
Model learning and test generation
using cover automata

Florentin Ipate 1,2,∗, Alin Stefanescu 1,2,†, Ionut Dinca 2,‡

1 Dept. of Computer Science, University of Bucharest, Romania
2 Dept. of Computer Science, University of Pitesti, Romania

Email: ∗florentin.ipate@ifsoft.ro, †alin@stefanescu.eu, ‡ionut.dinca@upit.ro

We propose an approach which, given a state-transition model of a system,
constructs, in parallel, an approximate automaton model and a test suite for the
system. The approximate model construction relies on a variant of Angluin’s
automata learning algorithm, adapted to finite cover automata. A finite cover
automaton represents an approximation of the system which only considers
sequences of length up to an established upper bound `. Crucially, the size of the
cover automaton, which normally depends on `, can be significantly lower than
the size of the exact automaton model. Thus, controlling `, the state explosion
problem normally associated with constructing and checking state based models
can be mitigated. The proposed approach also allows for a gradual construction
of the model and of the associated test suite, with complexity and time savings.
Moreover, we provide automation of counterexample search, by a combination of
black-box and random testing, and metrics to evaluate the quality of the produced
results. The approach is presented and implemented in the context of the Event-B
modeling language, but its underlying ideas and principles are much more general
and can be applied to any system whose behavior can be suitably described by a

state-transition model.

Keywords: Automata learning; Model-based Testing; Formal Methods; Event-B; Angluin’s
Algorithm

Received 31 May 2013; revised 14 March 2014

1. INTRODUCTION

Testing is a major part of system development and
has a great impact on the quality of the delivered
product. Model-based test generation involves the use
of a system model for selecting test data and offers the
potential for automation. The concept of state is at the
heart of model-based testing and many test generation
techniques from finite state machines (FSMs) exist
[1]. However, FSMs are not powerful enough to
efficiently model realistic systems and so extended
finite state machines (EFSMs), such as Statecharts [2],
are used instead; these combine a FSM-like control
with suitable data variables and operations for these
variables, to offer an intuitive, yet rigorous means for
system modeling and analysis. Testing from an EFSM,
that can allow strong statements to be made about
system correctness, as it is the case with, for example,
conformance testing [1], usually involves transforming
the EFSM into an equivalent FSM (whose states are
given by the state-variable value combinations of the
original EFSM) and then applying FSM-based test
generation techniques.1 However, for many systems,

1Note that it is possible to derive tests directly from a EFSM,
e.g. randomly or based on representative scenarios, but usually,

the equivalent FSM may have many more states
than the length of the tests that can realistically be
performed, or, furthermore, the number of states of the
resulting FSM may be so large that it is impossible to
even construct it. This is the well-known state explosion
problem. Despite the existence of numerous techniques
for alleviating this problem [1, 3, 4], state explosion
remains one of the major obstacles for efficient model-
based test generation from state-based models.

In this paper we propose an approach which, given a
state-transition model (EFSM) of a system, constructs,
in parallel, an approximate FSM model and a test suite
for the system. The (approximate) model construction
relies on a variant of Angluin’s automata learning
algorithm [5], adapted to finite cover automata [6].
A finite cover automaton [7, 8] of a finite set U is
a finite automaton which accepts all sequences in U
but may also accept sequences that are longer than
every sequence in U . In practice, an upper bound ` on
the length of the considered sequences from a regular
language L will be established and the constructed
model will have to conform to the original model

in such cases, one cannot make theoretically proven claims about
the level of correctness achieved through testing.

The Computer Journal, Vol. ??, No. ??, ????

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357239629?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 F. Ipate, A. Stefanescu, I. Dinca

for all sequences of length at most `. The main
advantage of a finite cover automaton is that its size
(number of states), which normally depends on `, can
be significantly lower than the size of the automaton
that accepts exactly the language L [7], as illustrated
by examples provided in Section 4. As also shown in
Section 4, these smaller automata can be sufficient for
testing purposes. In this way, by appropriately setting
the value of the bound `, the state explosion problem
normally associated with constructing and checking
state based models can be kept under control. Note
that, in order to take full advantage of the reduced
size of this approximation, it is essential that a cover
automaton of U , and not the exact automaton that
accepts U , is constructed (in some cases, it is possible
that the automaton that accepts U is even larger than
the automaton that accepts L). Furthermore, test
generation from finite cover automata fits very well
with common testing practices, that usually require
test cases of short to medium length and can also
be regarded as a natural complement to Bounded
Model Checking (BMC) based on SAT methods [9, 10],
which is gaining popularity in the formal verification
community.

The proposed approach also allows for a gradual
construction of the model and of the associated test
suite: the FSM model and test suite for an initial
version of the system are reused in the construction of
a more elaborate and complex version, with complexity
and time savings, but also with improvements in the
precision of the obtained models and tests.

The approach is presented and implemented in the
context of the Event-B modeling language, but its
underlying ideas and principles are much more general
and can be applied to any system whose behavior can
be suitably described by a state-transition model. As
Event-B does not even distinguish between state and
data variables, such models are very suitable means for
evaluating our approach. Event-B [11], an evolution
of the B language, is a formal method for reliable
systems specification and verification. The theoretical
foundations and associated tooling were developed in
several research projects, among which the most notable
are two large European research projects: RODIN2,
which produced a first platform for Event-B called
Rodin3, and DEPLOY4, which enhanced the platform
based on industrial feedback. The platform offers
several plugins for the editing, refinement, theorem-
proving, composition or model-checking of Event-B
models. Complementing these techniques, model based
testing has recently emerged as an interesting research
theme for Event-B [12, 13], supported by increasing
interest from the industrial partners (in the DEPLOY

2http://rodin.cs.ncl.ac.uk - FP6 project running between
2004-2007

3http://sourceforge.net/projects/rodin-b-sharp
4http://deploy-project.eu - FP7 project running between

2008-2012

consortium) like SAP [14].
Given an Event-B model and an upper bound `,

the proposed approach will incrementally construct
finite cover automata that will eventually accept all
executable sequences of length less than or equal to `.
A new increment is constructed when (a) the Event-B
model has been modified or augmented due to changes
in the requirements, (b) the Event-B model has not
been changed but the associated DFCA is deemed not
to be sufficiently precise, or (c) the existing Event-B
model has been refined and extra detail has been added
(using the Event-B refinement). As a by-product of
the automata learning algorithm, a set of test cases
associated with the cover automata is also maintained
and evolved during the iterations. This test suite
can be used for conformance testing of the modeled
system. The test cases in the test suite are provided
together with the associated test data that makes them
executable on the Event-B model.

The contributions of the paper are fourfold:

• first, it constructs an incremental set of finite
approximation models for the set of Event-
B executable traces up to a length `. The
construction exploits the restriction given by the
bound ` to obtain models of reduced size (number
of states) compared to exact automaton models.
Moreover, the cover automata are minimal by
construction.

• second, in parallel with automata construction, we
incrementally generate conformance test suites for
the investigated Event-B models. By construction,
the generated test cases satisfy certain minimality
properties regarding their lengths. This fits very
well with the testing practice that usually requires
short test cases.

• third, the Event-B method deploys model refine-
ment as a means to handle modeling complexity.
This, along with the two contributions above, can
be applied incrementally, allowing the reuse of the
learned model and test cases from the abstract to
the more concrete levels. Moreover, the approach
can also be adapted to Event-B decomposition.

• finally, we provide two solutions to improve the
quality of the learned models. First, the search
for counterexamples that are used to improve the
model is automated using a W -method procedure
adapted to bounded sequences. Second, we
propose two metrics on the models to guide the
exploration depth, i.e. to control the bound `.

We recently published two conference papers [13, 15]
with some overlap with the the current material, but
their content is largely complementary: [13] is a short
tool paper describing the integration of our prototype in
the Rodin platform and [15] presents how our learning
approach can be used in conjunction with Event-B
decomposition. We only touch upon this at the end
of Section 3 for completeness.

The Computer Journal, Vol. ??, No. ??, ????

Model learning and test generation using cover automata 3

The paper has the following structure. Section 2
presents the theoretical foundations, including the
algorithm used for cover automata. Sections 3 and 4
describe the proposed approach and its empirical
evaluation, respectively. Section 5 discusses related
work, while Section 6 concludes the paper.

2. THEORETICAL BACKGROUND

This section, which is largely adapted from our previous
work [6], presents the L` algorithm and its automata-
related concepts.

Before continuing, we introduce the notations used in
the paper. For a finite alphabet A, A∗ denotes the set
of all finite sequences with members in A. ε denotes the
empty sequence. For a sequence a ∈ A∗, ‖a‖ denotes
the length of a; in particular ‖ε‖ = 0. For a finite set
of sequences U ⊆ A∗, ‖U‖ denotes the length of the
longest sequence(s) in U . For a, b ∈ A∗, ab denotes
the concatenation of sequences a and b. an is defined
by a0 = ε and an = an−1a, n ≥ 1. For U, V ⊆ A∗,
UV = {ab | a ∈ U, b ∈ V }; Un is defined by U0 = {ε}
and Un = Un−1U, n ≥ 1. A[n] =

⋃
0≤i≤nA

i denotes
the sets of sequences of length less than or equal to
n with members in the alphabet A. For a sequence
a ∈ A∗, b ∈ A∗ is said to be a prefix of a if there
exists a sequence c ∈ A∗ such that a = bc. The set of
all prefixes of a is denoted by pref(a); for U ⊆ A∗,
pref(U) =

⋃
a∈U pref(a). For a sequence a ∈ A∗,

b ∈ A∗ is said to be a suffix of a if there exists a sequence
c ∈ A∗ such that a = cb. For a finite set A, card(A)
denotes the number of elements in A.

2.1. Finite automata - general concepts

We start by introducing some classic definitions from
automata theory.

A deterministic finite automaton (DFA) M is a tuple
(A,Q, q0, F, h), where: A is the finite input alphabet; Q
is the finite set of states; q0 ∈ Q is the initial state;
F ⊆ Q is the set of final states; h is the next-state,
h : Q × A −→ Q. A DFA is usually described by a
state-transition diagram.

The next-state function h can be naturally extended
to a function h : Q×A∗ −→ Q. A state q ∈ Q is called
reachable if there exists s ∈ A∗ such that h(q0, s) = q.
M is called reachable if all states of M are reachable.

Given q ∈ Q, the set Lq
M is defined by Lq

M = {s ∈
A∗ | h(q, s) ∈ F}. When q is the initial state of M ,
the set is called the language accepted by M and the
simpler notation LM is used. Given Y ⊆ A∗, two states
q1, q2 ∈ Q are called Y -equivalent if Lq1

M ∩Y = Lq2
M ∩Y .

Otherwise q1 and q2 are called Y -distinguishable. If
Y = A∗ then q1 and q2 are simply called equivalent or
distinguishable, respectively. Two DFAs are called (Y -
)equivalent or (Y -)distinguishable if their initial states
are (Y -)equivalent or (Y -)distinguishable, respectively.

A DFA M is called reduced if every two distinct states
of M are distinguishable. A DFA M is called minimal if

q0 q1 q2
b a

a b a, b

FIGURE 1. A minimal DFCA of U(k) w.r.t. k

any DFA that accepts LM has at least the same number
of states as M . A DFA M is minimal if and only if M
is reachable and reduced [16]. Furthermore, there is a
unique (up to a renaming of the state space) minimal
DFA that accepts a given regular language [16].

Now let us also introduce the concept of deterministic
finite cover automaton (DFCA). Informally, a DFCA of
a finite language U , as defined by Câmpeanu et al. [7],
is a DFA that accepts all sequences in U and possibly
other sequences that are longer than any sequence in U .

In this paper we use a slightly more general concept,
as defined in [6]: given a finite language U ⊆ A∗ and
a positive integer ` that is greater than or equal to the
length of the longest sequence(s) in U , a deterministic
finite cover automaton (DFCA) of U w.r.t. ` is a DFA
M that accepts all sequences in U and possibly other
sequences that are longer than `, i.e. LM ∩A[`] = U . A
DFCA M of U w.r.t. ` is called minimal if any DFCA
of U w.r.t ` has at least the same number of states as
M . Note that, unlike the case in which the acceptance
of the exact language is required, the minimal DFCA
is not necessarily unique (up to a renaming of the state
space) [6].

