1,327 research outputs found

    On the role of metaheuristic optimization in bioinformatics

    Get PDF
    Metaheuristic algorithms are employed to solve complex and large-scale optimization problems in many different fields, from transportation and smart cities to finance. This paper discusses how metaheuristic algorithms are being applied to solve different optimization problems in the area of bioinformatics. While the text provides references to many optimization problems in the area, it focuses on those that have attracted more interest from the optimization community. Among the problems analyzed, the paper discusses in more detail the molecular docking problem, the protein structure prediction, phylogenetic inference, and different string problems. In addition, references to other relevant optimization problems are also given, including those related to medical imaging or gene selection for classification. From the previous analysis, the paper generates insights on research opportunities for the Operations Research and Computer Science communities in the field of bioinformatics

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    METADOCK: A parallel metaheuristic schema for virtual screening methods

    Get PDF
    Virtual screening through molecular docking can be translated into an optimization problem, which can be tackled with metaheuristic methods. The interaction between two chemical compounds (typically a protein, enzyme or receptor, and a small molecule, or ligand) is calculated by using highly computationally demanding scoring functions that are computed at several binding spots located throughout the protein surface. This paper introduces METADOCK, a novel molecular docking methodology based on parameterized and parallel metaheuristics and designed to leverage heterogeneous computers based on heterogeneous architectures. The application decides the optimization technique at running time by setting a configuration schema. Our proposed solution finds a good workload balance via dynamic assignment of jobs to heterogeneous resources which perform independent metaheuristic executions when computing different molecular interactions required by the scoring functions in use. A cooperative scheduling of jobs optimizes the quality of the solution and the overall performance of the simulation, so opening a new path for further developments of virtual screening methods on high-performance contemporary heterogeneous platforms.Ingeniería, Industria y Construcció

    Hyper‐Heuristics and Metaheuristics for Selected Bio‐Inspired Combinatorial Optimization Problems

    Get PDF
    Many decision and optimization problems arising in bioinformatics field are time demanding, and several algorithms are designed to solve these problems or to improve their current best solution approach. Modeling and implementing a new heuristic algorithm may be time‐consuming but has strong motivations: on the one hand, even a small improvement of the new solution may be worth the long time spent on the construction of a new method; on the other hand, there are problems for which good‐enough solutions are acceptable which could be achieved at a much lower computational cost. In the first case, specially designed heuristics or metaheuristics are needed, while the latter hyper‐heuristics can be proposed. The paper will describe both approaches in different domain problems

    Hybrid parallel multimethod hyperheuristic for mixed-integer dynamic optimization problems in computational systems biology

    Get PDF
    [Abstract] This paper describes and assesses a parallel multimethod hyperheuristic for the solution of complex global optimization problems. In a multimethod hyperheuristic, different metaheuristics cooperate to outperform the results obtained by any of them isolated. The results obtained show that the cooperation of individual parallel searches modifies the systemic properties of the hyperheuristic, achieving significant performance improvements versus the sequential and the non-cooperative parallel solutions. Here we present and evaluate a hybrid parallel scheme of the multimethod, using both message-passing (MPI) and shared memory (OpenMP) models. The hybrid parallelization allows to achieve a better trade-off between performance and computational resources, through a compromise between diversity (number of islands) and intensity (number of threads per island). For the performance evaluation, we considered the general problem of reverse engineering nonlinear dynamic models in systems biology, which yields very large mixed-integer dynamic optimization problems. In particular, three very challenging problems from the domain of dynamic modeling of cell signaling were used as case studies. In addition, experiments have been carried out in a local cluster, a large supercomputer and a public cloud, to show the suitability of the proposed solution in different execution platforms.Gobierno de España; DPI2017-82896-C2-2-RGobierno de España; TIN2016-75845-PXunta de Galicia; R2016/045Xunta de Galicia; ED431C 2017/0

    Soft Computing Techiniques for the Protein Folding Problem on High Performance Computing Architectures

