2 research outputs found

    Quantum Query Complexity of Subgraph Isomorphism and Homomorphism

    Get PDF
    Let HH be a fixed graph on nn vertices. Let fH(G)=1f_H(G) = 1 iff the input graph GG on nn vertices contains HH as a (not necessarily induced) subgraph. Let αH\alpha_H denote the cardinality of a maximum independent set of HH. In this paper we show: Q(fH)=Ω(αH⋅n),Q(f_H) = \Omega\left(\sqrt{\alpha_H \cdot n}\right), where Q(fH)Q(f_H) denotes the quantum query complexity of fHf_H. As a consequence we obtain a lower bounds for Q(fH)Q(f_H) in terms of several other parameters of HH such as the average degree, minimum vertex cover, chromatic number, and the critical probability. We also use the above bound to show that Q(fH)=Ω(n3/4)Q(f_H) = \Omega(n^{3/4}) for any HH, improving on the previously best known bound of Ω(n2/3)\Omega(n^{2/3}). Until very recently, it was believed that the quantum query complexity is at least square root of the randomized one. Our Ω(n3/4)\Omega(n^{3/4}) bound for Q(fH)Q(f_H) matches the square root of the current best known bound for the randomized query complexity of fHf_H, which is Ω(n3/2)\Omega(n^{3/2}) due to Gr\"oger. Interestingly, the randomized bound of Ω(αH⋅n)\Omega(\alpha_H \cdot n) for fHf_H still remains open. We also study the Subgraph Homomorphism Problem, denoted by f[H]f_{[H]}, and show that Q(f[H])=Ω(n)Q(f_{[H]}) = \Omega(n). Finally we extend our results to the 33-uniform hypergraphs. In particular, we show an Ω(n4/5)\Omega(n^{4/5}) bound for quantum query complexity of the Subgraph Isomorphism, improving on the previously known Ω(n3/4)\Omega(n^{3/4}) bound. For the Subgraph Homomorphism, we obtain an Ω(n3/2)\Omega(n^{3/2}) bound for the same.Comment: 16 pages, 2 figure
    corecore