91,815 research outputs found

    Automatic Software Repair: a Bibliography

    Get PDF
    This article presents a survey on automatic software repair. Automatic software repair consists of automatically finding a solution to software bugs without human intervention. This article considers all kinds of repairs. First, it discusses behavioral repair where test suites, contracts, models, and crashing inputs are taken as oracle. Second, it discusses state repair, also known as runtime repair or runtime recovery, with techniques such as checkpoint and restart, reconfiguration, and invariant restoration. The uniqueness of this article is that it spans the research communities that contribute to this body of knowledge: software engineering, dependability, operating systems, programming languages, and security. It provides a novel and structured overview of the diversity of bug oracles and repair operators used in the literature

    A Critical Review of "Automatic Patch Generation Learned from Human-Written Patches": Essay on the Problem Statement and the Evaluation of Automatic Software Repair

    Get PDF
    At ICSE'2013, there was the first session ever dedicated to automatic program repair. In this session, Kim et al. presented PAR, a novel template-based approach for fixing Java bugs. We strongly disagree with key points of this paper. Our critical review has two goals. First, we aim at explaining why we disagree with Kim and colleagues and why the reasons behind this disagreement are important for research on automatic software repair in general. Second, we aim at contributing to the field with a clarification of the essential ideas behind automatic software repair. In particular we discuss the main evaluation criteria of automatic software repair: understandability, correctness and completeness. We show that depending on how one sets up the repair scenario, the evaluation goals may be contradictory. Eventually, we discuss the nature of fix acceptability and its relation to the notion of software correctness.Comment: ICSE 2014, India (2014

    Contributors to Success on the Automotive Service Excellence (ASE) Student Certification Exam

    Full text link
    This study sought to identify which elements contribute to success on the Automotive Service Excellence (ASE) Student Certification exam. Students at an eastern U.S. technical college who completed all of their automotive major courses and the ASE Student Certification exam during the spring 2017 semester were selected for the study. The results of this study revealed that there was a direct correlation between performance in Physics, Algebra, and Trigonometry 1 and performance on the ASE Student Certification exam. It was also revealed that students who were required to participate in remedial math and/or remedial reading courses were likely to perform at a lower level than their counterparts on the exam. Students who participated in a secondary automotive Career and Technical Education (CTE) program were also likely to perform at a lower level than their counterparts. The results of this study would be useful to administrators and faculty in postsecondary automotive preparation programs

    Dynamic Analysis can be Improved with Automatic Test Suite Refactoring

    Full text link
    Context: Developers design test suites to automatically verify that software meets its expected behaviors. Many dynamic analysis techniques are performed on the exploitation of execution traces from test cases. However, in practice, there is only one trace that results from the execution of one manually-written test case. Objective: In this paper, we propose a new technique of test suite refactoring, called B-Refactoring. The idea behind B-Refactoring is to split a test case into small test fragments, which cover a simpler part of the control flow to provide better support for dynamic analysis. Method: For a given dynamic analysis technique, our test suite refactoring approach monitors the execution of test cases and identifies small test cases without loss of the test ability. We apply B-Refactoring to assist two existing analysis tasks: automatic repair of if-statements bugs and automatic analysis of exception contracts. Results: Experimental results show that test suite refactoring can effectively simplify the execution traces of the test suite. Three real-world bugs that could previously not be fixed with the original test suite are fixed after applying B-Refactoring; meanwhile, exception contracts are better verified via applying B-Refactoring to original test suites. Conclusions: We conclude that applying B-Refactoring can effectively improve the purity of test cases. Existing dynamic analysis tasks can be enhanced by test suite refactoring

    Identifying Patch Correctness in Test-Based Program Repair

    Full text link
    Test-based automatic program repair has attracted a lot of attention in recent years. However, the test suites in practice are often too weak to guarantee correctness and existing approaches often generate a large number of incorrect patches. To reduce the number of incorrect patches generated, we propose a novel approach that heuristically determines the correctness of the generated patches. The core idea is to exploit the behavior similarity of test case executions. The passing tests on original and patched programs are likely to behave similarly while the failing tests on original and patched programs are likely to behave differently. Also, if two tests exhibit similar runtime behavior, the two tests are likely to have the same test results. Based on these observations, we generate new test inputs to enhance the test suites and use their behavior similarity to determine patch correctness. Our approach is evaluated on a dataset consisting of 139 patches generated from existing program repair systems including jGenProg, Nopol, jKali, ACS and HDRepair. Our approach successfully prevented 56.3\% of the incorrect patches to be generated, without blocking any correct patches.Comment: ICSE 201

    Automatic assembly design project 1968/9 :|breport of economic planning committee

    Get PDF
    Investigations into automatic assembly systems have been carried out. The conclusions show the major features to be considered by a company operating the machine to assemble the contact block with regard to machine output and financial aspects. The machine system has been shown to be economically viable for use under suitable conditions, but the contact block is considered to be unsuitable for automatic assembly. Data for machine specification, reliability and maintenance has been provided
    • …
    corecore