    Get PDF
    The protein-folding problem has been extensively studied during the last fifty years. The understanding of the dynamics of global shape of a protein and the influence on its biological function can help us to discover new and more effective drugs to deal with diseases of pharmacological relevance. Different computational approaches have been developed by different researchers in order to foresee the threedimensional arrangement of atoms of proteins from their sequences. However, the computational complexity of this problem makes mandatory the search for new models, novel algorithmic strategies and hardware platforms that provide solutions in a reasonable time frame. We present in this revision work the past and last tendencies regarding protein folding simulations from both perspectives; hardware and software. Of particular interest to us are both the use of inexact solutions to this computationally hard problem as well as which hardware platforms have been used for running this kind of Soft Computing techniques.This work is jointly supported by the FundaciónSéneca (Agencia Regional de Ciencia y Tecnología, Región de Murcia) under grants 15290/PI/2010 and 18946/JLI/13, by the Spanish MEC and European Commission FEDER under grant with reference TEC2012-37945-C02-02 and TIN2012-31345, by the Nils Coordinated Mobility under grant 012-ABEL-CM-2014A, in part financed by the European Regional Development Fund (ERDF). We also thank NVIDIA for hardware donation within UCAM GPU educational and research centers.Ingeniería, Industria y Construcció

    Multimethod optimization in the cloud: A case‐study in systems biology modelling

    Get PDF
    [Abstract] Optimization problems appear in many different applications in science and engineering. A large number of different algorithms have been proposed for solving them; however, there is no unique general optimization method that performs efficiently across a diverse set of problems. Thus, a multimethod optimization, in which different algorithms cooperate to outperform the results obtained by any of them in isolation, is a very appealing alternative. Besides, as real‐life optimization problems are becoming more and more challenging, the use of HPC techniques to implement these algorithms represents an effective strategy to speed up the time‐to‐solution. In addition, a parallel multimethod approach can benefit from the effortless access to q large number of distributed resources facilitated by cloud computing. In this paper, we propose a self‐adaptive cooperative parallel multimethod for global optimization. This proposal aims to perform a thorough exploration of the solution space by means of multiple concurrent executions of a broad range of search strategies. For its evaluation, we consider an extremely challenging case‐study from the field of computational systems biology. We also assess the performance of the proposal on a public cloud, demonstrating both the potential of the multimethod approach and the opportunity that the cloud provides for these problems.Gobierno de España; DPI2014‐55276‐C5‐2‐RGobierno de España; DPI2017‐82896‐C2‐2‐RGobierno de España; TIN2016‐75845‐PXunta de Galicia; R2016/045Xunta de Galicia; ED431C 2017/0

    Stable Feature Selection for Biomarker Discovery

    Full text link
    Feature selection techniques have been used as the workhorse in biomarker discovery applications for a long time. Surprisingly, the stability of feature selection with respect to sampling variations has long been under-considered. It is only until recently that this issue has received more and more attention. In this article, we review existing stable feature selection methods for biomarker discovery using a generic hierarchal framework. We have two objectives: (1) providing an overview on this new yet fast growing topic for a convenient reference; (2) categorizing existing methods under an expandable framework for future research and development

    A computational evaluation of constructive and improvement heuristics for the blocking flow shop to minimize total flowtime

    Get PDF
    This paper focuses on the blocking flow shop scheduling problem with the objective of total flowtime minimisation. This problem assumes that there are no buffers between machines and, due to its application to many manufacturing sectors, it is receiving a growing attention by researchers during the last years. Since the problem is NP-hard, a large number of heuristics have been proposed to provide good solutions with reasonable computational times. In this paper, we conduct a comprehensive evaluation of the available heuristics for the problem and for related problems, resulting in the implementation and testing of a total of 35 heuristics. Furthermore, we propose an efficient constructive heuristic which successfully combines a pool of partial sequences in parallel, using a beam-search-based approach. The computational experiments show the excellent performance of the proposed heuristic as compared to the best-so-far algorithms for the problem, both in terms of quality of the solutions and of computational requirements. In fact, despite being a relative fast constructive heuristic, new best upper bounds have been found for more than 27% of Taillard’s instances.Ministerio de Ciencia e Innovación DPI2013-44461-P/DP
    corecore