15,270 research outputs found

    Towards a Common Language of Infrastructure Interdependency

    Get PDF
    Infrastructure systems can exist interdependently with one another either by design, necessity or evolution. There is evidence that interdependencies can be the source of emergent benefits and hazards, and therefore there is value in their identification and management. Achieving this requires collaboration and communication between infrastructure stakeholders across all relevant sectors. Recognising, developing and sharing multiple understandings of infrastructure interdependency and dependency will facilitate a wide range of multi-disciplinary and cross-sectorial work and support productive stakeholder dialogues. This paper therefore aims to initiate discussion around the nature of infrastructure interdependency and dependency in order to establish the basis of a useful, coherent and complete conceptual taxonomy. It sets out an approach for locating this taxonomy and language within a framework of commonplace stakeholder viewpoints. The paper looks at the potential structural arrangements of infrastructure interdependencies before exploring the qualitative ways in which the relationships can be characterised. This builds on the existing body of knowledge as well as experience through case studies in developing an Interdependency Planning and Management Framework for Infrastructure

    Modelling interdependencies between the electricity and information infrastructures

    Full text link
    The aim of this paper is to provide qualitative models characterizing interdependencies related failures of two critical infrastructures: the electricity infrastructure and the associated information infrastructure. The interdependencies of these two infrastructures are increasing due to a growing connection of the power grid networks to the global information infrastructure, as a consequence of market deregulation and opening. These interdependencies increase the risk of failures. We focus on cascading, escalating and common-cause failures, which correspond to the main causes of failures due to interdependencies. We address failures in the electricity infrastructure, in combination with accidental failures in the information infrastructure, then we show briefly how malicious attacks in the information infrastructure can be addressed

    Resilience of Hierarchical Critical Infrastructure Networks

    Get PDF
    Concern over the resilience of critical infrastructure networks has increased dramatically over the last decade due to a number of well documented failures and the significant disruption associated with these. This has led to a large body of research that has adopted graph-theoretic based analysis in order to try and improve our understanding of infrastructure network resilience. Many studies have asserted that infrastructure networks possess a scale-free topology which is robust to random failures but sensitive to targeted attacks at highly connected hubs. However, many studies have ignored that many networks in addition to their topological connectivity may be organised either logically or spatially in a hierarchical system which may significantly change their response to perturbations. In this paper we explore if hierarchical network models exhibit significantly different higher-order topological characteristics compared to other network structures and how this impacts on their resilience to a number of different failure types. This is achieved by investigating a suite of synthetic networks as well as a suite of ‘real world’ spatial infrastructure networks

    Mitigating Cascading Failures in Interdependent Power Grids and Communication Networks

    Get PDF
    In this paper, we study the interdependency between the power grid and the communication network used to control the grid. A communication node depends on the power grid in order to receive power for operation, and a power node depends on the communication network in order to receive control signals for safe operation. We demonstrate that these dependencies can lead to cascading failures, and it is essential to consider the power flow equations for studying the behavior of such interdependent networks. We propose a two-phase control policy to mitigate the cascade of failures. In the first phase, our control policy finds the non-avoidable failures that occur due to physical disconnection. In the second phase, our algorithm redistributes the power so that all the connected communication nodes have enough power for operation and no power lines overload. We perform a sensitivity analysis to evaluate the performance of our control policy, and show that our control policy achieves close to optimal yield for many scenarios. This analysis can help design robust interdependent grids and associated control policies.Comment: 6 pages, 9 figures, submitte
    • 

    corecore