Naturally, a DFA that accepts a finite language U is
also a DFCA of U w.r.t. any ` ≥ ‖U‖. Consequently,
the number of states of a minimal DFCA of U w.r.t.
` will not exceed the number of states of the minimal
DFA accepting U . Furthermore, the size of a minimal
DFCA of U w.r.t. ` can be much smaller than the
size of the minimal DFA that accepts U [6]. Consider,
for example, U(k) = {aibj | i ≥ 0, j ≥ 0, i + j ≤ k}
for k ≥ 2. The minimal DFA that accepts U(k) will
have 2k + 1 states: one final state corresponding to
the empty sequence, two final states corresponding to
every sequence of length i, 1 ≤ i ≤ k − 1, (one state
for when the sequence is composed only of a’s and one
state for when the last input read is a b), one final state
corresponding to sequences of length k and one non-
final state [6]. On the other hand, a DFCA of U(k)
w.r.t. k ≥ 2 may have only 3 states, as shown in Fig. 1.

Furthermore, using the same argument as above, if
L ⊆ A∗ is a regular language such that L ∩ A[`] = U ,
the minimal DFA that accepts L will be at least the size
of the minimal DFCA of U w.r.t. `.

2.2. The L` algorithm for learning finite cover
automata

Learning regular languages from queries was introduced
by Angluin in [5]; the paper also provides a learning

The Computer Journal, Vol. ??, No. ??, ????

4 F. Ipate, A. Stefanescu, I. Dinca

algorithm, called L∗. The L∗ algorithm infers a regular
language, in the form of a DFA from the answers
to a finite set of membership queries and equivalence
queries. A membership query asks whether a certain
input sequence is accepted by the system under test
or not. In addition to membership queries, L∗

uses equivalence queries to check whether the learning
algorithm is completed.

In a recent paper [6], we extended Angluin’s work
by proposing an algorithm, called L`, for learning a
DFCA. Given an unknown finite set U and a known
integer ` that is greater than or equal to the length
of the longest sequence(s) in U , the L` algorithm will
construct a minimal DFCA of U w.r.t. `. Analogously
to L∗, the L` algorithm uses membership and language
equivalence queries to find the automaton in polynomial
time.

The L` algorithm constructs two sets: S, a non-
empty, prefix-closed set of sequences and W , a non-
empty, suffix-closed set of sequences. Additionally, S
will not contain sequences longer than ` and W will not
contain sequences longer than ` − 1, i.e. S ⊆ A[`] and
W ⊆ A[`− 1].

The algorithm keeps an observation table, which is a
mapping T from a set of finite sequences to {0, 1,−1}.
The sequences in the table are formed by concatenating
each sequence of length at most ` from the set S ∪ SA
with each sequence from the set W . Thus, the table can
be represented by a two-dimensional array with rows
labeled by elements of (S ∪ SA) ∩ A[`] and columns
labeled by elements of W .

The function T : ((S∪SA)∩A[`])W −→ {0, 1,−1} is
defined by T (u) = 1 if u ∈ U , T (u) = 0 if u ∈ A[`] \ U
and T (u) = −1 if u /∈ A[`]. The values 0 and 1,
respectively, are used to indicate whether a sequence
is contained in U or not. However, only sequences of
length less than or equal to ` are of interest. For the
others, an extra value, −1, is used.

In order to compare the rows in the observation table,
a relation on these rows, called similarity, is used. We
say that rows s and t are k-similar, 1 ≤ k ≤ `,
and write s ∼k t if, for every w ∈ W with ‖w‖ ≤
k −max{‖s‖, ‖t‖}, T (sw) = T (tw). Otherwise, s and
t are said to be k-dissimilar, written s 6∼k t. In other
words, the table values of rows s and t must coincide
for every column w for which the lengths of sw and tw
are both less than or equal to k. The relation ∼k is
not an equivalence relation since it is not transitive [6].
When k = `, we simply say that s and t are similar or
dissimilar and write s ∼ t or s 6∼ t, respectively. It can
be observed that similarity of rows s and t requires all
corresponding non-negative values of the two rows to
coincide.

Using the similarity relation, two properties of
an observation table are defined: consistency and
closedness.

The observation table is consistent if, for every k,
1 ≤ k ≤ `, whenever rows s1 ∈ S and s2 ∈ S are

T ε a

ε 0 0

a 0 1

b 0 0

aa 1 0

bb 1 0

ab 0 0

ba 0 0

aaa 0 −1

aab 0 −1

bba 0 −1

bbb 0 −1

T ε a b

ε 0 0 0

a 0 1 0

b 0 0 1

aa 1 0 0

bb 1 0 0

ab 0 0 0

ba 0 0 1

aaa 0 −1 −1

aab 0 −1 −1

bba 0 −1 −1

bbb 0 −1 −1

TABLE 1. Observation table for one example (left table)
and its updated form that is consistent and closed (right
table)

k-similar, rows s1a and s2a are also k-similar for all
a ∈ A.

The observation table is closed if, for all rows s ∈ SA,
there exists row t ∈ S with ‖t‖ ≤ ‖s‖, such that s ∼ t.

Consider, for example, A = {a, b}, ` = 3 and Table
1 (left hand side) - in which a double horizontal line
is used to separate the rows labeled with elements of
S from the rows labeled with elements of SA \ S - to
be the current observation table (S = {ε, a, b, aa, bb},
W = {ε, a}). The observation table is not consistent
since, for k = 2, s1 = ε, s2 = b, w = ε and α = b satisfy
s1 ∼k s2, but T (s1αw) 6= T (s2αw). On the other hand,
the observation table is closed.

The algorithm starts with S = W = {ε}. It
periodically checks the consistency and closedness
properties and extends the table accordingly. When
both conditions are met, the DFA M(S,W, T)
corresponding to the table is constructed (see Fig. 3)
and it is checked whether the language L accepted
by M(S,W, T) satisfies L ∩ A[`] = U (this is called
a “language query”). If the language query fails, a
counterexample t is produced, the table is expanded
to include t and all its prefixes and the consistency and
closedness checks are performed once more. Eventually,
the language query will succeed and the algorithm will
return a minimal DFCA of U w.r.t. `.

Since in our approach we will separate the
construction of the observation table and of the
corresponding DFCA (which is the actual processing
performed by the algorithm) from the language queries
(which represent the user intervention), only the
processing performed between two language queries is
presented in pseudo-code in Fig. 2 (in what follows this
will be referred to as the LearnDFCA procedure).

The LearnDFCA procedure starts with the current
values of S, W and the current observation table
T . It periodically checks whether the consistency and
closedness properties are violated and extends the table
by adding a new row or a new column to the table,
respectively:

The Computer Journal, Vol. ??, No. ??, ????

Model learning and test generation using cover automata 5

——————————————————————————
Procedure LearnDFCA
——————————————————————————
Input: Current observation table T (includes S and W).
Repeat
\— Check consistency —\
For every w ∈W , in increasing order of ‖w‖ = i do

Search for s1, s2 ∈ S with ‖s1‖, ‖s2‖ ≤ `− i− 1
and a ∈ A such that s1 ∼k s2, where
k = max{‖s1‖, ‖s2‖}+ i+ 1, and T (s1aw) 6= T (s2aw).
If found then

Add aw to W .
Extend T to (S ∪ SA)W using membership queries.

\— Check closedness —\
Set new row added = false.
Repeat for every s ∈ S, in increasing order of ‖s‖

Search a ∈ A such that sa 6∼ t ∀t ∈ S with ‖t‖ ≤ ‖sa‖.
If found then

Add sa to S.
Extend T to (S ∪ SA)W using membership queries.
Set new row added = true.

Until new row added or all elements of S were processed
Until ¬new row added
Construct M(S,W, T).
Output M(S,W, T).
——————————————————————————

FIGURE 2. The learning procedure LearnDFCA

• In order to check consistency, the procedure will
search for w ∈ W and a ∈ A such that aw
will distinguish between two rows s1 and s2 that
are not distinguished by any sequences in W of
length less than or equal to aw; in order to find
the shortest such sequence aw, the search will be
performed in increasing order of length of w. The
search is repeated until all elements of W have
been processed; as these are processed in increasing
order of their length, any sequence aw that has
been added to W as a result of an failed consistency
check will be itself processed in the same “For”
loop.

• In order to check closedness, the procedure will
search for s ∈ S and a ∈ A such that sa is
dissimilar to any of the current rows t for which
‖t‖ ≤ ‖sa‖; similarly, the search is performed in
increasing order of length of s. If such s and a are
found, then sa is added to the observation table
and the algorithm will check again its consistency.

Consider once again Table 1 (left hand side) as the
current observation table. This will fail the consistency
check for i = 0 and k = 2: s1 = ε, s2 = b, w = ε
and α = b satisfy s1 ∼k s2, but T (s1αw) 6= T (s2αw).
Consequently, αw = b is added to W and so Table
1 (right hand side) is the resulting observation table.
This is both consistent and closed and so the DFA
M(S,W, T) is constructed.

The state set of DFA M(S,W, T) is formed by taking

q0 q1 q2

q3

a a

b b

b

a,b

a

FIGURE 3. The DFA corresponding to Table 1 (right
hand side)

all minimum, mutually dissimilar sequences from S,
where the minimum is taken according to the quasi-
lexicographical order on A∗ [6]. For Table 1 (right
hand side), this is Q = {ε, a, b, aa} (since bb ∼ aa) and
the corresponding DFA is as represented in Fig. 3 (in
which final states are drawn in double line, whereas
non-final states are drawn in single line; the initial
state is q0). The formal definition of M(S,W, T) is
given in [6], for simplicity this is not reproduced here.
Further details regarding the L` algorithm, including
proofs of correctness and termination and examples
which illustrate its functioning, can also be found in
[6].

2.3. Black-box testing for finite cover automata

The W -method for bounded sequences [17], is a non-
trivial generalization of the W -method for checking
functional equivalence (also called the Vasilevski-Chow
method) [18, 19]. 5

Before proceeding, we briefly outline the W -method
for bounded sequences, which we proposed in [17]. This
is not central to our approach, but may be used for
answering language queries, as discussed later.

Given a DFCA model M = (A,Q, q0, F, h) of a
system and an upper bound `, this method generates
a set of sequences to check if the implementation under
test, which is modeled by an unknown finite automaton
I, behaves as defined by M for all sequences of length
at most `. In other words, if the languages accepted by
M and I are LM and LI , respectively, the W -method
will construct a finite set of sequences X ⊆ A[`] such
that LM ∩X = LI ∩X implies LM ∩A[`] = LI ∩A[`].

The implementation is a black box and so, obviously,
I is not known; however, it is assumed that the
maximum number of states of I can be estimated; the
difference between this estimated maximum and the
number of states of M is denoted by k (if the difference
is negative then we take k = 0).

Naturally, one can always take X to be the set of all
sequences of length up to `; however, the W -method
produces a much smaller set, whose size is polynomial
in the number of states of M (but exponential in k).
The construction of X is based on two sets: a proper

5[17] gives the results for Mealy machines, whereas here we
adapted them for finite state machine acceptors.

The Computer Journal, Vol. ??, No. ??, ????

6 F. Ipate, A. Stefanescu, I. Dinca

state cover S and a strong characterization set W of
M . S is called a proper state cover of M if it contains
sequences of minimum length that reach all states of
M , i.e. for every q ∈ Q there exists s ∈ S such that:
h(q0, s) = q and ‖s‖ ≤ ‖t‖ for every t ∈ A∗ for which
h(q0, t) = q. W is called a strong characterization
set if it contains sequences of minimum length that
distinguish between any pair of states of the DFCA, i.e.
for every q1, q2 ∈ Q, q1 6= q2 there exists w ∈ W such
that: w distinguishes between q1 and q2 and ‖s‖ ≤ ‖t‖
for every t ∈ A∗ which distinguishes between q1 and q2.
Then, for an estimated value of k, the test set has the
form Xk = SA[k + 1]W ∩A[`]. 6

3. MODEL LEARNING AND TEST GENER-
ATION

We are now ready to present how we can apply
the above theoretical harness. We first describe the
Event-B modeling environment. Then we present our
approach for incremental cover automata learning and
test generation for Event-B models. The notions of
refinement and decomposition are also discussed at the
end of the section.

