⊕m0) (16)

Mathematics 2022, 10, 2475 12 of 29

Table 1. The values of the M block for the position of the robot in the map. m0 = 0 and m0 = 1 are
associated, respectively, with a counter-clockwise and clockwise movement so that for example, if the
robot is in (0, 0) and m0 = 0, the new position is (1, 0).

f0 f1 f0 f1
mi = 0 mi = 1

r = (0, 0) 1 0 0 1
r = (0, 1) 0 0 1 1
r = (1, 0) 1 1 0 0
r = (1, 1) 0 1 1 0

The output register is, therefore, composed of the starting input values, together with
the updated position, stored in the ci bits. Figure 7 shows the reversible M block and its
corresponding quantum circuit implementation, where the |ci〉 register is to be considered
as initialized in the |0〉 state (as it will be for every other auxiliary qubit).

Figure 7. Motion block and its quantum circuit implementation. The quantum circuit is built
considering that the output of the XOR operation can be evaluated by two CNOTs controlled by the
inputs, that act on the same target qubit (see description of Figure 3), as seen in the figure for both
r′0 and r′1, respectively, stored on |c0〉, where the additional X gate negates the output of the XOR,
and |c1〉, according to the logic of (16).

4.2. The T Block

The test block is used to check whether the target condition has been met. In our case,
the condition is that the robot has arrived in the goal position, that, for the case of Figure 6,
is the cell identified by the coordinates (1, 1). The schema and the implementation are
shown in Figure 8.

Figure 8. Schema of the T operator for testing if the target position in a 2 × 2 map has been reached.
The controlled qubit’s phase is inverted when the robot reaches the position indicated by the target
g = (g0, g1) = (1, 1) or, equivalently, when the function f of (6) outputs 1.

In this situation, the T block is implemented with a simple Toffoli gate, since the goal
configuration is reached when both the current position indices of the robot are set to 1,
which translates to the solution state that needs to be marked by the T operator being
|ω〉 = |11〉.

Mathematics 2022, 10, 2475 13 of 29

4.3. Grover’s Oracle

The oracle Uω of the Grover procedure is constructed by combining the previously
described M and T blocks, that perform the movement of the robot in the map and test if
the goal position has been reached.

Following our interpretation of the square map as a taxicab geometry, the minimum
number of movements needed to reach the cell g from rstart, according to (13), is equal
to the Manhattan distance d1(rstart, g) = 2, meaning that the path that we are trying to
compute is composed of two movements, that is, µ = 2. As a consequence, two M Blocks
are cascaded before T is applied.

In the general description, the oracle typically presents an additional CNOT gate that
controls the oracle qubit within the T operator, as seen in Figure 9, but for the implementa-
tion of this specific case, we considered that no additional |0〉 qubit to be flipped is needed,
since we can adopt the third input of the Toffoli gate as the marking qubit, sparing the
additional control.

Figure 9. Schema of Uω with M and T operators for two moves. Given that we are working on
finding the moves that determine the path of the robot while testing on the positions such moves
result into, we have the necessity of getting back to the initial |m〉 after the M and T operators have
been applied, since it is this |m〉 that we perform the actual search on and that we feed the diffuser
Uψ to. We do that by uncomputing the processing of the M operators, undoing everything that we
have just completed and getting every qubit to its initial state, except of course for the oracle qubit
|q〉. Luckily for us, this action can be implemented effortlessly, considering that all we need to do is
to embed a mirror circuit of the first half of the oracle, i.e., apply an M† and T† operator for every M
and T in the oracle’s first part, in reverse order.

Figure 10 shows the quantum circuit for the oracle in Figure 9, used to mark the
solution when the robot reaches the (1,1) position.

Figure 10. Implementation of oracle with the M and T quantum circuits.

To complete the circuit of the Grover procedure, the starting |m〉 register is uniformly
superposed through Hadamard gates, together with |r〉, while the |q〉 qubit is initialized
to |−〉 and the |c〉 register is set to |0〉 by default. Just after the oracle, the diffuser Uψ is
appended on the qubits that encode the search space. A representation of the quantum
circuit is shown in Figure 11. For clarity’s sake, in Section 2.4, when deriving the upper
bound for the number of rotation that the Grover operator performs, we assumed that
S < N/2. Here, we see that from the particular configuration we chose, the number of
valid paths is S = 2, out of a total N = 4, meaning that the precedent assumption is not
verified. What this implies is that, since we have S = N/2, the θ/2 angle expressed in
Figure 4 of the starting |ψ〉 with respect to |ν〉 is θ/2 = π/4 radians. Since one application
of the Grover operator rotates |ψ〉 by θ = π/2, we can easily deduce that, no matter how

Mathematics 2022, 10, 2475 14 of 29

many Grover iterations, the new, updated |ψ〉 results in a vector whose direction always
lies on one of the space’s quadrant bisector. As a consequence, if the state’s phase is in the
form π/4 + kπ/2, the corresponding probability will be perfectly uniform for all of the
states of the search register, effectively voiding the entire amplitude amplification technique
of Grover’s algorithm. This peculiar case can be fixed by finding a way to alter the ratio
S/N so that S < N/2, which we can do by choosing a wider search space that contains
the starting one. We achieve that by involving the |r〉 state into the search, applying a
Hadamard transform to it and feeding it to the diffuser together with |m〉, meaning that the
starting position is not wired into the circuit any more, but instead we are now considering
every path of length 2 from each of the map cells.

Figure 11. Implementation of the quantum circuit for the Grover procedure applied to the path plan-
ning problem in the 2× 2 environment. The search space is encoded as a the uniform superposition
of the inputs through Hadamard gates, the oracle of Figure 10 covers the central part of the circuit,
and the upper-right purple block is the diffuser Uψ, realized as of (12). In the rightmost part are
present the measurement operation for |r〉 and |m〉.

The output of the simulation of the quantum circuit performed with the Aer simula-
tor [50], is shown in Figure 12. The configurations with an equal probability to provide
a correct solution for the circuit are: |0000〉 , |0111〉, |1011〉, and |1100〉. The two most sig-
nificant bits are referred to movements, while the other two correspond to the starting
position: if the robot starts from (0, 0), one way of reaching the final position (1, 1) is
to use two consecutive clockwise movements, i.e., |m〉 = |11〉, or, in an equivalent way,
to use two counter-clockwise movements, |m〉 = |00〉, this corresponds, respectively, to
the measured |1100〉 and |0000〉 states. The other two solutions are the trivial ones: the
robot starts from the (1, 1) position and the two actions bring it to the same position; so the
second movement is equal and opposite to the first one, that is |m〉 = |10〉 or, equivalently,
|m〉 = |01〉. The corresponding measured states are |1011〉 and |0111〉.

Figure 12. Probability distribution of the output configurations for the 2× 2 case. According to
Qiskit’s convention of representing the registers from the least to the most significant bits, the first
two bits of the bin labels correspond to movements and the last two bits are associated with the
starting position.

