29,539 research outputs found

    Intrinsic universality and the computational power of self-assembly

    Full text link
    This short survey of recent work in tile self-assembly discusses the use of simulation to classify and separate the computational and expressive power of self-assembly models. The journey begins with the result that there is a single universal tile set that, with proper initialization and scaling, simulates any tile assembly system. This universal tile set exhibits something stronger than Turing universality: it captures the geometry and dynamics of any simulated system. From there we find that there is no such tile set in the noncooperative, or temperature 1, model, proving it weaker than the full tile assembly model. In the two-handed or hierarchal model, where large assemblies can bind together on one step, we encounter an infinite set, of infinite hierarchies, each with strictly increasing simulation power. Towards the end of our trip, we find one tile to rule them all: a single rotatable flipable polygonal tile that can simulate any tile assembly system. It seems this could be the beginning of a much longer journey, so directions for future work are suggested.Comment: In Proceedings MCU 2013, arXiv:1309.104

    Encountering algorithms in the urban space: a matter of knowledge. An enactive ethnography of riders’ work

    Get PDF
    In the academic debate, an increasing number of studies has addressed the disciplining function of the algorithmic management upon food-delivery workers. The technological infrastructure has been understood as a tool in the hands of the management, against which workers can only resist or succumb insofar as they comply (or not) with algorithmic prescriptions. Less attention has been given to what the interaction with algorithms is made of. By adopting riders’ point of view, this article explores the meanings and competences attached to such interaction, which shapes workers’ spatial and temporal experience. Framing the everyday encounters with algorithms as a “site of knowing” (Nicolini 2011), the paper shows the emergence of a professional vision within (a part of) riders’ community. The research draws on six-months Milan-based observant participation during which the author worked as a part-time rider, integrated with 21 in-depth interviews and a smallsized survey (n=130) with workers

    Fun with Fonts: Algorithmic Typography

    Get PDF
    Over the past decade, we have designed six typefaces based on mathematical theorems and open problems, specifically computational geometry. These typefaces expose the general public in a unique way to intriguing results and hard problems in hinged dissections, geometric tours, origami design, computer-aided glass design, physical simulation, and protein folding. In particular, most of these typefaces include puzzle fonts, where reading the intended message requires solving a series of puzzles which illustrate the challenge of the underlying algorithmic problem.Comment: 14 pages, 12 figures. Revised paper with new glass cane font. Original version in Proceedings of the 7th International Conference on Fun with Algorithm

    Parametric Surfaces for Augmented Architecture representation

    Get PDF
    Augmented Reality (AR) represents a growing communication channel, responding to the need to expand reality with additional information, offering easy and engaging access to digital data. AR for architectural representation allows a simple interaction with 3D models, facilitating spatial understanding of complex volumes and topological relationships between parts, overcoming some limitations related to Virtual Reality. In the last decade different developments in the pipeline process have seen a significant advancement in technological and algorithmic aspects, paying less attention to 3D modeling generation. For this, the article explores the construction of basic geometries for 3D model’s generation, highlighting the relationship between geometry and topology, basic for a consistent normal distribution. Moreover, a critical evaluation about corrective paths of existing 3D models is presented, analysing a complex architectural case study, the virtual model of Villa del Verginese, an emblematic example for topological emerged problems. The final aim of the paper is to refocus attention on 3D model construction, suggesting some "good practices" useful for preventing, minimizing or correcting topological problems, extending the accessibility of AR to people engaged in architectural representation

    The Locus Algorithm IV: Performance metrics of a grid computing system used to create catalogues of optimised pointings

    Get PDF
    This paper discusses the requirements for and performance metrics of the the Grid Computing system used to implement the Locus Algorithm to identify optimum pointings for differential photometry of 61,662,376 stars and 23,779 quasars. Initial operational tests indicated a need for a software system to analyse the data and a High Performance Computing system to run that software in a scalable manner. Practical assessments of the performance of the software in a serial computing environment were used to provide a benchmark against which the performance metrics of the HPC solution could be compared, as well as to indicate any bottlenecks in performance. These performance metrics indicated a distinct split in the performance dictated more by differences in the input data than by differences in the design of the systems used. This indicates a need for experimental analysis of system performance, and suggests that algorithmic complexity analyses may lead to incorrect or naive conclusions, especially in systems with high data I/O overhead such as grid computing. Further, it implies that systems which reduce or eliminate this bottleneck such as in-memory processing could lead to a substantial increase in performance
    • …
    corecore