3.1. Event-B framework

Event-B method [11] is a formalism with mathematical
foundations based on set theory that is used to model
and prove consistency of complex systems. The
modeling complexity is addressed using refinement
techniques (i.e. the models are being incrementally
concretized by adding extra details at each step) and
composition-decomposition (i.e. the models may be
decomposed in smaller sub-models that can be in the
end re-composed). The verification task is performed
using theorem proving machinery, i.e. mathematical
proofs about the different invariants or properties of
the system. Moreover, there is good support for Event-
B model-checking using the ProB tool [20]. ProB
provides functionality for model simulation, model
animation, set-based constraint solvers, etc. The
main platform supporting Event-B, integrating the
different modeling and formal analysis tools, is called
Rodin and is an extensible Eclipse-based tool. The
current efforts of developing Event-B and Rodin are
concerted in a large European project, DEPLOY,
which also includes industrial partners (Bosch, Siemens,
SSF, SAP) from the embedded systems and business
applications domains.

The Event-B models consist of two main parts:
contexts and abstract machines. A context provides
static information like domain ranges and constants
together with axioms. A machine describes the
dynamic behavior of the system by means of global

6The model M is assumed to be a minimal DFCA of LM ∩A[`]
w.r.t ` (if not, it is minimized before the method is applied), so
both a proper state cover and a strong characterization set exist.

variables and events, together with invariants specifying
the properties that the system is supposed to maintain
during its execution. The state of the modeled system
is given by the values of variables. (In Event-B there is
no distinction between the model control and its data,
so the state incorporates both these two aspects.) The
system can change its state by executing events that
are enabled in that state. The main elements of an
event are: the local parameters, the guard, which is a
predicate over the global variables and local parameters
that decides when the event can be executed, and the
action, which is a set of assignments that change the
value of the global variables; examples of Event-B will
be given in Section 3.2. Usually, in an Event-B model,
all states which can be reached by feasible sequences of
events are considered to be final states. Obviously, in
this case only one non-final state is sufficient - a “sink”
state which collects all infeasible paths. Although this
is the situation we have encountered in all applications
considered in this paper, our approach is in no way
restricted to this particular case. Furthermore, it would
also be possible to differentiate between reachable and
final configurations in an Event-B model by using a
logical predicate on the global variables, i.e. a state
is considered final only if the predicate holds.

Refinement in Event-B is a mechanism of construct-
ing a series of more abstract models before reaching a
very detailed one. For instance, in a refinement step,
new variables and new events can be introduced and the
existing events can be made more concrete with the as-
sumption (that must be formally proved) that the con-
crete guard is not weaker than the abstract one (i.e. the
concrete guard logically implies the abstract one) [11].

Decomposition in Event-B: As the complexity of
the model increases, so does the difficulty the proof
obligations and verification tasks. One powerful method
to address this situation is to decompose a larger model
into smaller sub-models which can be further refined
and analyzed independently [21, 22]. There are two
main types of decomposition: shared events style [23]
and shared variables style [24]. As the name suggest, in
the former, the communication and consistency between
sub-models is realized via shared events, while in the
latter this is done via shared variables.

Given an Event-B model, a test case can be defined
as a sequence of events. This can be either positive, if
it corresponds to an executable (feasible) path through
the Event-B model, or negative, otherwise. The
executability of a test case implies the existence of
appropriate test data for the events, i.e. appropriate
values for the local parameters that ensure that the
guard of the event is true. Finally, a test suite is by
definition a collection of test cases.

3.2. Incremental model learning

We will apply now the cover automata learning method
of Section 2 to the Event-B framework. The input

The Computer Journal, Vol. ??, No. ??, ????

Model learning and test generation using cover automata 7

——————————————————————————
Procedure IterativeConstructionDFCA
——————————————————————————
Input: S0, W0

Set S = S0 and W = W0

Construct T for (S ∪ SA)W
LearnDFCA
While the constructed automaton M(S,W, T) is not correct do

Provide a counterexample w
Add w and all its prefixes to S
Extend the observation table T to (S ∪ SA)W
LearnDFCA

Minimize S and W
Output: M(S,W, T), (minimized) S and W , observation table
and the corresponding test sequences
——————————————————————————

FIGURE 4. The iterative procedure of constructing the
DFCA

elements for the procedure were a finite language U and
a bound `. For an Event-B model, U will be the set of all
executable event sequences of maximum length l. The
alphabet of U is the set of events in the model, which
we denote by A.

Given the above U and `, our approach gradually
constructs both (1) a DFCA for the Event-B model
and (2) an associated test set. The test set will
be constructed using information from the observation
table (paths through the model) and the actual test
data to drive the executable paths. In this subsection
we discuss the model learning cycle and in Subsections
3.5 and 3.6 the test suite creation.

The proposed procedure consists of a number of steps;
at each step, a new DFCA and test set is produced. The
outline of this procedure is depicted in Fig. 4. Unlike
the original L` algorithm, the procedure does not start
with empty S and W , but with some initial values S0

and W0, which reflect the current knowledge about the
DFCA model.

In case S0 and W0 are carefully chosen by a human
with a good insight in the model, the constructed
M(S,W, T) will be close to the correct DFCA and so
the “while”-loop will be executed fewer times or not
at all, saving in this way computational resources. At
limit, when either S0 or W0 are correctly chosen from
the outset, the constructed M(S,W, T) will be correct
and the “while”-loop will not be executed at all. (In
Appendix B we show that a proper state cover of the
Event-B model is such a “correctly chosen” S0 and a
strong characterization set is a “correctly chosen” W0.)

Otherwise, whenever the DFCA is found to be
inaccurate, a counterexample (i.e. a sequence s with
‖s‖ ≤ ` such that s ∈ U but s is not accepted
by the DFCA or vice versa) must be found and
the observation table should be extended accordingly.
Practical modalities for finding such a counterexample
will be discussed in the next subsection.

Therefore, two main cases can be distinguished:

• Case 1: The procedure is executed for the first
time. In this case, the initial sets S0 and W0

are based on an initial estimation of the states
of the model. In the worst case (when no initial
estimation is available), we take S0 = {ε}, W0 =
{ε} ∪ A. (As it emerged from our empirical
evaluation (Section 4), in many cases states can
be distinguished by singleton sequences, and so
initially we consider W to contain all event names,
i.e. A).

• Case 2: The procedure has already been applied
at least once and, consequently, a DFCA model
exists. Suppose that this model needs to be
improved for a number of reasons:

– Subcase 1: the Event-B model has been
modified or augmented due to changes in the
requirements.

– Subcase 2: the Event-B model has not been
changed but the associated DFCA is deemed
to be insufficient for testing purposes. In
this case, the upper bound ` is increased
according to the existing testing needs and
the procedure is executed once more for the
new value of `.

– Subcase 3: the existing Event-B model has
been refined and extra detail has been added
(using the Event-B refinement). This subcase
will be discussed later in Subsection 3.7.

In this (second) case, S0 and W0 are constructed
by reusing the values of S and W from the
previous iteration. In fact, it is not necessary
to reuse the entire sets S and W . As shown in
Appendix A, it is sufficient to extract from them
two minimal subsets Smin ⊆ S and Wmin ⊆ W ,
where Smin is the set of all minimum, mutually
dissimilar sequences from S, and Wmin is the set
of minimum sequences from W which distinguish
between any two dissimilar sequences of S (the
formal definitions are given in Appendix A) -
this corresponds to the minimization step in Fig.
4.7 The construction of Smin and Wmin is not
computationally expensive; both these subsets are
selected by simply scanning the observation table,
so the complexity is linear in its size. Additionally,
Smin is actually the state set of M(S,W, T), so it
is computed by the algorithm anyway. In Subcase
1, the initial values for S and W are precisely those
from the previous iteration, i.e. S0 = Smin, W0 =
Wmin, whereas in Subcase 2, the alphabet A is
added to W , i.e. S0 = Smin, W0 = Wmin ∪A (this
heuristic is consistent with Case 1 and is validated

7Intuitively, this is because Smin and Wmin still remain
a proper state cover and a strong characterization set of
M(S,W, T), so the language equivalence (modulo the upper
bound `) against any other automaton with the same number
of states is ensured.

The Computer Journal, Vol. ??, No. ??, ????

8 F. Ipate, A. Stefanescu, I. Dinca

by experimental evaluation). The observation
table T (corresponding to the minimized S and
W) is also partially/totally re-constructed in the
next iteration as follows. In the first subcase,
since the Event-B model has been changed, the
value of T must be re-checked for all sequences in
(S ∪SA)W ∩A[`]. In the second subcase, only the
sequences in (S ∪ SA)W whose length is greater
than the previous ` need to be re-processed.

Note that (Case 2 / Subcase 1) also covers the situation
in which the procedure has not been applied before but
an automaton model of the system exists from other
sources (e.g. has been developed during the design
phase), but has become obsolete. In this case, Smin

and Wmin can also be derived from the existing model,
as explained above, so the information contained in the
existing model is reused in the construction of the new
model.

Example. We illustrate the iterative process of
constructing the DFCAs with a system for controlling
the cars on a narrow bridge between an island and the
mainland. This example is particularly relevant since
it is used to introduce the main Event-B concepts in
Abrial’s textbook [11].

The modeled system is equipped with two traffic
lights with two colors: green and red. The traffic lights
control the entrance to the bridge at both ends. Cars
are not supposed to pass on a red traffic light, only
on a green one. The system has two main additional
constraints: the number of cars on the bridge and island
is limited and the bridge is one-way.

We present here only the first two levels of refinement
(see Fig. 5). The first model M0 is very simple. The
events ML out and ML in correspond to cars entering
and leaving the island-bridge compound, respectively.
The context contains a single constant d, which is a
natural number denoting the maximum number of cars
allowed to be on the island-bridge compound at the
same time. In our example, we fix d = 2 for all the
refinement levels of the model. The single variable n of
the machine M0 denotes the actual number of cars.

In the first refinement, the machine M1 introduces
the bridge. The events ML out and ML in correspond
now to cars leaving the mainland and entering the
bridge or leaving the bridge and entering the mainland,
respectively. In addition, the events IL in and IL out
correspond to cars entering and leaving the island,
respectively. The variable n is now replaced by three
variables: a (the number of cars on the bridge and going
to the island), b (the number of cars on the island) and
c (the number of cars on the bridge and going to the
mainland).

Finally, the second refinement introduces the two
traffic lights, named ml tl and il tl. The model M2

has two new events to turn the value of the traffic
lights color to green when they are red: ML tl green
and IL tl green. In order to avoid the situation when

light colors are changing so rapidly that the drivers can
never pass, we force the lights to change only when
a car has passed in the other direction. For this,
two more variables ml pass and il pass are introduced:
ml pass = TRUE means that at least one car has
passed the bridge going to the island since the mainland
traffic light last turned green; similarly for il pass =
TRUE.

First, we start the learning process with ` = 3 (Case
1); for each of the three models, the procedure is
executed with initial values S0 = {ε} and W0 equal
to the corresponding input alphabet plus the empty
sequence; the resulted DFCAs (plotted using our plug-
in) are presented on the right hand side of Fig. 5 (for
simplicity, the sink states are not shown).

Suppose now that we want to improve the DFCA for
M2 by increasing the upper bound ` (Case 2 / Subcase
2). For ` = 6, we obtain the DFCA in Fig. 6(a), which
has more states and transitions (and covers events like
ML in that were not covered for ` = 3).

In order to illustrate the iterative DFCA construction
(cf. Fig. 4), we provide a counterexample path for
the current DFCA associated to M2. For instance, the
following sequence of length 6:

w = ML tl green,ML out1,ML out2, IL in, IL in, IL in

is not feasible in M2, but it is accepted by the DFCA in
Fig. 6(a). The new DFCA taking into account the
counterexample w (see the while-loop of Fig. 4) is
presented in Fig. 6(b). It can be observed that w is
no longer accepted by the new DFCA. The subsection
below shows how to deal with the problem of finding
counterexamples.