5. Planning in a 4 × 4 Map

We now adopt the same approach to a slightly more complex problem instance, where
the robot moves through a 4× 4 map, as depicted in Figure 13. The problem is encoded the

Mathematics 2022, 10, 2475 15 of 29

same way as the 2× 2 case, with the exception of movement, for which the clockwise and
counter-clockwise rotations are now not sufficient to describe the complete set of activities
that the robot can perform in this bigger environment; instead, both movements along
the vertical and horizontal directions are required to be considered. This is still a simple
problem, but its construction incorporates the generalization of some key aspects, not
present in the 2× 2 illustration, such as the explicit production logic we introduced in
Sections 1 and 2.3. For larger maps, the structure of the procedure is the same as that of
4× 4, where the only changing parameter is the overall number of qubits needed to encode
the problem.

Figure 13. The 4× 4 map, the starting point has been placed in the left upper corner, the target
position g is in the right bottom corner.

The robot starts at coordinates rstart = (00, 00) and the goal is located at g = (11, 11).
Movements will be described in the most general way, with an encoding that can be also
applied for every n-dimensional grid with n ≥ 4. The four possible moves allowed in our
taxicab geometry, according to expression (15), are encoded with Nqb_action = 2 qubits with
the association shown in Figure 14, so that if, for example, the measurements of the |mi〉
qubits, constituting the final path, provide the 01 result, it means that the robot, at the t-th
stage of the path, has to move rightwards. Similarly for all the other movements.

Figure 14. Encoded moves within a generic map (n ≥ 4).

5.1. The M block

The M operator deals with a more complex world than that of the 2× 2 instance and
the previously adopted solution of constructing its truth table by direct examination of the
individual actions cannot be used here, as it would require the hard coding of an impractical
number of rules. Instead, we developed a general strategy that explicitly implements a

Mathematics 2022, 10, 2475 16 of 29

probabilistic production logic, following a modular procedure that can be directly extended
to any n× n study case.

According to the general position encoding of the map cells, movement can be inter-
preted in the following manner:

• moving to the right means adding 1 to the column index of the current position;
• moving to the left means subtracting 1 to the column index of the current position;
• moving down corresponds to adding 1 to the row index of the current position;
• moving up corresponds to subtracting 1 to the row index of the current position.

As a consequence, generally, computing an updated position consists of: (1) decoding
the movement bits, (2) applying the right operation in terms of adding or subtracting
1 to the appropriate index, (3) evaluating if the movement is licit, and (4) eventually
choosing the final movement. Correspondingly, the M operator can be considered as the
concatenation of four sub-blocks, as shown in the schema of Figure 15. The individual
blocks are detailed in what follows.

Figure 15. Block schema of the components of the M operator for the 4× 4 case.

5.1.1. Decoder

As shown in Figure 14, two bits encode the four possible moves that the robot can
execute. Since the movements encoded in the |mi〉 register affect both the indexes of rows
and columns, for a total of Nqb_pos(4) = 4 bits, an expansion of this code, such as that of
expression (17), is needed to map the starting m to the decoded configuration. We do that
with a 2-4 decoder.

m = 00 −→ 00 11

m = 01 −→ 00 01

m = 10 −→ 01 00

m = 11 −→ 11 00

(17)

At stage i, this module takes the two-qubit register |mi〉 and outputs the 4-qubit, 4-state
superposition of the binary words on the right side of (17), that is, the state

1
2
(|0011〉+ |0001〉+ |0100〉+ |1100〉) (18)

which, from the most to the least significant qubit, can be computed through the operations

(d0, d1, d2, d3) = (m0 ·m1, m0, m0 ·m1, m0) (19)

This corresponds to the circuital schema of Figure 16, where the resulting 4-qubit
binary word is encoded in the state |c0m0c1c2〉. As an example, when this operator evaluates
the |00〉 component of the input superposition of the |mi〉 register, the corresponding
4-bit output component, 00 11, according to (17), is computed and stored in the |c0〉,
|m0〉, |c1〉, and |c2〉 qubits, so that |c0m0c1c1〉 = |0011〉. This is the value that will be
added to the current binary encoding of the robot’s position through the next sub-block of
the M operator.

Mathematics 2022, 10, 2475 17 of 29

Figure 16. Circuital schema of the 2-4 decoder. The gates are arranged as to compute each of the
individual components of the logic of expression (19), with the outputs being labeled on the right of
the corresponding qubit wire they are stored to.

5.1.2. Move Maker

This block evaluates the four possible positions that can be reached from the current
one, according to the indexing rules of Section 5.1. Instead of building one module for
addition and one for subtraction of the position indexes, a single modulo-4 adder is
considered, which allows us to both sum 1, in the traditional way, and at the same time
subtract 1 by summing 3 to the input, since in modulo-4 arithmetic, −1 ≡ 3 (mod 4). More
generally, in a n× n case, a modulo-n adder is capable of subtracting 1 by adding n− 1 to
the current index. This is the standardized solution for generalizing classical adder circuits
to also perform subtraction, as described in [51]. Our mod-4 adder, considering separated
rows and columns, can be built upon XOR gates, as shown in Figure 17.

Figure 17. Circuital schema of the mod-4 adder. The position index (r0, r1) is added to the correspond-
ing decoded displacement (d0, d1) (as of expression (19)) to get to the updated position index (y0, y1).
Note that the sixth and seventh gates are exactly equal to the third and first ones, since they are used
to uncompute the value of |y1〉, which is no longer needed, in order to reset it to the default |0〉 so
that it can be used to compute the second bit of the output without introducing further auxiliary
qubits. This technique is discussed in more detail in Section 7.3.

Mathematics 2022, 10, 2475 18 of 29

The circuit of Figure 17 computes the sum between the two 2-bit numbers correspond-
ing to the row index of the current robot’s position, (r0, r1), and the related displacement
outputted by the 2-4 decoder, (d0, d1), according to

(y0, y1) = ((r0, r1) + (d0, d1)) mod 4 (20)

In regards to the column index, another mod-4 adder of the same structure is cascaded
to the first one, implementing the expression

(y2, y3) = ((r2, r3) + (d2, d3)) mod 4 (21)

As an example, if the robot’s current location was fixed (not superposed) in the cell
(10, 10), i.e., |r〉 = |1010〉, the resulting position state after the application of the 2-4 decoder
and the two cascaded adders to the |r〉 and the (superposed) |mi〉 qubits would be of
the form

|y〉 = 1
2
(|0110〉+ |1011〉+ |1110〉+ |1001〉) (22)

meaning that the updated position of the robot is now a combination of all of the positions
it could have moved to starting from (10, 10), namely, the cells (01, 10), (10, 11), (11, 10),
and (10, 01).

So far, we built an operator that inputs the |m〉 register to the 2-4 decoder and computes
the position that results from the quantum move. This structure does not take into account
the presence of map edges nor that of obstacles or, to put it in another way, this would be a
valid M if our robot traveled unimpeded on a toroidal surface. To consider the limits of the
map and the presence of unavailable positions a check on the possible moves is performed,
as explained in the next section.

