9,870 research outputs found

    Detection and estimation of moving obstacles for a UAV

    Get PDF
    In recent years, research interest in Unmanned Aerial Vehicles (UAVs) has been grown rapidly because of their potential use for a wide range of applications. In this paper, we proposed a vision-based detection and position/velocity estimation of moving obstacle for a UAV. The knowledge of a moving obstacle's state, i.e., position, velocity, is essential to achieve better performance for an intelligent UAV system specially in autonomous navigation and landing tasks. The novelties are: (1) the design and implementation of a localization method using sensor fusion methodology which fuses Inertial Measurement Unit (IMU) signals and Pozyx signals; (2) The development of detection and estimation of moving obstacles method based on on-board vision system. Experimental results validate the effectiveness of the proposed approach. (C) 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved

    Fault-tolerant formation driving mechanism designed for heterogeneous MAVs-UGVs groups

    Get PDF
    A fault-tolerant method for stabilization and navigation of 3D heterogeneous formations is proposed in this paper. The presented Model Predictive Control (MPC) based approach enables to deploy compact formations of closely cooperating autonomous aerial and ground robots in surveillance scenarios without the necessity of a precise external localization. Instead, the proposed method relies on a top-view visual relative localization provided by the micro aerial vehicles flying above the ground robots and on a simple yet stable visual based navigation using images from an onboard monocular camera. The MPC based schema together with a fault detection and recovery mechanism provide a robust solution applicable in complex environments with static and dynamic obstacles. The core of the proposed leader-follower based formation driving method consists in a representation of the entire 3D formation as a convex hull projected along a desired path that has to be followed by the group. Such an approach provides non-collision solution and respects requirements of the direct visibility between the team members. The uninterrupted visibility is crucial for the employed top-view localization and therefore for the stabilization of the group. The proposed formation driving method and the fault recovery mechanisms are verified by simulations and hardware experiments presented in the paper
    corecore