3.3. Finding counterexamples

Naturally, finding a counterexample is the most difficult
part of our approach and we propose three solutions:

• interactively, using the experience of the human
testers who have a good understanding of
the model: Testers can use the simulation
and animation capabilities of ProB to discover
counterexamples, that are fed to the learning
algorithm. Moreover, high-priority scenarios that
the testers deem as important can be introduced
into the learning loop and the associated tests will
be covered by the DFCA.

• by testing language equivalence, using the W -
method for bounded sequences outlined in Section
2.3: Recall that, given a DFCA model M of
a system and an upper bound `, this method
generates a test set to check if the implementation
under test, modeled by an unknown automaton
I, behaves as defined by M for all sequences of
length at most `. The test set has the form
Xk = SA[k + 1]W ∩ A[`], where S and W are a
proper state cover and a strong characterization set
of M , respectively, and k is the difference between

The Computer Journal, Vol. ??, No. ??, ????

Model learning and test generation using cover automata 9

————————————————————————————————————
Machine M0:

Variables: n

Event INITIALISATION =̂ begin n := 0 end

Event ML out =̂ when n < d then n := n + 1 end

Event ML in =̂ when n > 0 then n := n− 1 end

————————————————————————————————————
Machine M1 refines M0 :

Variables: a, b, c

Event INITIALISATION =̂ begin a, b, c := 0, 0, 0 end

Event ML out refines ML out =̂ when a + b < d ∧ c = 0 then a := a + 1 end

Event ML in refines ML in =̂ when c > 0 then c := c− 1 end

Event IL in =̂ when a > 0 then a, b := a− 1, b + 1 end

Event IL out =̂ when 0 < b ∧ a = 0 then b, c := b− 1, c + 1 end

————————————————————————————————————
Machine M2 refines M1 :

Variables: a, b, c,ml tl, il tl, il pass,ml pass

Event INITIALISATION =̂ begin (a, b, c := 0, 0, 0),
(ml tl, il tl := red, red),
(il pass,ml pass := 1, 1)

end

Event ML out1 refines ML out =̂ when ml tl = green ∧ a + b + 1 < d
then a,ml pass := a + 1, 1 end

Event ML out2 refines ML out =̂ when ml tl = green ∧ a + b + 1 = d
then (a,ml pass := a + 1, 1),ml tl := red end

Event IL out1 refines IL out =̂ when il tl = green ∧ b > 1
then (b, c := b− 1, c + 1), il pass := 1 end

Event IL out2 refines IL out =̂ when il tl = green ∧ b = 1
then (b, c := b− 1, c + 1), (il tl, il pass := red, 1)
end

Event ML tl green =̂ when ml tl = red ∧ a + b < d ∧ c = 0 ∧ il pass = 1
then (ml tl, il tl := green, red),ml pass := 0 end

Event IL tl green =̂ when il tl = red ∧ 0 < b ∧ a = 0 ∧ ml pass = 1
then (ml tl, il tl := red, green), il pass := 0 end

Event IL in refines IL in =̂ when a > 0 then a, b := a− 1, b + 1 end

Event ML in refines ML in =̂ when c > 0 then c := c− 1 end

————————————————————————————————————

M0: the DFCA for ` = 3

M1: the DFCA for ` = 3

M2: the DFCA for ` = 3

FIGURE 5. The first two refinements of the “Cars on the bridge” example (from Abrial [11]) together with their
corresponding learned DFCAs for ` = 3.

(a) DFCA for M2 and ` = 6 (b) DFCA for M2 and ` = 6 learning from a given counterexample

FIGURE 6. DFCAs for ` = 6

the estimated maximum number of states of I and
the number of states of M . In our case, the model
M corresponds to the current DFCA M(S,W, T)
and the implementation under test to the Event-
B model (more precisely, an approximation of the
Event-B model, which contains all set of executable
paths of length up to `). Now, the (minimized)

sets S and W in the observation table satisfy the
definitions of a proper state cover and a strong
characterization set of M(S,W, T), respectively.
Thus, for k = 0, the test set X0 is actually the
set of sequences in the (minimized) observation
table, so, if the Event-B model is known to have
no more states than the current DFCA, this step

The Computer Journal, Vol. ??, No. ??, ????

10 F. Ipate, A. Stefanescu, I. Dinca

is already completed. Otherwise, testing the
behavioral equivalence between the current DFCA
and the Event-B model corresponds to gradually
increasing k until a counterexample is found (a
test case produces a different result on the Event-B
model compared to the DFCA) or we are satisfied
that the DFCA is correct. Note that the size of
the test set is exponential in k and so using the
W -method for a large k may be expensive.

• by encoding the language equivalence problem
into the ProB model checker: For instance the
complement of the DFCA is encoded into a CSP
process P and ProB will try to run the Event-
B machine and P in parallel to find a path that
is accepted by Event-B but not by the DFCA.
Note, however, that this procedure might be
computationally expensive.

From the three options above, in the current version
of our implementation we have considered the first
two: using the W -method and manually providing the
counterexample. As the set X0 = SA[1]W ∩ A[`] is
already in the observation table, the remaining test set
for a given 1 ≤ k < ` is (SA2W ∪ . . .∪SAk+1W)∩A[`].
In order to avoid a blow up in size, the W -method
is combined with some randomness as follows: the
algorithm generates all sequences in SA2W and at most
r sequences randomly chosen from the union of the sets
SAjW , 2 < j < `, such that the random sequences
are equally distributed over the subdomains SAjW .
Since S and W have at most n and n − 1 elements,
respectively, the resulting test set will have at most
p2n(n− 1) + r sequences, where n denotes the number
of states of the minimal DFCA and p the size of the
A. In our experiments we used this option, in which
the value of constant r was 3000. Note also that once a
counterexample is found, we stop the search and apply
the learning procedure.

On the other hand, our tool also allows counterexam-
ples to be manually provided by the user, so the testers
can use their intuition to provide relevant sequences to
the algorithm to learn and thus more directly influence
the result of the test suite. This is in contrast to purely
automatic test generation techniques that are driven
solely by coverage criteria, where the produced tests
may not be intuitive or may not cover existing stan-
dard testing scenarios in the domain. This is in the
spirit of the original Angluin’s algorithm and, in fact,
fits well with common practice, in which human knowl-
edge is used to guide model and test design (cf. Fig. 6).
For that, as mentioned before, the user can experiment
with different paths through ProB simulation. More-
over, ProB model-checking capabilities can be used to
search for paths that satisfy certain properties (e.g. an
execution containing a certain event or succession of
events) - such paths can be identified using the metrics
defined in the next section.

3.4. Two metrics on the learned models

Finally, an important issue is how we asses the “quality”
of the obtained models and, consequently, when we
decide that the upper bound ` is sufficiently large
for our (testing) purposes. One natural way to
measure how well the DFCA produced by this approach
approximates the actual system model is by using the
notion of coverage. Coverage is a widespread means of
measuring the quality of a test suite.

In (black box) testing from a finite state machine, two
wide spread criteria measure the percentage of edges
or pairs of edges covered by the test suite [25]. In
particular, event pair coverage (also called switch cover,
transition-pair or two-trip) is considered a powerful
test coverage criterion and is included in the British
Computer Society standard for software component
testing [26]. Also note that, since an input symbol
in the automaton normally corresponds to a program
statement, these two criteria correspond to statement
(node) coverage and branch coverage, respectively, in
white box testing. These are two of the most widely
used criteria in white box testing and, in particular,
branch coverage has been proven to produce effective
test suites [26].

We have adapted these criteria to measure the quality
of the obtained DFCAs as follows: we have counted the
number of sequences of events of length i, 1 ≤ i ≤ 2,
which can be executed by some state of the DFCA; as
the DFCA may also under approximate the exact DFA
model, we have also counted the number of sequences
that are not executable from some state of the DFCA.
The resulting metrics are expressed as percentages of
the total number of cases (2 · card(A) for i = 1 and
2 · card(A)2 for i = 2). Note that the absolute value
of the metrics depends on the domain of the model.
However, we are not interested in the absolute value,
but we consider the stabilisation of the metrics as
an indication that the produced DFCA preserved the
properties of the original Event-B model (in this case,
the sequences of events up to length 2 that can and
cannot be executed from each of its states).

During the experiments (see Section 4), we noticed
that the chosen metrics performed well in the sense
that for many examples, after two steps with no change
in the metrics, the values did not modify in the
following steps, i.e. they stabilised. So, the stabilisation
of metrics is used as a “rule of thumb” for stoping
incrementing `. Note that the size of the models may
continue to grow as we increase ` and search further
for counterexamples, but we can decide not to spend
the effort of further computations once the coverage as
reflected by the metrics is not improved. Even more
importantly, as the total length of the resulting test
suite is proportional to the third power of the size
(number of states) of the corresponding automaton (see
Section 3.6), the use of these metrics can drastically
reduce the effort involved in the test application process.

The Computer Journal, Vol. ??, No. ??, ????

Model learning and test generation using cover automata 11

Another advantage of the metrics is that they can
reveal events or pairs of events that are not covered by
the learned automaton. Once they stabilise, we check
the uncovered elements and use the ProB model-checker
to search for sequences that cover them. Thus, the
computationally expensive model-checking procedure is
used sparsely only on such concrete problems.

3.5. Test data generation

In order to decide whether a given sequence s, ‖s‖ ≤ `,
is accepted or not by the DFCA M (i.e., s ∈ LM or
not), the procedure needs to check if s is a feasible
path through the Event-B model. This is achieved
by effectively constructing (or attempting to construct)
test data to drive the given path. If the appropriate
test data has been found, then s ∈ LM ; otherwise, the
path is declared infeasible8 and so s 6∈ LM . Therefore,
deciding whether s ∈ LM or not reduces to finding test
data to execute the corresponding path of the Event-B
model.

Then all that remains is to specify the method(s)
used to find test data to execute a given path of an
Event-B model. So far two such approaches have been
proposed and implemented. The first used symbolic
execution and reduces this problem to solving a set of
constraints [20]. The second reduces the problem to
an optimization problem, which is then solved using
search-based techniques (genetic algorithms) [12]. Note
that the test data generation problem may be complex
even for one path, when the guards are complex and
the test data domain are large. In particular, the set-
theoretic nature of Event-B increases the search space
because free set variables v that are subsets of a given
carrier set V (i.e. v ⊆ V) can take exponentially many
values, 2card(V). Consequently, most of the time taken
by the execution of the procedure is spent on generating
the actual test data.

3.6. Test suite construction

When the process of constructing the DFCA is
completed, a test suite for the Event-B model has also
been obtained; this is precisely the set of sequences
in the observation table returned by the procedure,
X0 = (S∪SA)W∩A[`] (note that the procedure returns
the minimized S and W so these are the used in the
definition of X0). The test sequences can be classified
into positive (for which T (x) = 1, which correspond
to feasible paths in the Event-B model) and negative
(for which T (x) = 0). Naturally, test data can only be
generated for feasible paths and, as explained earlier,
test data generation is implicitly included in the DFCA
construction procedure. Negative test sequences are

8Note that here infeasible means only that our tools could
not find test data within reasonable time (e.g. 20 seconds for one
path) and we stop searching, whereas in reality there might exists
such test data. However, since we are working with approximated
models, this incompleteness aspect is not very important.

also useful for testing the system implementation since
they describe erroneous scenarios, which the system
cannot perform in normal functioning.

Following [17], the constructed set will constitute a
conformance test suite for the Event-B model modulo
the bound ` (the `-bounded behavior of the model).
Such a test is more powerful than a set of tests
based on state or transition coverage criteria since it
covers all states and all transitions of the equivalent
automaton and also checks each state and the initial
and destination states of each transition. Conformance
testing is especially relevant in the embedded systems
domain.