5.1.3. Move Validator

In an effort to embed the move constraints, corresponding with the actual evaluation
of the precondition-action pairs of the quantum production model, we designed the recog-
nizing part of the RAC with a Move Validator. In addition, we built the action-performing
section with a conditional operation that applies a move according to the information
provided by the Move Validator. All of that is realized within the same M operator.

Resembling the same operations of the Grover oracle, the Move Validator recognizes
(or “marks”) the moves that are valid, where a non-valid move is one that directly brings
the robot beyond an edge of the map (a situation that we will refer to as a jump) or that
has it hit an obstacle. A move that causes a jump, for example the one that brings the
robot from r = (11, 01) down and up to y = (00, 01), due to the symmetry between indices
of edge cells in maps whose dimension is a power of 2, can be detected when one of the
(row or column) indexes goes from 00 to 11 or vice-versa, i.e., when the following Boolean
expression is true:

(r0 r1 y0 y1) + (r0 r1 y0 y1) + (r2 r3 y2 y3) + (r2 r3 y2 y3) (23)

The logic of (23) can be exploited to obtain:

((r0 ⊕ y0) · (r1 ⊕ y1)) · ((r2 ⊕ y2) · (r3 ⊕ y3)) (24)

where r = (r0r1, r2r3) is the current position of the robot and y = (y0y1, y2y3) is the new
grid cells where the robot is relocated after the Move Maker block. This function is used
to implement the circuit of Figure 18 that recognizes feasible moves in the sense that the
output of expression (24), computed on the |o〉 qubit, stores the information on the validity
of the currently evaluated move, which the final block, the Move Selector, uses to compute
the final superposition of valid position states.

Mathematics 2022, 10, 2475 19 of 29

Figure 18. Circuit for expression (24) to validate the movements, if the output o is marked, an impos-
sible movement has been detected. Similarly to the circuit of Figure 17, some sections of this operator
uncompute the qubits, freeing up auxiliary qubits that have accomplished their objective and can be
reused to perform other computations.

As for obstacles, we just need to use, in concatenation with the evaluation of (24),
a multi-controlled-X, that, just as before, acts on the |o〉 qubit as to render a specific move
valid or not, as depicted in Figure 19.

Figure 19. Encoded obstacles of Figure 13, the first obstacle is in position (01, 01), the second in
position (01, 10), the third in (10, 01).

5.1.4. Move Selector

What is left is to choose the valid moves among the combination of all the 4 possible
moves, and finally perform the search on their superposition. If a move is valid, then the
final, updated position r′ will be the computed position, i.e., y; otherwise, the robot will
remain in the same cell, that is in r. This choice is expressed through the equivalent of
an if-then-else statement in Boolean algebra, i.e., if o is the condition whose truthfulness
implies y, and r the alternative in the case o is false, then, the variable r′ that stores the
selected choice can be expressed as:

r′ = y · o + r · o (25)

which, translated in terms of the operators of (1), becomes

r′i = (yi · o) · (ri · o) with 0 ≤ i ≤ Nqb_pos(n)− 1 (26)

This logic is consequently implemented through the circuit of Figure 20.

Mathematics 2022, 10, 2475 20 of 29

Figure 20. Selection circuit of expression (26), where the |ca〉 qubits yield the computed y and |c〉
stores the final output r′. The last two sections of the circuit are uncomputing stages.

The global quantum circuit for motion block, that comprises the above described
computations, is shown in Figure 21.

Figure 21. Quantum implementation of the 4× 4 M operator.

5.2. The T Block

The T operator of the global Grover procedure has the structure of a multi input gate
on the encoded goal position, which in our case is g = (11, 11), which translates, similarly
to the 2× 2 case, with a single multi-controlled-X gate.

5.3. Results

From the setting shown in Figure 13, we can deduce that, using a Manhattan distance,
that, initially, µ = d1((00, 00), (11, 11)) = 6. Therefore, we have to choose a total of six
movements to find the absolute minimum-length path from that rstart to the goal. In this
case, the number of possible solutions is less than one-half of all the possible paths in
the search space and, thus, there is no convergence problem for the Grover algorithm
such that of Section 4. For this reason, the |r〉 register is not in a superposition and the
starting position is wired in rstart, implying that the solutions are focused on the moves that
determine the optimal path from the specified starting position.

For the simulation of the quantum algorithm, even if the circuit is optimized, its
structure is still too cumbersome to run on the quantum hardware at our disposal (see
Section 7.2). In particular, this model would need 54 qubits. For this reason, for the sake
of demonstration, we decided to restructure the procedure through the pruning of some
non-essential features. In particular:

• The M operator is stripped down to just the 2-4 decoder and the mod-4 adder, so that
we are in the case that we mentioned in Section 5.1.2, the robot is moving on a toroidal
surface, that can jump from one edge to the other (in any case, this movement is not
allowed for the short distance run by the robot);

• We wired rstart in the (10, 10) position and considered µ = d1((10, 10), (11, 11)) = 2.
For this setting, we considered the usage of a single Grover iteration.

Mathematics 2022, 10, 2475 21 of 29

As a consequence, the simulated case study is represented in Figure 22. This case
can be simulated employing only 20 qubits. The results of the simulation are shown in
Figure 23.

Figure 22. Environment fed to the algorithm for simulation.

Figure 23. Results of the simulation for the map in Figure 22.

In particular, the two solution states, that are |0110〉 and |1001〉, have received a
probability enhancement while all the other states show a sensibly lower probability.
Remembering that 01 and 10 encode, respectively, movement to the right, and down,
the evaluated paths from the simulation are those of Figure 24: a first path consists in going
down and then to the right, or similarly, a second solution is to go right and the down.

Figure 24. Evaluated paths from rstart to g. Although those paths are similar to those evaluated in
Section 4, the way they have been computed is fundamentally different: in the 2× 2 map we built
the M operator out of direct inspection of the problem, here, M has been given a precise and logical
structure, that is scalable to any other map dimension.

Mathematics 2022, 10, 2475 22 of 29

6. The Complete Procedure

In this section we summarize the steps needed to setup and run the presented proce-
dure. Generally, the full quantum path-planning algorithm can be broken down into two
main operational stages: the preprocessing phase, where all the parameters required for
the setup of the Grover procedure are computed, and the composition of all the operators
that make up the path-planning quantum circuit.

