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Abstract
Let H be a (non-empty) graph on n vertices, possibly containing isolated vertices. Let fH(G) = 1
iff the input graph G on n vertices contains H as a (not necessarily induced) subgraph. Let αH
denote the cardinality of a maximum independent set of H. In this paper we show:

Q(fH) = Ω (
√
αH · n) ,

where Q(fH) denotes the quantum query complexity of fH .
As a consequence we obtain lower bounds for Q(fH) in terms of several other parameters

of H such as the average degree, minimum vertex cover, chromatic number, and the critical
probability.

We also use the above bound to show that Q(fH) = Ω(n3/4) for any H, improving on the
previously best known bound of Ω(n2/3) [16]. Until very recently, it was believed that the
quantum query complexity is at least square root of the randomized one. Our Ω(n3/4) bound
for Q(fH) matches the square root of the current best known bound for the randomized query
complexity of fH , which is Ω(n3/2) due to Gröger. Interestingly, the randomized bound of
Ω(αH · n) for fH still remains open.

We also study the Subgraph Homomorphism Problem, denoted by f[H], and show that
Q(f[H]) = Ω(n).

Finally we extend our results to the 3-uniform hypergraphs. In particular, we show an Ω(n4/5)
bound for quantum query complexity of the Subgraph Isomorphism, improving on the previously
known Ω(n3/4) bound. For the Subgraph Homomorphism, we obtain an Ω(n3/2) bound for the
same.
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1 Introduction

1.1 Classical and Quantum Query Complexity
The decision tree model (aka the query model), perhaps due to its simplicity and fundamental
nature, has been extensively studied in the past and still remains a rich source of many
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48:2 Quantum Query Complexity of Subgraph Isomorphism and Homomorphism

fascinating investigations. In this paper we focus on Boolean functions, i.e., the functions of
the form f : {0, 1}n → {0, 1}. A deterministic decision tree Tf for f takes x = (x1, . . . , xn)
as an input and determines the value of f(x1, . . . , xn) using queries of the form “is xi = 1?"
Let C(Tf , x) denote the cost of the computation, that is the number of queries made by
Tf on an input x. The deterministic decision tree complexity (aka the deterministic query
complexity) of f is defined as

D(f) = min
Tf

max
x

C(Tf , x).

We encourage the reader to see an excellent survey by Buhrman and de Wolf [7] on the
decision tree complexity of Boolean functions.

A randomized decision tree T is simply a probability distribution on the deterministic
decision trees {T1, T2, . . .} where the tree Ti occurs with probability pi. We say that T
computes f correctly if for every input x: Pri[Ti(x) = f(x)] ≥ 2/3. The depth of T is the
maximum depth of a Ti. The (bounded-error) randomized query complexity of f , denoted
by R(f), is the minimum possible depth of a randomized tree computing f correctly on all
inputs.

One can also define the quantum version of the decision tree model as follows: Start with
an N -qubit state |0〉 consisting of all zeros. We can transform this state by applying an
unitary transformation U0, then we can make a quantum query O, which essentially negates
the amplitude of each basic state depending on whether the ith bit of the basic state is zero or
one. A quantum algorithm with q queries looks like the following: A = UqOUq−1 · · ·OU1OU0.
Here Ui’s are fixed unitary transformation independent of the input x. The final state A|0〉
depends on the input x only via applications of O. We measure the final state outputing
the rightmost qubit (WLOG there are no intermediate measurements). A bounded-error
quantum query algorithm A computes f correctly if the final measurement gives the correct
answer with probability at least 2/3 for every input x. The bounded-error quantum query
complexity of f , denoted by Q(f), is the least q for which f admits a bounded-error quantum
algorithm. We refer the reader to a survey by Buhrman and de Wolf [7] for more precise
definition.