Regarding the size of the produced test suite, the
maximum number of test cases (test sequences) is pn2,
where p = card(A) and n is the number of states of the
learned automaton [19]. Moreover, the total length of
the test suite, i.e. the sum of lengths of all test cases,
does not exceed pn3 [19]. Therefore, the effort involved
in the test application process is proportional to pn3,
and so any reduction in the size of the automaton
(due to the use of the L` algorithm instead of L∗)
will be translated accordingly into a reduction in the
complexity of this process.

Increasing `, longer and more complex tests are
generated. However, very complex or long test
sequences are usually not the norm, so having the
ability to tune the length of the test case using `,
guided by the metrics defined in Section 3.4, is an
advantage of our approach. On the other hand, if the
obtained (conformance) test suite is still too large for
the intended purpose, it can be reduced by choosing a
smaller subset that satisfies simpler coverage criteria,
like transition, state or event coverage. Regarding
coverage criteria, if a very specific coverage criteria
is sought from the outset (cf. [27]), our method can
accommodate this to some extent in that the training
set of sequences for the learning algorithm can be chosen
according to the given coverage.

3.7. Relation to Event-B refinement

Very often, model design is an iterative process, in
which, at each step, the existing (more abstract)
model is replaced by a more concretized model through
refinement. The incremental approach of L` allows
us to reuse the learned model and test suite of the
abstract model to the next more concretized model
(Case 2, Subcase 3 from Subsection 3.2), as explained
below. Again, the approach is presented in the context
of Event-B, but the basic ideas can be extended to other
languages which provide model refinement as a way to
handle complexity.

Suppose we have a refinement from AM (abstract
model) to CM (concrete model). In a refinement step,
new events can be introduced and the existing events
can be detailed. Let A and A′ denote the sets of
events of AM and CM, respectively, and let E ⊆ A′

The Computer Journal, Vol. ??, No. ??, ????

12 F. Ipate, A. Stefanescu, I. Dinca

——————————————————————————
Transformation of S
——————————————————————————
Input: Smin and the restriction of T to Smin

mapS(ε) = ε
Y = Smin \ {ε}
While Y 6= ∅ do

Select x = sa, s ∈ A∗, a ∈ A,
where x is a sequence in Y of minimum length

s′ = mapS(s)
If T (x) = 1 then

found = find next(s′, a, t)
If found then
mapS = mapS ⊕ (x, s′t)
Y = Y \ {x}

Else
If s = ε then

Return failure
Else

Y = Y ∪ (dom(mapS) ∩ {s}A[1])
dom(mapS) = dom(mapS) \ {s}A[1]

Else
mapS = mapS ⊕ (x, s′a′) for some a′ ∈ ref (a)
Y = Y \ {x}

Return SR
min = pref(Im(mapS))

——————————————————————————

FIGURE 7. The transformation of S in the case of
refinement

be the new events introduced in CM that do not refine
any abstract event. Every abstract event a ∈ A from
AM will correspond to a set (containing one or many
concrete events) from CM.9 Let us denote this set
ref (a), ref (a) ⊆ A′ \ E. Suppose Smin and Wmin are
the (minimized) sets produced by the application of
our procedure on the abstract model AM. As these
sets contain sequences of abstract events, they need
to be transformed before they can be reused in the
construction of the automaton corresponding to the
concrete model CM. On the other hand, in Appendix B
it is shown that only one of the two sets (Smin or Wmin)
is sufficient to correctly determine the corresponding
DFCA model (the other set is reconstructed by the
algorithm). Furthermore, the set of all feasible paths
of an Event-B model is closed under prefixing and so,
naturally, a path from AM is transformed into a path
from CM by gradually transforming its prefixes. Such
a transformation is natural in the case of S, which is
prefix-closed, but is problematic for W , which must
be suffix-closed. For these reasons we choose to only
transform the set Smin. For W , we will use the same
type of heuristic as for the case in which the DFCA
construction procedure is executed for the first time: W
is initialized with the set A′ of all events of CM (along
with the empty sequence).

9In general the correspondence may be many-to-many but in
the vast majority of the models we have encountered a one-to-
many correspondence is sufficient.

The transformation of Smin is given in pseudocode
in Fig. 7; mapS denotes the mapping between each
sequence in Smin and the corresponding sequence
in the concrete model. Ultimately, the algorithm
will return the prefix-closure of the image of mapS ,
pref(Im(mapS)). Y denotes the set of sequences from
Smin that remain to be processed. Sequences are
processed in increasing order of their length, so, at
any time, a sequence of minimum length from Y is
selected. As Smin is prefix-closed, mapS(x) is obtained
by extending the transformation of its longest prefix
s (x = sa, s ∈ A∗, a ∈ A). Two main cases can be
distinguished.

• x is a feasible path of AM. Assume that mapS(x)
is also a feasible path of CM (this assumption
is justified and its implications are discussed
later). Then mapS(x) is obtained by extending
s′ = mapS(s) with a sequence t = e1 . . . eja

′,
where e1, . . . , ej ∈ E, j ≤ k (k is a predefined
upper bound), and a′ ∈ ref (a). The function
find next(s′, a, t) searches for such a t in increasing
order of j; if found, the function will return
TRUE, otherwise FALSE. find next may be called
several times with the same input parameters s
and a′ during the execution of the algorithm.
Each time, it continues the search from where
it left off, so each time a different solution is
produced. Consequently, find next maintains an
internal state, which, for simplicity, is not given in
the code. If find next cannot find a (new) solution,
the algorithm backtracks: it removes s 6= ε and all
sequences which extend s from the domain of mapS
and adds them to Y . Consequently, the algorithm
will resume by processing s. If s = ε, the algorithm
cannot backtrack any further; in this case, it stops
and reports failure.

• x is not feasible in AM. Then s′ can be extended
with any a′ ∈ ref (a). 10 Note that Smin contains
only one such sequence since the corresponding
automaton will have only one non-final (“sink”)
state.

In refinement, an event a from AM is replaced by (one
or more) events ref (a) in CM, describing the system
reactions in different circumstances. Furthermore, the
applications of the extra events may also condition the
event operation and so each application of a in AM
is replaced by some sequence e1 . . . eja

′ in CM, with
e1, . . . , ej ∈ E and a′ ∈ ref (a).

The new events from E cannot be indefinitely enabled
[11] and, furthermore, in practice it is reasonable to
expect that an upper bound k on the number of times
they can be applied in the absence of an event from
A′ \ E can be established, and so j ≤ k; the upper
bound k is then used in the definition of the find next

10Since the concrete guard is not weaker than the abstract one
[11], a infeasible path in AM can only give rise to infeasible paths
in CM.

The Computer Journal, Vol. ??, No. ??, ????

Model learning and test generation using cover automata 13

function presented above. Thus, any feasible path
a1 . . . an in the abstract model can be mapped (not
necessarily in an unique fashion) onto a feasible path
u1a
′
1u2a

′
2 . . . una

′
n in the concrete model, with a′i ∈

ref (ai) and ui ∈ E[k], 1 ≤ i ≤ n. This ensures that the
transformation procedure will end successfully, so every
sequence in Smin is refined appropriately. Finally, we
need to ensure that SR

min is prefix-closed and so we take
the prefix-closure of the refined sequences. Note that
the transformation procedure given in Fig. 7 is only
guaranteed to terminate successfully if every feasible
path in AM has a corresponding feasible path in CM.
This condition is in the spirit of refinement and is
satisfied by the vast majority of the applications we
have encountered. However, the algorithm can be easily
extended so that it terminates successfully even when
not all sequences in Smin can be refined - for simplicity
and due to its reduced practical value, this idea is not
pursued here.

Once the set Smin has been transformed, the DFCA
construction procedure can be executed for the concrete
model CM with initial values S0 = SR

min and W0 =
{ε} ∪ A′. The upper bound `R used for the concrete
model CM also needs to be established. This will be
set by the user, but, naturally, it will be greater than
or equal to the length of the longest sequence in SR

min

plus one.
The DFCA construction procedure can always be

applied directly on the concrete model, but the strategy
presented here, which reuses the information from the
abstract model in the construction of the concrete
model and of its associated test set, presents some
advantages, by offering a way of incorporating the
human knowledge into the model at the appropriate
level of abstraction. Let us consider two Event-
B models, AM (abstract) and CM (concrete), as
above. It is likely that the first DFCA for AM is
not satisfactory, so a richer automaton is obtained by
supplying the construction procedure with appropriate
counterexamples. In the “reuse” strategy, these
counterexamples are propagated to the next level -
they are implicitly included in the DFCA for CM. On
the other hand, when the DFCA for CM is produced
from scratch, all counterexamples must be produced
at this level. Naturally, abstract models are simpler
than concrete models, so finding counterexamples (by
human intervention or automatically) for the abstract
model is simpler. Moreover, if the tester wants to
have certain scenarios into the test suite (see end of
previous subsection), it is more convenient to do this at
an abstract level and have it propagated automatically
by the reuse algorithm for refinement.

We also observed on our benchmark that if we do
not perform the computationally expensive automatic
search for counterexamples from Subsection 3.3, the
“reuse” strategy would produce in many cases richer
DFCAs than those produced “from scratch” (we do not
give the experimental data due to space constraints).

Z RZ

RZ1

RZ2

RRZ1

RRZ2

decomposition

refinement

refinement

FIGURE 8. An example of decomposed model

Last but not least, even if theoretically the algorithm
in Fig. 7 seems computationally expensive, in
our experiments the transformation times are very
reasonable and contributed much less than the learning
steps (and also the counterexample search step). This
can be seen in Table 4 provided at the end of Appendix
C, which presents transformation times and learning
times (given in seconds) for a couple of machines and
values of the bound `. In most cases, transformation
times are much smaller (for the larger models less than
10% and usually less than 5%) than learning times.
Note that the expensive counterexample search is not
included in the displayed learning time.

3.8. Relation to Event-B decomposition

Fig. 8 describes a typical incremental development
in Event-B involving decomposition (of type either
shared-events or shared-variables). There, RZ, which
is a refinement of Z, is decomposed into RZ1 and
RZ2, which are further refined into RRZ1 and RRZ2,
respectively. For this example, our approach will
first construct a DFCA model for Z, which will be
reused in the construction of a DFCA for RZ as in
the previous subsection. RZ will constitute the basis
for the construction of the DFCAs for RZ1 and RZ2

starting the learning procedure with the projections of
the observation tables. The DFCAs for RZ1 and RZ2

will, in turn, be reused in the construction of the final
models, for RRZ1 and RRZ2. If required, these latter
models are used to produce a DFCA model and tests for
the overall system using certain composition operators.
Details and experiments are provided in our paper [15]
and are not reproduced here.

4. EXPERIMENTAL RESULTS

In this section we provide experimentation results on
a comprehensive benchmark of Event-B models, in
order to test the feasibility of our approach. The
implementation of our algorithms was done in Java
as an Eclipse plugin11 to the Rodin platform (in
its latest version 2.7) and it was evaluated together
with the industrial partners in the DEPLOY project.
The membership queries were implemented using the
constraint-solving functionality of ProB and a timeout

11Our tool is freely available. Installation instructions and
screenshots can be found at: http://wiki.event-b.org/index.

php/MBT_plugin

The Computer Journal, Vol. ??, No. ??, ????

14 F. Ipate, A. Stefanescu, I. Dinca

TABLE 2. The complexity dimensions of the ten subjects (number of refinements, number of events and number of variables)

Subject No. of refin’s No. of events per refin. (M0/M1/...) No. of variables per refin. (M0/M1/...)

A2A 12 3/4/4/6/8/8/11/13/14/15/15/16/16 2/2/4/8/8/10/11/12/13/15/16/18/17

BepiColombo 3 5/10/12/16 6/10/12/18

CarsOnBridge 3 2/4/8/16 1/3/7/18

Choreography 1 6/12 7/17

MobileAgent 5 4/6/6/7/7/7 3/5/5/7/7/7

PressCtrller 7 4/12/16/16/20/20/20/28 2/6/8/8/10/10/11/15

ResponseCoP 3 4/13/16/16 3/4/5/6

SSFPilot 3 14/20/23/41 5/7/8/14

TrainCtrller 8 7/9/14/19/19/26/37/42/42 5/6/9/14/14/15/27/33/35

TABLE 3. The relation of learning and metrics for four Event-B machines

MobileAgent (M3 / 7 ev.) PressCtrller (M2 / 16 ev.) CarsOnBridge (M3 / 16 ev.) SSFPilot (M1 / 20 ev.)