6.1. Preprocessing

Preprocessing starts from the encoding of the initial and end position of the robot,
together with that of the obstacles within the n× n map. Once the problem entities have
been located, the µ (minimum) number of moves that constitute the path is computed as
the Manhattan distance (13) between the starting and end positions. The other parameter
needed for the construction of the quantum search procedure is the number of iterations of
Grover’s algorithm, or, equivalently, the number of applications of the Grover operator G.
As we showed in Section 2.4, in the interest of maximizing the probability of measuring
a solution state, the amplitude amplification technique requires O(

√
N/S) employments

of G. Computing the exact number of Grover iterations is thus a task that demands the
knowledge of the number of all the solutions S, that is, how many paths of minimum
length get the robot from rstart to g. The value of S can be obtained either through quantum
counting [52], or by some a priori estimation of the map the robot lives in. Of the two
options, the latter often comes out as the more convenient for our problem since:

• quantum counting is more suitable for the cases where the answer lies on the number
of solutions of the search problem rather than the solutions themselves; also, it is a
quantum-classical hybrid procedure, meaning that at some point we would need to
perform a measurement, destroying the superpositions within the circuit and forcing
us to re-build a new circuit to perform the actual search procedure;

• the convenience of the taxicab geometry interpretation of the environment lets us
perform an estimation of all the possible correct paths in a relatively straightforward
way, removing the necessity of performing the more direct, but burdensome procedure
of quantum counting.

6.2. Circuit Composition

Having established the path length and iteration parameters, the individual M and
T blocks are constructed, according to the structure of those of Section 5, with a suitable
adaptation to the map size in terms of the number of qubits that encode the problem
instance. After the initial state preparation of the qubits that encode the search space in
a uniform superposition, together with |q〉 = |−〉 (and everything else being set to |0〉),
the Grover oracle is built by composing the M and T blocks in a similar way to the schema
of Figure 9, where a number µ of Ms is cascaded before a T is applied, and the resulting
circuit is mirrored with respect to the control operation on the oracle qubit |q〉. It is worth
bearing in mind that such evaluated µ represents the shortest possible length of a path
that connects the start and the goal in an empty map, and in the case that many obstacles
were present, the µ length may not be enough to reach the target destination. This is
why µ should actually be considered as a lower bound for the number of moves of the
desired path, and its exact value can either be calculated directly in the preprocessing
phase, or a supplementary upper bound τ could be established a priori, with the meaning
of the maximum length of the path that we are willing to consider short enough to be
of significance to the problem. In this second situation, after the first µ M blocks have
been applied, with their corresponding T, additional M–T pairs need to be cascaded for a
number τ − µ times. After the τ-th T block, the circuit is mirrored to complete the oracle,
just as before.

Mathematics 2022, 10, 2475 23 of 29

7. Discussion on Performance and Resource Utilization
7.1. Quantum Hardware Constraints

In order to show a generalized methodology to solve the path-planning problem via
the quantum enhancement, we developed our work on a higher, more theoretical, level
of abstraction, upon the assumption that every qubit is a logical one, and the complete
circuit is noiseless. Although this may enable the reader to better grasp the logic and the
inner mechanics behind the complete algorithm, some additional considerations must be
embedded when implementing the procedure on real quantum hardware, if we want to
harness its full capacity and concretely achieve a computational speed-up over the classical
counterpart instances. The reason is that, at the time of writing, the Noisy Intermediate
Scale Quantum (NISQ) era [53] has just established itself, meaning that the current state-of-
the-art technologies rely on increasingly bigger quantum processors that do not yet have
stable quantum error-correcting codes and are, therefore, not noise-free.

Executing a quantum algorithm on a real quantum circuit subjects physical qubits
to the effect of imperfect calibrations, pulse controls, and most importantly quantum
decoherence. If, on one hand, these phenomena are negligible when considered within
elementary operations and in relatively small time intervals, when added up in more
complex circuits they might significantly impact the runtime complexity of an algorithm,
and even its correctness [39].

This implies that the circuit design, apart from its core logic, must be optimized in
accordance with the device it is intended to be run on. As an example, different quantum
technologies may vary from each other in terms of the two-state quantum-mechanical
system used to encode the qubit information, or with regard to the single-gate optimiza-
tion [54] (e.g., Clifford vs. non-Clifford gates [55]). For this reason, many quantum service
providers offer auxiliary software tools that automatically transpile the designed circuit
into one that is the most suitable for the target machine [56].

Nonetheless, whichever the technology used, the loss of quantum coherence as the
computation progresses seems to be the most prominent hindrance for both the efficiency
and efficacy of a quantum algorithm [39,57]. Decoherence is directly associated with
the depth of the circuit, as a longer computation time makes the system more prone to
cascading noise interference. As a consequence, non-fault-tolerant quantum computers
are required to limit the temporal length of their processing, which, in turn, restricts their
computational power, although evidence of quantum advantage has already been shown
for a subset of problems solvable with shallow circuits [58].

7.2. Simulation Constraints

In this context, we chose to assess the reliability of the approach by showing the output
evaluated by Qiskit’s Aer simulator on our local, classical machines. Any such simulation,
in itself, models the qubits’ behavior only in terms of the rationale of the algorithm and is,
of course, exempt from the noise concerns that characterize real quantum devices. On the
other hand, simulating a quantum algorithm is a task that is exponentially more difficult to
perform as the number of qubits of the algorithm grows: a n-qubit state is described by
2n complex numbers, which Python stores as 2 real numbers, each of 24 bytes. It follows
that, if a machine is equipped of ram_size bytes of RAM, the number of qubits n that can be
simulated by that machine is subject to the condition

48 · 2n ≤ ram_size (27)

The simulations in Sections 4 and 5 were performed on a machine with Intel(R)
Core(TM) i7-8565 CPU @ 1.80 GHz and 16 GB of RAM, which, from (27), translates to a
theoretical maximum simulable number of qubits equal to n = blog2(16 · 109/48)c = 28; in
practice, we empirically observed that the actual limitation is of 27 qubits, due to some of
the total memory always being utilized by the operating system and its auxiliary processes.
Albeit Qiskit offers a range of additional optimized simulation services on IBM’s remote

Mathematics 2022, 10, 2475 24 of 29

classical devices that boost the number of simulable qubits from 63 up to 5000 [59–61],
none of which are compatible with the structure of our method, due to those services being
reliant on specific a priori assumptions that our path-planning quantum circuit does not
satisfy. As an example, the “matrix product state simulator” [62], does not implement
the MCZ gate, a central component of Grover’s diffusion operator (see Equation (12) of
Section 2.4); similarly, the “stabilizer simulator” [63], lacks the support for even simpler
operations like the CZ or CCX gates. Ultimately, the “extended stabilizer simulator” [64],
while supporting all of the required gates, optimizes the simulation by partitioning and
compressing the evaluation of the circuit into smaller networks, which corresponds to a
result spectrum that does not reflect the actual global behavior of the algorithm, meaning
that its output is incomplete and sometimes imprecise, when put into the perspective of a
complete, general simulation technology, such as that of the Aer provider.

