8,149 research outputs found

    Learning sound representations using trainable COPE feature extractors

    Get PDF
    Sound analysis research has mainly been focused on speech and music processing. The deployed methodologies are not suitable for analysis of sounds with varying background noise, in many cases with very low signal-to-noise ratio (SNR). In this paper, we present a method for the detection of patterns of interest in audio signals. We propose novel trainable feature extractors, which we call COPE (Combination of Peaks of Energy). The structure of a COPE feature extractor is determined using a single prototype sound pattern in an automatic configuration process, which is a type of representation learning. We construct a set of COPE feature extractors, configured on a number of training patterns. Then we take their responses to build feature vectors that we use in combination with a classifier to detect and classify patterns of interest in audio signals. We carried out experiments on four public data sets: MIVIA audio events, MIVIA road events, ESC-10 and TU Dortmund data sets. The results that we achieved (recognition rate equal to 91.71% on the MIVIA audio events, 94% on the MIVIA road events, 81.25% on the ESC-10 and 94.27% on the TU Dortmund) demonstrate the effectiveness of the proposed method and are higher than the ones obtained by other existing approaches. The COPE feature extractors have high robustness to variations of SNR. Real-time performance is achieved even when the value of a large number of features is computed.Comment: Accepted for publication in Pattern Recognitio

    Purging of silence for robust speaker identification in colossal database

    Get PDF
    The aim of this work is to develop an effective speaker recognition system under noisy environments for large data sets. The important phases involved in typical identification systems are feature extraction, training and testing. During the feature extraction phase, the speaker-specific information is processed based on the characteristics of the voice signal. Effective methods have been proposed for the silence removal in order to achieve accurate recognition under noisy environments in this work. Pitch and Pitch-strength parameters are extracted as distinct features from the input speech spectrum. Multi-linear principle component analysis (MPCA) is is utilized to minimize the complexity of the parameter matrix. Silence removal using zero crossing rate (ZCR) and endpoint detection algorithm (EDA) methods are applied on the source utterance during the feature extraction phase. These features are useful in later classification phase, where the identification is made on the basis of support vector machine (SVM) algorithms. Forward loking schostic (FOLOS) is the efficient large-scale SVM algorithm that has been employed for the effective classification among speakers. The evaluation findings indicate that the methods suggested increase the performance for large amounts of data in noise ecosystems

    Predicting continuous conflict perception with Bayesian Gaussian processes

    Get PDF
    Conflict is one of the most important phenomena of social life, but it is still largely neglected by the computing community. This work proposes an approach that detects common conversational social signals (loudness, overlapping speech, etc.) and predicts the conflict level perceived by human observers in continuous, non-categorical terms. The proposed regression approach is fully Bayesian and it adopts Automatic Relevance Determination to identify the social signals that influence most the outcome of the prediction. The experiments are performed over the SSPNet Conflict Corpus, a publicly available collection of 1430 clips extracted from televised political debates (roughly 12 hours of material for 138 subjects in total). The results show that it is possible to achieve a correlation close to 0.8 between actual and predicted conflict perception

    Multimedia Context Awareness for Smart Mobile Environments

    Get PDF
    openNowadays the development of the IoT framework and the resulting huge number of smart connected devices opens the door to exploit the presence of multiple smart nodes to accomplish a variety of tasks. Multimedia context awareness, together with the concept of ambient intelligence, is tightly related to the IoT framework, and it can be applied to a large number of smart scenarios. In this thesis, the aim is to study and analyze the role of context awareness in different applications related to smart mobile environments, such as future smart spaces and connected cities. Indeed, this research work focuses on different aspects of ambient intelligence, such as audio-awareness and wireless-awareness. In particular, this thesis tackles two main research topics: the first one, related to the framework of audio-awareness, concerns a multiple observations approach for smart speaker recognition in mobile environments; the second one, tied to the concept of wireless-awareness, regards Unmanned Aerial Vehicle (UAV) detection based on WiFi statistical fingerprint analysis.openXXXI CICLO - SC. E TECN. ING. ELETTR. E DELLE TEL. - Ambienti cognitivi interattiviGaribotto, Chiar
    corecore