` |Q| metr1 metr2 time ` |Q| metr1 metr2 time ` |Q| metr1 metr2 time ` |Q| metr1 metr2 time

3 8 86% 39% 1.04 3 12 69% 22% 3.02 3 4 19% 1% 3.18 3 5 25% 12% 6.86
4 11 86% 53% 3.46 5 45 94% 49% 18.94 9 22 63% 17% 24.43 5 15 80% 31% 23.29
6 25 100% 76% 8.20 6 72 100% 63% 50.49 13 52 88% 27% 110.20 6 30 100% 41% 3.12
7 30 100% 82% 11.10 9 170 100% 79% 224.79 15 65 94% 29% 131.42 7 59 100% 53% 25.24
8 40 100% 88% 14.84 10 201 100% 82% 224.89 17 70 100% 30% 164.79 15 315 100% 67% 332.32
9 47 100% 88% 32.99 11 225 100% 82% 250.31 23 98 100% 39% 158.99 16 327 100% 67% 277.65

20 207 100% 88% 190.44 15 257 100% 82% 100.61 25 106 100% 39% 284.86 19 360 100% 67% 4479.95
34 394 100% 88% 4912.29 40 257 100% 82% 14.06 40 106 100% 39% 13.14 23 437 100% 67% 6766.67

of 20 seconds per query was imposed. We run ProB
with fixed internal parameters, although fine-tuning
of ProB parameters may improve results in certain
cases. The experiments were conducted on a Windows
7 Professional 64-bit machine with an Intel Core i7
2.80GHz (8 CPUs) processor and 12 GB of RAM.

We used a broad range of models for experimentation,
including systems from the embedded systems, trans-
portation and aerospace industries as well as academic
and pedagogical Event-B models used in the literature
(see Appendix C for short individual descriptions). All
the chosen nine Event-B models are publicly available
in the model repository of the DEPLOY project12. Ta-
ble 2 presents the models together with their complex-
ity, i.e. number of refinements, number of events for
each refinement and number of variables for each re-
finement. For instance, the third model is our running
example “CarsOnBridge” (see Fig. 5). It has 3 re-
finements (M0/M1/M2/M3); each level (including the
initial machine M0) has 3, 5, 9, and 17 events, respec-
tively; and 1, 3, 7, and 18 variables13, respectively. Note
also that many of the models are rather complex, e.g.
TrainCtrller exhibits 8 levels of refinements and the last
level has 43 events and 35 variables.

Table 3 presents how the learning algorithm and the
two metrics from Subsection 3.4 performed on four

12http://deploy-eprints.ecs.soton.ac.uk
13Variables might have an integer type, but also more complex

types like sets, relations or partial functions, which increase the
complexity of the algorithms, especially the membership queries.

examples from our benchmark14. The other five models
behave similarly. For each of the four examples, we
specify which machine was considered (e.g. M3) and
how many events that machines contained (e.g. 7
events). Then, we provide five columns as follows. Let
us consider the first model, MobileAgent. First column
gives eight increasing values of the bound `, from a small
value (` = 3) to a large one (` = 34). Second column
shows the size of the learned DFCA (|Q|) for the given `.
We see that for a large `, this size can grow to hundreds
of states (394 states for ` = 34). Regarding the
learning procedure, the DFCAs are obtained by reusing
the observation table from previous ` and by using
automated search for counterexamples from Subsection
3.3. The |Q| given in the table is the one obtained
when no more counterexamples were found (there could
be zero, one or several counterexamples found in one
step). Third and fourth columns present the coverage
percentage provided by the two metrics of Subsection
3.4. For instance, for ` = 4, the first metric (metr1) is
86% and the second one (metr2) 53%. The (rounded)
percentage of 86% for first metric means that 12 cases
out of 14 (2 times 7, the no. of events) were covered
by the DFCA with 11 states. Finally, the fifth column
logs the time in seconds for computing the DFCA, by
adding up the times for learning and counterexample

14Since the counterexample search algorithm involves random-
ness, we run the experiments several times. Table 3 shows the
results for one run, namely a representative one for the average
behaviour.

The Computer Journal, Vol. ??, No. ??, ????

Model learning and test generation using cover automata 15

search for a given ` (without summing up the times for
smaller `’s).

Looking at the MobileAgent example, we see that the
metrics stabilise at ` = 8, but as ` grows, the number
of states |Q| also increases. However, from a testing
point of view we could stop at ` = 8 as the achieved
coverage is reasonable. The same behavior is observed
for PressCtrller, where both metrics stabilise at ` = 8.
The difference to the previous example is that the size
of the automaton also stabilises at ` = 15: at that point
|Q| = 257 and remains so independent of the increase
of ` up to 40. This is an indication that the learned
automaton is pretty close e.g. to the one given by
L∗ algorithm which does not consider bounds during
learning. The next model, CarsOnBridge, behaves
similarly to PressCtrller: the first metric reaches 100%
for ` = 17 and the second metric stabilises at ` = 23.
Moreover, for values of ` greater than 25, the size of
the automaton remains constant at 106 (we run the
algorithm until ` = 40 – note also that the computation
time for ` = 40 is small; this is because no new states
are added, so no learning is needed). As for the last
considered example, SSFPilot, which is a model from
industry, we could stop at ` = 15, when both metrics
stabilise, but, due to the large resulting state space, one
can also choose to control the increase of ` only by the
first metric, which expresses a 100% coverage at ` = 6.
Thus, the human tester can make informed decisions on
when to stop, based on the results of the metrics.

Regarding the generated tests presented in Subsec-
tion 3.6, we provide in Table 5 in the Appendix the sizes
of the test suites (number of tests) for all the models
of the benchmark, but only with selected values of `.
Here, we discuss about the sizes of the test suites for
the SSFPilot model for machine M1 and the bounds
used in Table 3 (see also the size of the correspond-
ing DFCAs in Table 3). So, we have: for ` = 3, 270
tests; for ` = 5, 1,510 tests; ` = 6, 4,612 tests; ` = 7,
10,371 tests; ` = 15, 139,162 tests; ` = 16, 155,465 tests;
` = 19, 193,829 tests; and ` = 23, 278,218 tests. Notice
the difference in size between the test suites for ` = 6
(when the first metric stabilises) and the test suite for
` = 23. For ` = 15 (when the second metric stabilises),
the number of produced tests may still seem high, but
this is because conformance testing is a strong form of
testing, heavily exercising the system. However, more
compact test suites can be obtained according to weaker
coverage criteria. For instance, test suites for state and
transition coverage are readily available from the learn-
ing procedure, from the (minimized) sets S and S∪SA,
respectively. Moreover, we have also implemented dif-
ferent test suite optimization algorithms that produce
significantly smaller test suites. As the quality of the
test suite depends on the model, it is better to base the
test generation on a richer model and then optimise the
test suite afterwards, if needed. Finally, regarding the
quality of the produced tests, since the implementations
of the Event-B models were not available, fault-seeding

was not considered relevant because this technique is
aimed at uncovering faults in the actual system, not
the model. However, we used in our evaluation cover-
age based criteria, widely accepted and considered to
be closely associated with fault detection, as previously
discussed.

5. RELATED WORK

The correspondence between conformance testing and
automata learning is discussed, from a theoretical
point of view, by Berg et al. [28], who show how
results from one area can be transferred to the other.
Such a correspondence is also exploited in our paper;
in our case, however, the correspondence is between
conformance testing for bounded sequences and cover
automata learning. In this bounded case, the algorithm
produces tests of minimal length, unlike the tests
produced using the original L∗ method. Furthermore,
here we propose an incremental learning and test
generation approach, in which the results obtained for
a previous model are reused in the next iteration.

An adaptive approach to model development is
proposed by Groce et al. [29], but the emphasis there
is on model checking, rather than test generation,
as in our approach. Furthermore, a DFA (not a
DFCA) model of the system is built. Our approach
can gradually build an appropriate model by suitably
setting the value of the upper bound ` or through the
(Event-B) refinement mechanism.

The use of Angluin-style automata learning tech-
niques for test generation is also discussed by Hagerer
et al. [30] and Hungar et al. [31]. As above, both pa-
pers refer to the case of unbounded sequences. Further-
more, in both papers the focus is on language learning
and test generation is only mentioned as an addendum:
once the model is constructed, it can be used as basis
for automatic test generation. Hungar et al. present
a technique for optimizing complex system learning.
Hagerer et al. present a technique, called regular extrap-
olation, for model generation from knowledge accumu-
lated from different sources and expert knowledge. The
final model is only an approximation of the real system
and so the test cases derived from it may not attain the
desired level of coverage. Interestingly, testing is also
used to validate the obtained model and the authors
state that “most errors show up in short sequences”.
This supports the view of our approach, which con-
siders bounded sequences. Alternatively, [32] provides
an incremental learning algorithm for Mealy automata,
which is used for test generation. However, the learn-
ing algorithm is not Angluin-based, but uses a so-called
Congruence Generator Extension.

Bounded model checking (based on SAT methods) [9,
10] is also gaining popularity in the formal verification
community, the general consensus being that it works
particularly well on large designs where bugs need to be
searched at shallow to medium depths.

The Computer Journal, Vol. ??, No. ??, ????

16 F. Ipate, A. Stefanescu, I. Dinca

Dupont et al. [33] and Walkinshaw et al. [34] use
automata inference techniques to construct behavior
models of software systems. However, there are a
number of key differences from our approach. First,
an initial set of training data is supplied to the
algorithm for model construction. In order to construct
an accurate model, training sequences that satisfy
an appropriate level of coverage must be supplied.
Therefore, these approaches rely on the existence of
good test sets, rather than assist in producing such sets.
In subsequent work, Walkinkshow et al. [35] produce
these test sets using model-based testing. Second, the
behavior of all (unbounded) sequences is considered.
While the model produced by this approach may be
exact, it may be too complex and so the whole process
may be too expensive to have a practical value. By
appropriately setting the upper bound `, our approach
has the potential to strike the right balance between
accuracy and costs. Naturally, at limit (i.e. for `
sufficiently large), our approach will also produce an
exact model of the system.

Grieskamp et al. [36] construct finite automata
that under-approximate the global state space of
an ASM. They use an algorithm that combines
several concrete states into abstract ones using logical
formulas to distinguish the abstract states. The
obtained finite automaton is used for test generation.
Note however that such a merging approach may
introduce non-determinism, which is usually not desired
in test models. Using a similar idea and extra
information on logical dependences between Event-B
guards, Bendisposto and Leuschel [37] construct an
abstract over-approximation of the control flow graph of
an Event-B model. Compared to our approach based on
incremental learning, both [36] and [37] use a different
strategy, relying on state merging and logical formulas
for distinguishability.

Cho et al. [38] learn an abstract model, which is
then used for vulnerability detection, by abstracting the
system inputs and outputs. The output abstraction
function is assumed to be known beforehand and
provides the basis for merging a cluster of concrete
states into an abstract state. On the other hand, the
input abstraction is unknown and a subset of concrete
inputs are selected by the algorithm and used in the
model. The model learning is iterative: after each
iteration, dynamic symbolic execution is used to explore
the surroundings of each concrete state and select new
inputs, which are used in the next iteration. This
approach is quite different from ours, in which an
abstract (input) alphabet (e.g. the set of events of
Event-B specifications) replaces the input and output
abstractions. This abstract alphabet is part of the
considered specification and, consequently, is known
beforehand; this is the case for Event-B models but also
fits very well with usual programming paradigms (e.g.
procedural, object-oriented), in which the program
units (e.g. functions, procedures, methods) are also

known. Furthermore, our approach fits well with
the usual testing experience, which shows that most
faults are detected using short sequences. Note also
that, unlike [38], our approach uses functional testing
(i.e., the W-method adapted to bounded sequences) to
restrict the sampled domain and therefore to provide
additional guidance for counterexample generation. On
the other hand, the two approaches are orthogonal
(one limits the size of the model by using alphabet
abstraction, the other by placing a bound on the
sequences length) and could even be combined to limit
state explosion. There are also a number of approaches
which use alphabet refinement in model learning [39,
40]: similarly to [38], the evolution of the learned model
is determined by an expansion of an initial abstract
alphabet. Finally, the algorithm proposed by Chen et
al. [41] solves a similar but more general problem than
ours, however at a much increased computational cost
(on the particular problem addressed by our method)
induced not only by a significantly increased number
of language queries, but also by calls to an additional
NP-complete minimization procedure.