7.3. The Uncomputing Technique to Spare Qubits

The considerations of Sections 7.1 and 7.2 naturally routed us towards the choice
of the trade-off that enables the ability to run the problem instances that are the most
explanatory: a noise-free, size-restricted simulation over Qiskit’s Aer classical simulator.
Such a model is not subordinate to a confined circuit depth, meaning that, as long as the
qubit utilization falls within the estimated theoretical upper bound, any relatively deep
simulation is possible. The decision to optimize the number of circuit qubits is justified by
the fact that this parameter is more flexible than the other parameters such as the intrinsic
depth of a complex procedure as Grover’s. In this section we show how we took advantage
of the uncomputing technique to reduce the number of qubits of the circuits that solve
our problem instances at the expense of depth, with the purpose of achieving a simulable
system whose outputs reflect the validity of the presented approach. It should be noted
that this technique is only useful for the sake of simulation, and it should not be a part of
the design of a circuit executed on a physical device that does not account for a suitable
error-correction scheme, as we will discuss in the next section.

The uncomputing technique is based on the consideration that the auxiliary qubits of
quantum-computational operators, thanks to the intrinsic reversibility of quantum gates,
can be brought back to their initial status and reused as ancillary qubits for subsequent
computation. In this regard, we cannot simply perform a traditional reset, since resetting is
itself an irreversible operation, and it would consequently violate the unitarity constraint
of quantum operators. This is why we take into account the fact that the computations that
we performed on the auxiliary qubits, being reversible, can be undone, or uncomputed,
with the same philosophy as that of the mirror circuit of the Grover oracle (Figure 9).
For that reason, as soon as we notice that a qubit is “free” (i.e., it is no longer involved in
the remaining computations of the circuit), we perform the operations that affected its state
in reverse order, which gets it back to the |0〉 state, just as it was initialized at the start of
the quantum circuit.

This means that, if for example the auxiliary qubits |caux〉 needed to perform the
reversible computations of some operator U are u in number, performing a cascading
operation such as the concatenation of the M operators that we saw in the previous sections,
for m times, would mean a total of u ·m additional accessory qubits needed to perform the
computation. If once the first u qubits have been used, they are reset to their initial state
and subsequently used by the next U, repeating this process for m− 1 times, only a total of
u qubits are used in the entire cascade, which indicates that we were able to transform the
linear growth of auxiliary qubits to a constant one. In our case, this technique nearly halves
down the total number of qubits that the circuit requires, enabling simulations within the
Aer simulator.

7.4. Quantum Advantage of Grover’s Path Planning Formulation

In Section 2.5 we established that the expectation of improved quantum technologies
will indeed yield in favor of the applications of Grover’s algorithm. We are now left with

Mathematics 2022, 10, 2475 25 of 29

the theoretical assessment of its compatibility with our formulation of the path planning
problem in terms of a quantum tree search. Two aspects directly influence the conceptual
effectiveness of quantum searching on a tree structure: the ratio S/N between the number
of desired solutions S over the size of the search space N, and the branching factor of the
constructed tree. We have already considered the former aspect in the implementations
of Sections 4 and 5, where we showed how we can always find a way to satisfy the
inequality S < N/2 by increasing the search space and the number of solutions (for
example adding trivial ones to significant ones). Regarding the tree search, in particular
when the branching factor is not constant, the quantum solution, as the one proposed in
this paper, will outperform the classical procedure if the average branching factor bavg is
greater or equal than the square root of the maximum b.f., bmax, specifically. In Appendix A,
a trace for the demonstration of the inequality is given.

bavg ≥
√

bmax (28)

The taxicab world where our robot lives is such that, from any position, only 2, 3 or
4 moves are possible, respectively, associated with the robot being in a corner, an edge, or
in the middle of the map. This means that the tree that contains our path only has nodes
with 2, 3, or 4 children, where bmax = 4 always and bavg varies according to the size n of the
map. It follows, from (28) that the condition for quantum speed-up for the path planning
problem is

bavg > 2 (29)

Since the minimum branching factor of the tree is bmin = 2, we know that bavg has
to necessarily be greater than the minimum value it is computed upon, meaning that (29)
is indeed satisfied. The study of [13] also shows that Grover’s search achieves an exact
quadratic speed-up only when the problem tree has a constant branching factor. In cases
such as ours, where the b.f. is not constant throughout the whole structure, the farther
bavg is from bmax, the smaller the improvement is over a classical search; as soon as bavg
gets lower than the threshold of (28), the performance can get worse than that of classical
machines. In our context, we just showed that this last situation does not occur and that a
quantum speed-up is always present. In addition, if we analyze the structure of the tree
in relation to the map positions, we notice that the number of nodes with 2 children is
always 4, one for each corner of the map, those with 3 children are (n− 2) · 4 for a n× n
map, and the central ones, with 4 children, are (n− 2)2 in number. Since the nodes with
4 children, i.e., those with the maximum branching factor, grow quadratically as the size of
the map increases, with respect to the linear and constant growth of the other two cases,
we know that as the problem instances get larger, the bavg value will progressively shift
towards bmax, meaning that the procedure asymptotically behaves as one applied to a tree
with constant branching factor, i.e., one with the maximum speed-up possible to achieve.

7.5. Success Probability

The stochastic nature of quantum algorithms implies that the final measurement of
the registers that encode the output collapses the main state wavefunction into one specific
observable state with a given probability. As we have shown in Section 2.4, Grover’s
amplitude amplification technique is designed in regard to evolving the measurement
probability distribution so that the problem’s target states results as much more probable
of being measured with respect to everything that is not a solution. Nonetheless, except for
some particular cases, the probability outcome of a given solution, although maximized,
is not necessarily 1, meaning that, however less likely, it is still possible to measure states
that are not significant. This means that, even though the quantum search algorithm
has been shown to be indeed optimal [37], its actual, practical, usefulness is achieved
when further considerations about success probability and fault-tolerance are taken into
account, according to the requirements of the problem it is trying to solve. Analyses on
the precision of the general Grover procedure, such as those of [65,66], show that the

Mathematics 2022, 10, 2475 26 of 29

efficacy of the algorithm is predominantly dictated by the ratio S/N of the number of
target states over the size of the search space. Particularly, Ref. [66] shows that the average
probability of finding a match with a single random guess is one-half, both for the classical
and quantum unstructured search algorithms. With one application of the Grover operator
G, the quantum search is able to output a solution with certainty only in the case that
S/N = 1/4 (as for the problem instance of Section 4), while it is below 1/2 for S > N/2
and will fail with certainty for S = 3N/4. In addition, in [66] it is derived that when the
algorithm is iterated the optimal number of times according to (5), the minimum success
probability is approximately 1/2 in the case that S = N/2, with a behavior similar to that
of the classical single random guess when S > N/2. When 0.145 < S/N ≤ 0.5 a single
iteration is needed and in the case that S/N = 0.25 success is achieved with probability
1. When S/N < 0.145, more than one iteration is required to improve the effectiveness
of the algorithm. In order to maximize the success probability as much as possible, some
specific techniques, such as those implemented in Section 4 and discussed in [21,66], can be
embedded in the general procedure. The main idea relates to the varying of the ratio S/N
so that it falls within a threshold where the success probability is higher, as discussed before.
The ratio can be altered arbitrarily and in different ways, as we did in Section 4.3, with the
incorporation of both additional trivial solutions and search space elements, or by just
increasing the search space for example with N additional non-solutions, with a number of
optimal iterations equal to π/4

√
2N/S and a time complexity that is therefore still equal

to O(
√

N/S).

