7 research outputs found

    A Survey on Event-B Decomposition

    Get PDF
    Model decomposition is a powerful tool to scale the design of large and complex systems. It enables developers to separate components development from the concerns of their integration and orchestration. Event-B is a refinementbased formal method, equipped with three decomposition styles that come with solid semantic foundations and strong tool support. This paper intends to give some useful insights and modelling guidelines for using these decomposition styles, illustrated by an actual development of a master data updating system

    Building Specifications in the Event-B Institution

    Get PDF
    This paper describes a formal semantics for the Event-B specification language using the theory of institutions. We define an institution for Event-B, EVT, and prove that it meets the validity requirements for satisfaction preservation and model amalgamation. We also present a series of functions that show how the constructs of the Event-B specification language can be mapped into our institution. Our semantics sheds new light on the structure of the Event-B language, allowing us to clearly delineate three constituent sub-languages: the superstructure, infrastructure and mathematical languages. One of the principal goals of our semantics is to provide access to the generic modularisation constructs available in institutions, including specification-building operators for parameterisation and refinement. We demonstrate how these features subsume and enhance the corresponding features already present in Event-B through a detailed study of their use in a worked example. We have implemented our approach via a parser and translator for Event-B specifications, EBtoEVT, which also provides a gateway to the Hets toolkit for heterogeneous specification.Comment: 54 pages, 25 figure

    Event-B in the Institutional Framework: Defining a Semantics, Modularisation Constructs and Interoperability for a Specification Language

    Get PDF
    Event-B is an industrial-strength specification language for verifying the properties of a given system’s specification. It is supported by its Eclipse-based IDE, Rodin, and uses the process of refinement to model systems at different levels of abstraction. Although a mature formalism, Event-B has a number of limitations. In this thesis, we demonstrate that Event-B lacks formally defined modularisation constructs. Additionally, interoperability between Event-B and other formalisms has been achieved in an ad hoc manner. Moreover, although a formal language, Event-B does not have a formal semantics. We address each of these limitations in this thesis using the theory of institutions. The theory of institutions provides a category-theoretic way of representing a formalism. Formalisms that have been represented as institutions gain access to an array of generic specification-building operators that can be used to modularise specifications in a formalismindependent manner. In the theory of institutions, there are constructs (known as institution (co)morphisms) that provide us with the facility to create interoperability between formalisms in a mathematically sound way. The main contribution of this thesis is the definition of an institution for Event-B, EVT, which allows us to address its identified limitations. To this end, we formally define a translational semantics from Event- B to EVT. We show how specification-building operators can provide a unified set of modularisation constructs for Event-B. In fact, the institutional framework that we have incorporated Event-B into is more accommodating to modularisation than the current state-of-the-art for Rodin. Furthermore, we present institution morphisms that facilitate interoperability between the respective institutions for Event-B and UML. This approach is more generic than the current approach to interoperability for Event-B and in fact, allows access to any formalism or logic that has already been defined as an institution. Finally, by defining EVT, we have outlined the steps required in order to include similar formalisms into the institutional framework. Hence, this thesis acts as a template for defining an institution for a specification language

    Model learning and test generation using cover automata

    Get PDF
    We propose an approach which, given a state-transition model of a system, constructs, in parallel, an approximate automaton model and a test suite for the system. The approximate model construction relies on a variant of Angluin's automata learning algorithm, adapted to finite cover automata. A finite cover automaton represents an approximation of the system which only considers sequences of length up to an established upper bound . Crucially, the size of the cover automaton, which normally depends on , can be significantly lower than the size of the exact automaton model. Thus, controlling , the state explosion problem normally associated with constructing and checking state based models can be mitigated. The proposed approach also allows for a gradual construction of the model and of the associated test suite, with complexity and time savings. Moreover, we provide automation of counterexample search, by a combination of black-box and random testing, and metrics to evaluate the quality of the produced results. The approach is presented and implemented in the context of the Event-B modeling language, but its underlying ideas and principles are much more general and can be applied to any system whose behavior can be suitably described by a state-transition model

    A Survey on Event-B Decomposition

    No full text
    ISSN:1863-212
    corecore