There is little existing work done for the testing of
Event-B models. The interest in testing was spurred
by the idea of using the formal Event-B models not
only for analysis but also for test generation. Driven by
the industrial partner SAP who intends to generate test
cases for enterprise applications, an approach using the
explicit model checker ProB was devised [14]. However,
the classical state space explosion problem hampers
the applicability of the method to the larger models,
especially for data-intensive models. A recent approach
to tackle the test data generation using evolutionary
methods was proposed in [12]. However, in there only
the test data for one given event sequence is searched for
and the method must be complemented by algorithms
that generate the whole test suite. Our approach
provides a way of generating a test suite and thus
complementing [12] and furthermore, the state space
explosion of [14] is kept under control by incremental
model learning putting a certain bound on the lengths
of the test cases. Moreover, [42] presents a method
of incrementally concretizing test scenarios using the
information from the Event-B refinements. However,
the paper only addresses one scenario at a time, it does
not discuss the test data generation, and the control
flow graphs are constructed manually. Finally, to the
best our knowledge, this is the first attempt to use
grammatical inference techniques for Event-B models.

6. CONCLUSIONS

In this paper, we presented a novel approach of
using model learning for testing purposes and its
application to the Event-B method, being successfully
implemented for Event-B in a very large European
project called DEPLOY. The method is based on
sound theoretical automata theory foundations and has

The Computer Journal, Vol. ??, No. ??, ????

Model learning and test generation using cover automata 17

an incremental and interactive nature that makes it
fit the testing practice requirements. The prototype
implementation showed that the method works well
on a comprehensive benchmark of realistic models,
of medium or even fairly large size. Since the
complexity of the large specifications is tackled not
only by successive refinements but also by model
decompositions, we integrated these features in our
learning and test generation method. Moreover, we
provide automation of counterexample search, by a
combination of black-box and random testing, and
metrics to evaluate the quality of the produced results.
Based on these metrics, test suites can be generated
from the approximate automata models constructed by
our algorithm rather than from the exact automaton
model. Since the exact automaton can be significantly
larger, or even prohibitive to construct, test sets of
the same level of coverage may require a substantial
increased computational effort or, at worst, may be even
infeasible to construct.

As future plans, we intend to further investigate
the scalability of our approach and implementation
on even larger models together with an industrial
partner from the DEPLOY project. We also plan
to implement further different optimizations on our
prototype, especially on membership queries and
counterexample search, which constitute the most
expensive parts of the procedure. For instance, we could
compute batches of membership queries in parallel (on
a multi-core/multi-processor architecture) or evaluate
partial-order reductions exploiting the independence of
events similar to [31] as well as improve the random part
of counterexample search with ideas from [43] and [44].
Moreover, it would be useful to integrate our learning
algorithms into existing automata learning frameworks
like LearnLib15 and LibAlf16 and thus contribute to
the community efforts in bringing automata learning
forward.

Funding

This work was supported by project DEPLOY,
European FP7 grant no. 214158, and by Romanian
National Authority for Scientific Research (CNCS-
UEFISCDI) grant no. PN-II-ID-PCE-2011-3-0688
(project MuVeT).

REFERENCES

[1] Lee, D. and Yannakakis, M. (1996) Principles and
methods of testing finite state machines - A survey.
Proceedings of the IEEE, pp. 1090–1126.

[2] Harel, D. and Politi, M. (1998) Modeling reactive
systems with statecharts: the STATEMATE approach.
McGraw-Hill.

[3] Mouchawrab, S., Briand, L. C., Labiche, Y., and Penta,
M. D. (2010) Assessing, comparing, and combining

15http://ls5-www.cs.tu-dortmund.de/projects/learnlib
16http://libalf.informatik.rwth-aachen.de

state machine-based testing and structural testing:
A series of experiments. IEEE Trans. on Software
Engineering, 37, 161–187.

[4] Artzi, S., Kiezun, A., Dolby, J., Tip, F., Dig, D.,
Paradkar, A. M., and Ernst, M. D. (2010) Finding
bugs in web applications using dynamic test generation
and explicit-state model checking. IEEE Trans. on
Software Engineering, 36, 474–494.

[5] Angluin, D. (1987) Learning regular sets from queries
and counterexamples. Inf. Comput., 75, 87–106.

[6] Ipate, F. (2012) Learning finite cover automata from
queries. Journal of Computer and System Sciences, 78,
221–244.

[7] Câmpeanu, C., Sântean, N., and Yu, S. (2001) Minimal
cover-automata for finite languages. Theoret. Comput.
Sci., 267, 3–16.

[8] Câmpeanu, C., Paun, A., and Smith, J. R. (2006)
Incremental construction of minimal deterministic
finite cover automata. Theoret. Comput. Sci., 363,
135–148.

[9] Prasad, M. R., Biere, A., and Gupta, A. (2005)
A survey of recent advances in SAT-based formal
verification. STTT, 7, 156–173.

[10] Cordeiro, L., Fischer, B., and Marques-Silva, J.
(2012) SMT-based bounded model checking for
embedded ANSI-C software. IEEE Trans. on Software
Engineering, 38, 957–974.

[11] Abrial, J.-R. (2010) Modeling in Event-B - System and
Software Engineering. Cambridge University Press.

[12] Dinca, I., Stefanescu, A., Ipate, F., Lefticaru, R., and
Tudose, C. (2011) Test data generation for Event-
B models using genetic algorithms. Proc. of 2nd
International Conference on Software Engineering and
Computer Systems (ICSECS’11), CCIS, 181, pp. 76–
90. Springer.

[13] Dinca, I., Ipate, F., Mierla, L., and Stefanescu, A.
(2012) Learn and test for Event-B – a Rodin plugin.
Proc. of ABZ’12, LNCS, 7316, pp. 361–364. Springer.

[14] Wieczorek, S., Kozyura, V., Roth, A., Leuschel, M.,
Bendisposto, J., Plagge, D., and Schieferdecker, I.
(2009) Applying model checking to generate model-
based integration tests from choreography models.
Proc. TESTCOM’09, LNCS, 5826, pp. 179–194.
Springer.

[15] Dinca, I., Ipate, F., and Stefanescu, A. (2012)
Model learning and test generation for Event-B
decomposition. Proc. of ISoLA’12, LNCS, 7609, pp.
539–553. Springer. Extended version online at: http:

//tinyurl.com/isola12-with-appendix.

[16] Hopcroft, J. E., Motwani, R., and Ullman, J. D.
(2006) Introduction to Automata Theory, Languages,
and Computation (3rd Ed.). Addison-Wesley.

[17] Ipate, F. (2010) Bounded sequence testing from
deterministic finite state machines. Theoret. Comput.
Sci., 411, 1770–1784.

[18] Vasilevski, M. P. (1973) Failure diagnosis of automata.
Kibernetika, 4, 98–108.

[19] Chow, T. S. (1978) Testing software design modeled
by finite-state machines. IEEE Trans. on Software
Engineering, 4, 178–187.

[20] Leuschel, M. and Butler, M. J. (2008) ProB: an auto-
mated analysis toolset for the B method. Int. J. Softw.

The Computer Journal, Vol. ??, No. ??, ????

18 F. Ipate, A. Stefanescu, I. Dinca

Tools Technol. Transf., 10, 185–203. Tool webpage:
http://www.stups.uni-duesseldorf.de/ProB.

[21] Hoang, T. S., Iliasov, A., Silva, R., and Wei, W. (2011)
A survey on Event-B decomposition. ECEASST, 46,
1–15.

[22] Silva, R., Pascal, C., Hoang, T. S., and But-
ler, M. (2011) Decomposition tool for Event-B.
Softw., Pract. Exper., 41, 199–208. Plug-in web-
page: http://wiki.event-b.org/index.php/Event_

Model_Decomposition.

[23] Silva, R. and Butler, M. (2010) Shared event
composition/decomposition in Event-B. Proc. of
FMCO’10, LNCS, 6957, pp. 122–141. Springer.

[24] Abrial, J.-R. (2009) Event model decomposition.
Technical Report 626. ETH Zurich.

[25] Utting, M. and Legeard, B. (2007) Practical model-
based testing - a tools approach. Morgan Kaufmann.

[26] Ammann, P. and Offutt, J. (2008) Introduction to
software testing. Cambridge University Press.

[27] Gargantini, A. and Riccobene, E. (2001) ASM-based
testing: Coverage criteria and automatic test sequence.
Journal of Universal Computer Science, 7, 1050–1067.

[28] Berg, T., Grinchtein, O., Jonsson, B., Leucker,
M., Raffelt, H., and Steffen, B. (2005) On the
correspondence between conformance testing and
regular inference. Proc. of FASE’05, LNCS, 3442, pp.
175–189. Springer.

[29] Groce, A., Peled, D., and Yannakakis, M. (2002)
Adaptive model checking. Proc. of TACAS’02, LNCS,
2280, pp. 357–370. Springer.

[30] Hagerer, A., Hungar, H., Niese, O., and Steffen,
B. (2002) Model generation by moderated regular
extrapolation. Proc. of FASE’02, LNCS, 2306, pp. 80–
95. Springer.

[31] Hungar, H., Niese, O., and Steffen, B. (2003) Domain-
specific optimization in automata learning. Proc. of
CAV’03, LNCS, 2725, pp. 315–327. Springer.

[32] Meinke, K. and Niu, F. (2012) An incremental learning
algorithm for extended Mealy automata. Proc. of
ISoLA’12 - part I, LNCS, 7609, pp. 488–504. Springer.

[33] Dupont, P., Lambeau, B., Damas, C., and van
Lamsweerde, A. (2008) The QSM algorithm and its
application to software behavior model induction.
Applied Artificial Intelligence, 22, 77–115.

[34] Walkinshaw, N., Bogdanov, K., Holcombe, M.,
and Salahuddin, S. (2007) Reverse engineering state
machines by interactive grammar inference. Proc. of
WCRE’07, pp. 209–218. IEEE Computer Society.

[35] Walkinshaw, N., Derrick, J., and Guo, Q. (2009)
Iterative refinement of reverse-engineered models by
model-based testing. Proc. of FM’09, LNCS, 5850,
pp. 305–320. Springer.

[36] Grieskamp, W., Gurevich, Y., Schulte, W., and
Veanes, M. (2002) Generating finite state machines
from abstract state machines. Proc. of ISSTA’02, pp.
112–122. ACM.

[37] Bendisposto, J. and Leuschel, M. (2011) Automatic
flow analysis for Event-B. Proc. of FASE’11, LNCS,
6603, pp. 50–64. Springer.

[38] Cho, C. Y., Babic, D., Poosankam, P., Chen, K. Z.,
Wu, E. X., and Song, D. (2011) MACE: Model-
inference-assisted concolic exploration for protocol and

vulnerability discovery. USENIX Security Symposium,
pp. 139–154. USENIX Association.

[39] Pasareanu, C. S., Giannakopoulou, D., Bobaru, M. G.,
Cobleigh, J. M., and Barringer, H. (2008) Learning
to divide and conquer: applying the L∗ algorithm
to automate assume-guarantee reasoning. Formal
Methods in System Design, 32, 175–205.

[40] Howar, F., Steffen, B., and Merten, M. (2011) Au-
tomata learning with automated alphabet abstraction
refinement. Proc. of VMCAI’07, LNCS, 6538, pp. 263–
277. Springer.

[41] Chen, Y.-F., Farzan, A., Clarke, E., Tsay, Y.-K.,
and Wang, B.-Y. (2009) Learning minimal separating
DFA’s for compositional verification. Proc. of
TACAS’09, LNCS, 5505, pp. 31–45. Springer.