8. Conclusions

In this paper, the path-planning task of a robot with a quantum approach has been tack-
led. The methodology exploits the theoretically well-founded methodology provided by the
Grover algorithm to plan the movements of a robot on a map. The task is computationally
expensive since its cost grows exponentially with the depth of the search tree.

The approach exploits Grover’s algorithm to map the traditional boolean computation
in a quantum framework. At the same time, we have introduced a number of empirical
quantum-circuit solutions, which can be interesting from an engineering point of view and
generally applicable to other domains. These arrangements solve practical problems that
may arise in applying the optimization methodology.

Furthermore, besides analyzing the advantages of the approach from a theoretical
point of view, we have also considered the conditions for the effectiveness of the proposed
methodology by comparing it with classical solutions.

With the proposed quantum algorithm, we can solve this problem with a cost that is
the square root of the conventional cost. The simulation we made to test our approach has
been carried on with a limited number of qubits, according to the resources we can operate
at the moment. The results show the technique’s correctness, the solution’s viability for
larger dimensions of the map, and the increasing number of degrees of freedom.

Author Contributions: Conceptualization, A.C., S.G., G.P. and F.V.; Investigation, F.V. and S.Z.;
Methodology, F.V. and G.P.; Software, S.Z.; Supervision, A.C. and S.G.; Writing—original draft, G.P.,
F.V. and S.Z.; Writing—review & editing, A.C., S.G., G.P., F.V. and S.Z. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Mathematics 2022, 10, 2475 27 of 29

Appendix A. The Quantum Path Planning Is Optimal If the Average Branching Factor
of the Search Tree Is Higher than the Square Root of the Maximal Branching Factor

The quantum path planning here described is carried on with Grover’s algorithm
applied on the tree search formed by the actions taken step by step. The performance is
function of the branching factor and the depth of the tree search.

Grover’s algorithm needs a number of iterations R that is O(
√

N), where N is the
number of elements present in the superposition. Considering a constant branching factor
b, the number of elements to be analyzed is:

N = 2dlog2bed (A1)

where d is the depth of the search tree [13]. The number of iterations is therefore:

R < 2
dlog2bed

2 (A2)

Classical algorithms have a cost that depends on the branching factor and the depth of
the search tree. For example, the A∗ algorithm has a cost that is O(bd) [67]. If the branching
factor is constant, the Grover implementation has a cost that is sensibly less than the cost
of the classical counterpart. If the branching factor is not constant, we can consider that
classical algorithms have a cost that depends on the tree depth and its average branching,
that is bd

avg. On the other side, the cost of Grover’s algorithm hinges on the maximum
branching factor, since all the configurations are superposed. Considering that the number
of elements is 2dlogbmaxed with the ceiling function meaning that the number of elements to
be analyzed are:

2log2bmax d ≤ N < 2(log2bmax+1)d (A3)

The number of iterations R, due to the Grover’s speed-up, is therefore

2
log2bmax d

2 ≤ R < 2
(log2bmax+1)d

2 (A4)

that is equivalent to:
b

d
2 ≤ R < b

d+1
2 (A5)

So, since classical tree search algorithms depends on the average branching factor,
the better performance of the classical approach is obtained if the cost of a classical algo-
rithm, such as A∗, is less than the lower bound of the number of the iteration:

bd
avg < b

d
2
max (A6)

that brings to:
bavg <

√
bmax (A7)

If the average branching factor is less than the square root of the maximum branching
factor, the classical algorithm is to be preferred. On the other side, if the average branching
factor if higher than the square root of the maximum branching factor, the quantum
algorithm is optimal. For example, if a search tree has an average branching factor of 4,
the quantum solution is to be preferred if the maximum branching factor is less than 16.

References
1. Nilsson, N.J. Artificial Intelligence: A New Synthesis; Morgan Kaufmann Publishers Inc.: Burlington, MA, USA, 1998.
2. Costa, M.M.; Silva, M.F. A survey on path planning algorithms for mobile robots. In Proceedings of the 2019 IEEE International

Conference on Autonomous Robot Systems and Competitions (ICARSC), Porto, Portugal, 24–26 April 2019; pp. 1–7.
3. Karur, K.; Sharma, N.; Dharmatti, C.; Siegel, J.E. A Survey of Path Planning Algorithms for Mobile Robots. Vehicles 2021,

3, 448–468. [CrossRef]
4. Post, E.L. Formal Reductions of the General Combinatorial Decision Problem. Am. J. Math. 1943, 65, 197–215. [CrossRef]
5. Schmalhofer, F.; Polson, P. A production system model for human problem solving. Psychol. Res. 1986, 48, 113–122. [CrossRef]

http://doi.org/10.3390/vehicles3030027
http://dx.doi.org/10.2307/2371809
http://dx.doi.org/10.1007/BF00309325

Mathematics 2022, 10, 2475 28 of 29

6. Turing, A.M. On Computable Numbers, with an Application to the Entscheidungsproblem. Proc. Lond. Math. Soc. 1937,
s2-42, 230–265. [CrossRef]

7. Tarrataca, L.; Wichert, A. Problem-solving and quantum computation. Cogn. Comput. 2011, 3, 510–524. [CrossRef]
8. Manin, Y.I. Classical computing, quantum computing, and Shor’s factoring algorithm. Asterisque-Soc. Math. Fr. 2000, 266, 375–404.
9. Ying, M. Quantum computation, quantum theory and AI. Artif. Intell. 2010, 174, 162–176. [CrossRef]
10. Newell, A.; Simon, H.A. Human Problem Solving; Prentice-Hall: Hoboken, NJ, USA, 1972; Volume 104.
11. Fikes, R.E.; Nilsson, N.J. STRIPS: A new approach to the application of theorem proving to problem solving. Artif. Intell. 1971,

2, 189–208. [CrossRef]
12. Tarrataca, L.; Wichert, A. A Quantum Production Model. arXiv 2015, arXiv:1502.02029.
13. Tarrataca, L.; Wichert, A. Tree Search and Quantum Computation. arXiv 2015, arXiv:1502.01951.
14. Ambainis, A.; Kokainis, M. Quantum algorithm for tree size estimation, with applications to backtracking and 2-player games.

In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, Montreal, QC, Canada, 19–23 June 2017;
pp. 989–1002.

15. Booth, K.E.; O’Gorman, B.; Marshall, J.; Hadfield, S.; Rieffel, E. Quantum-accelerated constraint programming. Quantum 2021,
5, 550. [CrossRef]

16. Montanaro, A. Quantum walk speedup of backtracking algorithms. arXiv 2015, arXiv:1509.02374.
17. Belovs, A. Quantum walks and electric networks. arXiv 2013, arXiv:1302.3143.
18. Grover, L.K. Quantum computers can search arbitrarily large databases by a single query. Phys. Rev. Lett. 1997, 79, 4709.

[CrossRef]
19. IBM Qiskit. Available online: https://qiskit.org/ (accessed on 24 June 2022).
20. Wichert, A. Artificial intelligence and a universal quantum computer. AI Commun. 2016, 29, 537–543. [CrossRef]
21. Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information: 10th Anniversary Edition; Cambridge University Press:

Cambridge, UK, 2010.
22. Wichert, A. Principles of Quantum Artificial Intelligence: Quantum Problem Solving and Machine Learning; World Scientific:

Singapore, 2020.
23. Mannone, M.; Seidita, V.; Chella, A. Categories, Quantum Computing, and Swarm Robotics: A Case Study. Mathematics 2022,

10, 372. [CrossRef]
24. Deutsch, D.; Jozsa, R. Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1992,

439, 553–558. [CrossRef]
25. Falkenburg, B.; Mittelstaedt, P. Probabilistic Interpretation of Quantum Mechanics. In Compendium of Quantum Physics; Springer:

Berlin/Heidelberg, Germany, 2009; pp. 485–491. [CrossRef]
26. Bloch, F. Nuclear Induction. Phys. Rev. 1946, 70, 460–474. [CrossRef]
27. A Representation of the Bloch Sphere. 2012. Available online: https://upload.wikimedia.org/wikipedia/commons/f/f4/Bloch_

Sphere.svg (accessed on 24 June 2022).
28. Wernick, W. Complete sets of logical functions. Trans. Am. Math. Soc. 1942, 51, 117–132. [CrossRef]
29. Deutsch, D.; Barenco, A.; Ekert, A. Universality in quantum computation. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1995,

449, 669–677. [CrossRef]
30. Gottesman, D. Theory of fault-tolerant quantum computation. Phys. Rev. A 1998, 57, 127–137. [CrossRef]
31. Gottesman, D. The Heisenberg Representation of Quantum Computers. arXiv 1998, arXiv:quant-ph/9807006. [CrossRef].
32. Deutsch, D.; Penrose, R. Quantum theory, the Church‚ÄìTuring principle and the universal quantum computer. Proc. R. Soc.

Lond. A. Math. Phys. Sci. 1985, 400, 97–117. [CrossRef]
33. Feynman, R.P. Quantum mechanical computers. Found. Phys. 1986, 16, 507–531. [CrossRef]
34. Braunstein, S.L.; Pati, A.K. Quantum Information Cannot Be Completely Hidden in Correlations: Implications for the Black-Hole

Information Paradox. Phys. Rev. Lett. 2007, 98, 080502. [CrossRef]
35. Mano, M.M.; Kime, C.R. Logic and Computer Design Fundamentals; Pearson Education: London, UK; Prentice Hall: Hoboken, NJ,

USA, 2008.
36. Cleve, R.; Ekert, A.; Macchiavello, C.; Mosca, M. Quantum algorithms revisited. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.

1998, 454, 339–354. [CrossRef]
37. Zalka, C. Grover’s quantum searching algorithm is optimal. Phys. Rev. A 1999, 60, 2746–2751. [CrossRef]
38. Centrone, F.; Kumar, N.; Diamanti, E.; Kerenidis, I. Experimental demonstration of quantum advantage for NP verification with

limited information. Nat. Commun. 2021, 12, 850. [CrossRef]
39. Guerreschi, G.G.; Matsuura, A.Y. QAOA for Max-Cut requires hundreds of qubits for quantum speed-up. Sci. Rep. 2019, 9, 6903.

[CrossRef]
40. Farhi, E.; Goldstone, J.; Gutmann, S. A Quantum Approximate Optimization Algorithm. arXiv 2014, arXiv:1411.4028. [CrossRef].
41. Hlembotskyi, V.; Burczyński, R.; Jarnicki, W.; Szady, A.; Tułowiecki, J. Efficient unstructured search implementation on current

ion-trap quantum processors. arXiv 2020, arXiv:2010.03841. [CrossRef].
42. Vemula, D.R.; Konar, D.; Satheesan, S.; Kalidasu, S.M.; Cangi, A. A Scalable 5,6-Qubit Grover’s Quantum Search Algorithm.

arXiv 2022, arXiv:2205.00117.

http://dx.doi.org/10.1112/plms/s2-42.1.230
http://dx.doi.org/10.1007/s12559-011-9103-6
http://dx.doi.org/10.1016/j.artint.2009.11.009
http://dx.doi.org/10.1016/0004-3702(71)90010-5
http://dx.doi.org/10.22331/q-2021-09-28-550
http://dx.doi.org/10.1103/PhysRevLett.79.4709
https://qiskit.org/
http://dx.doi.org/10.3233/AIC-160699
http://dx.doi.org/10.3390/math10030372
http://dx.doi.org/10.1098/rspa.1992.0167
http://dx.doi.org/10.1007/978-3-540-70626-7_148
http://dx.doi.org/10.1103/PhysRev.70.460
https://upload.wikimedia.org/wikipedia/commons/f/f4/Bloch_Sphere.svg
https://upload.wikimedia.org/wikipedia/commons/f/f4/Bloch_Sphere.svg
http://dx.doi.org/10.1090/S0002-9947-1942-0005281-2
http://dx.doi.org/10.1098/rspa.1995.0065
http://dx.doi.org/10.1103/PhysRevA.57.127
https://doi.org/10.48550/ARXIV.QUANT-PH/9807006
http://dx.doi.org/10.1098/rspa.1985.0070
http://dx.doi.org/10.1007/BF01886518
http://dx.doi.org/10.1103/PhysRevLett.98.080502
http://dx.doi.org/10.1098/rspa.1998.0164
http://dx.doi.org/10.1103/PhysRevA.60.2746
http://dx.doi.org/10.1038/s41467-021-21119-1
http://dx.doi.org/10.1038/s41598-019-43176-9
https://doi.org/10.48550/ARXIV.1411.4028
https://doi.org/10.48550/ARXIV.2010.03841

Mathematics 2022, 10, 2475 29 of 29

43. Gebhart, V.; Pezzè, L.; Smerzi, A. Quantifying computational advantage of Grover’s algorithm with the trace speed. Sci. Rep.
2021, 11, 1288. [CrossRef] [PubMed]

44. Zhuang, J.; Zhao, J.; Xu, F.; Hu, H.; Qiao, P. Analysis and Simulation of Grover’s Search Algorithm. Int. J. Mach. Learn. Comput.
2014, 4, 21–23. [CrossRef]

45. Liu, J.; Zhou, H. Hardware Efficient Quantum Search Algorithm. arXiv 2021, arXiv:2103.14196. [CrossRef].
46. Botsinis, P.; Babar, Z.; Alanis, D.; Chandra, D.; Nguyen, H.; Ng, S.X.; Hanzo, L. Quantum Error Correction Protects Quantum