[42] Malik, Q., Lilius, J., and Laibinis, L. (2009) Model-
based testing using scenarios and Event-B refinements.
Methods, Models and Tools for Fault Tolerance, LNCS,
5454, pp. 177–195. Springer.

[43] Shahbaz, M. and Groz, R. (2009) Inferring Mealy
machines. Proc. of FM’09, LNCS, 5850, pp. 207–222.
Springer.

[44] Howar, F., Steffen, B., and Merten, M. (2010) From
ZULU to RERS - lessons learned in the ZULU
challenge. Proc. of ISoLA’10, LNCS, 6415, pp. 687–
704. Springer.

[45] Fathabadi, A. S., Rezazadeh, A., and Butler, M. (2011)
Applying atomicity and model decomposition to a
space craft system in Event-B. Proc. of 3rd NASA
Formal Methods (NFM’11), LNCS, 6617, pp. 328–342.
Springer.

The Computer Journal, Vol. ??, No. ??, ????

Model learning and test generation using cover automata 19

APPENDIX A

Let A = {a1, . . . , an} be an ordered set, n > 0. Then the
quasi-lexicographical order on A∗, denoted <, is defined
by: x < y if ‖x‖ < ‖y‖ or ‖x‖ = ‖y‖ and x = zaiv,
y = zaju, for some z, u, v ∈ A∗ and 1 ≤ i < j ≤ n.
x ≤ y is used to denote that x < y or x = y.

Let U ⊆ A∗ be a finite set and ` an integer that
is greater than or equal to the length of the longest
sequence(s) in U . Let S ⊆ A∗ and W ⊆ A∗ be the
current sets processed by LearnDFCA.

For s ∈ S ∪ SA, we define r(s) to be the minimum
sequence t ∈ S such that s ∼ t, where the minimum
is taken according to the quasi-lexicographical order
on A∗. In particular, r(ε) = ε. Then we define
Smin = {r(s) | s ∈ S}.

For every two dissimilar sequences s1, s2 ∈ S, we
denote by d(s1, s2) the minimum element (according to
the quasi-lexicographical order) of W that distinguishes
between s1 and s2. Then we define Wmin as the set of
all such sequences, i.e. Wmin = {d(s1, s2) | s1, s2 ∈
S, s1 6∼` s2}.

Then the following result holds.

Theorem 6.1. Suppose that M(S,W, T), the au-
tomaton returned by LearnDFCA, is a minimal DFCA
of U w.r.t. `. Then the execution of LearnDFCA for in-
puts S0 = Smin and W0 = Wmin will pass both the con-
sistency and closedness checks and the returned DFCA
M(Smin,Wmin, Tmin) is isomorphic to M(S,W, T).

Proof. We prove by contradiction that the procedure
passes the consistency check. Otherwise, there exist
w ∈ Wmin, s1, s2 ∈ S with ‖s1‖, ‖s2‖ ≤ ` − ‖w‖ −
1 and a ∈ A such that s1 ∼k s2, where k =
max{‖s1‖, ‖s2‖} + ‖w‖ + 1, and T (s1aw) 6= T (s2aw).
Thus aw distinguishes between s1 and s2, but s1 and
s2 cannot be distinguished by any element in Wmin of
length ‖w‖ + 1. This contradicts the fact that Wmin

contains d(s1, s2).
Similarly, if the procedure fails the closedness check,

then there exist s ∈ Smin, a ∈ A such that sa 6∼ t
∀t ∈ Smin with ‖t‖ ≤ ‖sa‖. On the other hand
r(sa) ∈ Smin and ‖r(sa)‖ ≤ ‖sa‖. This provides a
contradiction, as required.

Since the state set of M(S,W, T) is Smin, the
fact that M(Smin,Wmin, Tmin) and M(S,W, T) are
isomorphic follows directly from the definition of the
DFCA returned by LearnDFCA [6].

APPENDIX B

Let A be a finite alphabet, U ⊆ A∗ a finite set and `
an integer that is greater than or equal to the length of
the longest sequence(s) in U ; let I be a minimal DFCA
of U w.r.t. `. Then the following two results hold.

Theorem 6.2. If S0 ⊆ A∗ is a proper state cover
of I, then LearnDFCA returns a minimal DFCA of U
w.r.t. ` for inputs S0 and W0 = {ε}.

Proof. Let M(S,W, T) be the DFCA returned by
LearnDFCA. First we prove that W is a strong
characterization set of I. We provide a proof by
contradiction. If we assume otherwise, then there
exist q1, q2 states of I and w = a1 . . . ai /∈ W with
a1, . . . , ai ∈ A, such that q1 and q2 are distinguishable
by w but indistinguishable by W ∩ A[i]. Furthermore,
w is chosen such that i is the lowest possible value
with the above property.. Since ε ∈ W , i ≥ 1.
Let j, 1 ≤ j ≤ i, be the largest integer for which
aj . . . ai /∈ W . Let q′1 and q′2 be the states reached by
a1 . . . aj−1 from q1 and q2 respectively. Then q′1 and
q′2 are distinguishable by aj . . . ai. Furthermore, q′1 and
q′2 are indistinguishable by W ∩ A[i − j + 1]. (Assume
there exists z = bj . . . bi′ ∈ W with bj , . . . , bi′ ∈ A,
i′ ≤ i, which distinguishes between q′1 and q′2. Then
q1 and q2 are distinguishable by a1 . . . aj−1bj . . . bi′ but
indistinguishable by W ∩ A[i′]. This contradicts the
minimality of i.) Let s1 ∈ S and s2 ∈ S be sequences
of minimum length which reach q1 and q2, respectively
(since S is a proper state cover, such sequences exist).
Let w′ = aj+1 . . . ai, s′1 = s1a1 . . . aj−1, s′2 =
s2a1 . . . aj−1 and k = max{‖s1‖, ‖s2‖} + i. (Note
that, since M(S,W, T) is a minimal DFCA, q1 and
q2 are distinguished by a sequence of length less than
or equal to ` − max{‖s1‖, ‖s2‖}; from the minimality
of i, it follows that k ≤ `.) Then s′1 ∼k s′2 and
T (s′1ajw

′) 6= T (s′2ajw
′). Since w′ ∈ W (as j is the

largest integer for which aj . . . ai /∈ W), this provides
a contradiction as the final observation table must be
consistent.

Since I and M(S,W, T) have the same number of
states (equal to the number of elements of S0), the result
follows from the W -method for bounded sequences.

Theorem 6.3. If W0 ⊆ A∗ is a strong character-
ization set of I, then LearnDFCA returns a minimal
DFCA of U w.r.t. ` for inputs S0 = {ε} and W0.

Proof. We prove by contradiction that S is a proper
state cover of I. If we assume otherwise, then there
exist s = a1 . . . ai /∈ S with a1, . . . , ai ∈ A, i ≥ 1, and q
a state of I such that q is reached by s but cannot be
reached by any sequence in S ∩ A[i]. Let j, 1 ≤ j ≤ i,
be the smallest integer for which a1 . . . aj /∈ S. Then we
choose one such s for which j has the minimum possible
value and q as above. Let q′ be the state reached by
a1 . . . aj from the initial state of I. Then q′ cannot be
reached by any sequence in S∩A[j]. (If there exists z =
b1 . . . bj′ ∈ S with b1 . . . bj′ ∈ A, j′ ≤ j, which reaches q′

then q is reached by b1 . . . bj′aj+1 . . . ai but unreachable
by any sequence in S ∩ A[i]. This contradicts the
minimality of j.) Let s′ = a1 . . . aj−1. Since W is a
strong characterization set of I, s′aj 6∼ t ∀t ∈ S with
‖t‖ ≤ ‖s′aj‖. This provides a contradiction. As above,
the final result follows from the W -method for bounded
sequences.

The Computer Journal, Vol. ??, No. ??, ????

20 F. Ipate, A. Stefanescu, I. Dinca

APPENDIX C

We provide a short description of the Event-B models in
Table 2 including pointers where they can be retrieved:

1. A2A - http://deploy-eprints.ecs.soton.ac.

uk/129/ - Business domain: A model of the Order
and Supply Chain A2A Communication using a
pattern approach from ETH Zurich.

2. BepiColombo - http://deploy-eprints.ecs.

soton.ac.uk/72/ - Aerospace domain: A model
of two communication modules in the embed-
ded software on a space craft. The model was
constructed by researchers in Southampton [45]
based on the feedback from SSF (Space Systems
Finland), an industrial partner in the DEPLOY
project, who investigates the Event-B method for
formal validation of software parts of BepiColombo
mission to Mars17.

3. CarsOnBridge - http://deploy-eprints.ecs.

soton.ac.uk/112/ - Pedagogical example: De-
scribed in Section 3.2 and [11, Chapter 2]. Note
that in our experiments we fixed the constant d
(representing the capacity of the bridge) to 2.

4. Choreography - see [14] - Business domain: A model
of service choreography for enterprise component
communication.

5. MobileAgent - http://deploy-eprints.ecs.

soton.ac.uk/120/ - Distributed systems domain:
A model for distributed computing communica-
tion: a routing algorithm for sending messages to
a mobile phone, see also [11, Chapter 12].

6. PressCtrller - http://deploy-eprints.ecs.

soton.ac.uk/113/ - Embedded control domain:
A model of a mechanical press controller adapted
from a real system at INRST (Institut National de
la Recherche sur la Sécurité du Travail), see also
[11, Chapter 3].

7. ResponseCoP - http://deploy-eprints.ecs.

soton.ac.uk/301/ - Information flow domain: A
model for analysis of information flow policies
for Dynamic Virtual Organizations (DVOs), com-
monly referred to as the Bronze/Silver/Gold struc-
ture that frequently arises in multi-agency response
to emergencies.

8. SSFPilot - http://deploy-eprints.ecs.soton.

ac.uk/58/ - Aerospace domain: A model of a pilot
for a complex on-board satellite mode-rich system:
Attitude and Orbit Control System (AOCS).

9. TrainCtrller - http://deploy-eprints.ecs.

soton.ac.uk/316/ - Automotive Domain: The
model specifies a controller that detects the driv-
ing mode wished by the train driver. A large
number of requirements are taken into account, so
a large number of variables and events are needed.

17http://en.wikipedia.org/wiki/BepiColombo

TABLE 4. Comparing the transformation time (trans t)
with the learning time (learn t) for the refinement reuse
procedure (in seconds)

Subject machine/` trans t learn t

A2A
M3/10 0.22 0.47
M4/10 0.47 1.33
M6/10 1.72 4.46

BepiColombo
M1/11 1.44 18.18
M2/9 2.84 32.26
M3/12 20.51 223.11

CarsOnBridge
M2/16 5.25 61.08
M3/12 6.05 43.65

Choreography M1/10 1.40 4.79
M1/11 1.56 4.66

MobileAgent M2/11 1.02 6.36
M3/12 4.31 57.33

PressCtrler M1/10 0.42 9.03
M2/9 4.78 69.18

ResponseCoP M1/9 3.94 32.23
M1/12 5.69 243.2

SSFPilot M1/6 0.59 27.19
M1/8 0.42 132.34

TrainCtrller

M4/8 0.65 6.88
M5/8 0.99 15.74
M7/9 5.17 151.58
M8/8 5.03 128.92

TABLE 5. Test suite sizes for the benchmark with selected
bounds ` (note that these are the sizes of the test suites after
incremental learning, but before counterexample search)

Subject machine/` |Q| test suite size

A2A M4/11 8 445
M6/11 14 1518

BepiColombo M2/11 53 6249
M3/15 145 34115

CarsOnBridge
M2/13 8 455
M3/14 53 13569

Choreography M0/13 5 120
M1/13 10 957

MobileAgent M2/12 17 777
M4/12 33 1964

PressCtrler M1/8 46 5628
M2/8 136 26385

ResponseCoP M1/8 43 5091
M1/9 65 9539

SSFPilot M0/10 54 7541
M1/11 107 25370

TrainCtrller M6/13 12 4437
M8/13 20 11203

The Computer Journal, Vol. ??, No. ??, ????