Search Algorithms Against Decoherence. Sci. Rep. 2016, 6, 38095. [CrossRef]
47. Eddins, A.; Motta, M.; Gujarati, T.P.; Bravyi, S.; Mezzacapo, A.; Hadfield, C.; Sheldon, S. Doubling the Size of Quantum Simulators

by Entanglement Forging. PRX Quantum 2022, 3, 010309. [CrossRef]
48. IBM. Quantum Roadmap to Build Quantum-Centric Supercomputers; IBM: Armonk, NY, USA, 2021.
49. Minkowski, H.H. Geometrie der Zahlen; Teubner: Leipzig, Germany, 1910.
50. Qiskit Aer Simulator. 2022. Available online: https://github.com/Qiskit/qiskit-aer (accessed on 24 June 2022).
51. Natarajan, D. Fundamentals of Digital Electronics; Springer: Cham, Switzerland, 2020; Volume 1. [CrossRef]
52. Brassard, G.; Høyer, P.; Tapp, A. Quantum Counting. In Automata, Languages and Programming; Springer: Berlin/Heidelberg,

Germany, 1998; pp. 820–831. [CrossRef]
53. Preskill, J. Quantum Computing in the NISQ era and beyond. Quantum 2018, 2, 79. [CrossRef]
54. Jang, W.; Terashi, K.; Saito, M.; Bauer, C.W.; Nachman, B.; Iiyama, Y.; Kishimoto, T.; Okubo, R.; Sawada, R.; Tanaka, J. Quantum

Gate Pattern Recognition and Circuit Optimization for Scientific Applications. EPJ Web Conf. 2021, 251, 03023. [CrossRef]
55. Paler, A.; Basmadjian, R. Clifford Gate Optimisation and T Gate Scheduling: Using Queueing Models for Topological Assemblies.

arXiv 2019, arXiv:1906.06400. [CrossRef].
56. Transpiler (Qiskit.Transpiler)—Qiskit 0.36.2 Documentation. Available online: https://qiskit.org/documentation/apidoc/

transpiler.html (accessed on 24 June 2022).
57. Saki, A.A.; Alam, M.; Ghosh, S. Study of Decoherence in Quantum Computers: A Circuit-Design Perspective. arXiv 2019,

arXiv:1904.04323. [CrossRef].
58. Bravyi, S.; Gosset, D.; König, R. Quantum advantage with shallow circuits. Science 2018, 362, 308–311. [CrossRef] [PubMed]
59. Matrix Product State Simulation Method—Qiskit 0.36.2 Documentation. Available online: https://qiskit.org/documentation/

tutorials/simulators/7_matrix_product_state_method.html (accessed on 24 June 2022).
60. StabilizerState—Qiskit 0.36.2 Documentation. Available online: https://qiskit.org/documentation/stubs/qiskit.quantum_info.

StabilizerState.html (accessed on 24 June 2022).
61. The Extended Stabilizer Simulator—Qiskit 0.36.2 Documentation. Available online: https://qiskit.org/documentation/tutorials/

simulators/6_extended_stabilizer_tutorial.html (accessed on 24 June 2022).
62. Vidal, G. Efficient Classical Simulation of Slightly Entangled Quantum Computations. Phys. Rev. Lett. 2003, 91, 147902. [CrossRef]
63. Aaronson, S.; Gottesman, D. Improved simulation of stabilizer circuits. Phys. Rev. A 2004, 70, 052328. [CrossRef]
64. Bravyi, S.; Browne, D.; Calpin, P.; Campbell, E.; Gosset, D.; Howard, M. Simulation of quantum circuits by low-rank stabilizer

decompositions. Quantum 2019, 3, 181. [CrossRef]
65. Sadana, S. Grover’s search algorithm for n qubits with optimal number of iterations. arXiv 2020, arXiv:2011.04051. [CrossRef].
66. Younes, A. Strength and Weakness in Grover’s Quantum Search Algorithm. arXiv 2008, arXiv:0811.4481. [CrossRef].
67. Hart, P.E.; Nilsson, N.J.; Raphael, B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Trans. Syst.

Sci. Cybern. 1968, 4, 100–107. [CrossRef]

http://dx.doi.org/10.1038/s41598-020-80153-z
http://www.ncbi.nlm.nih.gov/pubmed/33446696
http://dx.doi.org/10.7763/IJMLC.2014.V4.380
https://doi.org/10.48550/ARXIV.2103.14196
http://dx.doi.org/10.1038/srep38095
http://dx.doi.org/10.1103/PRXQuantum.3.010309
https://github.com/Qiskit/qiskit-aer
http://dx.doi.org/10.1007/978-3-030-36196-9
http://dx.doi.org/10.1007/bfb0055105
http://dx.doi.org/10.22331/q-2018-08-06-79
http://dx.doi.org/10.1051/epjconf/202125103023
https://doi.org/10.48550/ARXIV.1906.06400
https://qiskit.org/documentation/apidoc/transpiler.html
https://qiskit.org/documentation/apidoc/transpiler.html
https://doi.org/10.48550/ARXIV.1904.04323
http://dx.doi.org/10.1126/science.aar3106
http://www.ncbi.nlm.nih.gov/pubmed/30337404
https://qiskit.org/documentation/tutorials/simulators/7_matrix_product_state_method.html
https://qiskit.org/documentation/tutorials/simulators/7_matrix_product_state_method.html
https://qiskit.org/documentation/stubs/qiskit.quantum_info.StabilizerState.html
https://qiskit.org/documentation/stubs/qiskit.quantum_info.StabilizerState.html
https://qiskit.org/documentation/tutorials/simulators/6_extended_stabilizer_tutorial.html
https://qiskit.org/documentation/tutorials/simulators/6_extended_stabilizer_tutorial.html
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.1103/PhysRevA.70.052328
http://dx.doi.org/10.22331/q-2019-09-02-181
https://doi.org/10.48550/ARXIV.2011.04051
https://doi.org/10.48550/ARXIV.0811.4481
http://dx.doi.org/10.1109/TSSC.1968.300136

	Introduction
	Materials and Methods
	Quantum Computation and Boolean Networks
	Gate Reversibility
	Quantum Path Planning
	Grover's Algorithm
	Harnessing the Quantum Advantage

	Planning Environment
	Planning in a 2 2 Map
	The M Block
	The T block
	Grover's Oracle

	Planning in a 4 4 Map
	The M block
	Decoder
	Move Maker
	Move Validator
	Move Selector

	The T Block
	Results

	The Complete Procedure
	Preprocessing
	Circuit Composition

	Discussion on Performance and Resource Utilization
	Quantum Hardware Constraints
	Simulation Constraints
	The Uncomputing Technique to Spare Qubits
	Quantum Advantage of Grover's Path Planning Formulation
	Success Probability

	Conclusions
	Appendix A
	References