1.2 Subgraph Isomorphism Problem
Let H be a (non-empty) graph on n vertices, possibly containing isolated vertices and let G
be an unknown input graph (on n vertices) given by query access to its edges, i.e, queries
of the form “Is {i, j} an edge in G?". We say H ≤ G if G contains H as a (not necessarily
induced) subgraph. Let fH : {0, 1}(

n
2) → {0, 1} be defined as follows:

fH(G) =
{

1 if H ≤ G
0 otherwise (1)

The well-known Graph Isomorphism Problem asks whether a graph H is isomorphic to
another graph G. The Subgraph Isomorphism Problem is a generalization of the Graph
Isomorphism Problem where one asks whether H is isomorphic to a subgraph of G. Several
central computational problems for graphs such as containing a clique, containing a Hamilto-
nian cycle, containing a perfect matching can be formulated as the Subgraph Isomorphism
Problem by fixing the H appropriately. Given the generality and importance of the problem,
people have investigated various restricted special cases of this problem in different models
of computation [1] [14]. In the context of query complexity, in 1992 Gröger [9] studied this
problem in the randomized setting and showed that R(fH) = Ω(n3/2), which is the best
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known bound to this date. In this paper we investigate this problem in the quantum setting.
To the best of our knowledge, quantum query complexity for the Subgraph Isomorphism
Problem has not been noted prior to this work when H is allowed to be any graph on n
vertices. A special case of this problem when H is of a constant size has been investigated
before for obtaining upper bounds [20].

1.3 Subgraph Homomorphism Problem
We also investigate a closely related Subgraph Homomorphism Problem.

A homomorphism from a graph H into a graph G is a function h : V (H)→ V (G) such
that: if (u, v) ∈ E(H) then (h(u), h(v)) ∈ E(G).

Let f[H] be the function defined as follows: f[H](G) = 1 if and only if H admits a
homomorphism into G.

Note that unlike the isomorphism, the homomorphism need not be an injective function
from V (H) to V (G). We study the query complexity of the Subgraph Homomorphism
Problem towards the end of this paper. In the next section, we review the relevant literature.

1.4 Related Work
Understanding the query complexity of monotone graph properties has a long history. In
the deterministic setting the Aanderaa-Rosenberg-Karp Conjecture asserts that one must
query all the

(
n
2
)
edges in the worst-case. The randomized complexity of monotone graph

properties is conjectured to be Ω(n2). Yao [19] obtained the first super-linear lower bound
in the randomized setting using the graph packing arguments. Subsequently his bound
was improved by King [12] and later by Hajnal [11]. The current best known bound is
Ω(n4/3√logn) due to Chakrabarti and Khot [8]. Moreover, O’Donnell, Saks, Schramm, and
Servedio [15] also obtained an Ω(n4/3) bound via a more generic approach for monotone
transitive functions. Friedgut, Kahn, and Wigderson [10] obtain an Ω(n/p) bound where the
p is the critical probability of the property. In the quantum setting, Buhrman, Cleve, de Wolf
and Zalka [6] were the first to study quantum complexity of graph properties. Santha and
Yao [16] obtain an Ω(n2/3) bound for general properties. Their proof follows along the lines
of Hajnal’s proof.

Gröger [9] obtained an Ω(n3/2) bound for the randomized query complexity of the Sub-
graph Isomorphism. This is currently the best known bound for the Subgraph Isomorphism
Problem. Until very recently1, it was believed that the quantum query complexity is at
least square root of the randomized one. In this paper we address the quantum query
complexity of the Subgraph Isomorphism Problem and obtain the square root of the current
best randomized bound.

The main difference between the previous work and this one is that all the previous work,
including that of Santha and Yao [16], obtained the lower bounds based on an embedding of
a tribe function [5] on a large number of variables in monotone graph properties2. Recall
that the tribe function with parameters k and `, is a function T (k, `) on k · ` variables
defined as:

∨
i∈[k]

∧
j∈[`] xij . This method yields a lower bound of Ω(k · `) for the randomized

query complexity and Ω(
√
k · `) for the quantum. We deviate from this line by embedding

a threshold function T tn instead of a tribe. Recall that T tn(z1, . . . , zn) is a function on n

1 Very recently this has been falsified by Ben-David [22].
2 Similar tribe-embeddings were used for obtaining lower bounds for metroidal Boolean functions in [13]
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variables that evaluates to 1 if and only if at least t of the zi’s are 1. Since the randomized
complexity of T tn is Θ(n), this does not give us any advantage for obtaining super-linear
randomized lower bounds. However, it does yield an advantage for the quantum lower bounds
as the quantum query complexity of T tn is Θ(

√
t(n− t)) [17], which can reach up to Ω(n) for

large t. Since this technique works only in the quantum setting, the randomized versions of
our bounds remain intriguingly open.

1.5 Our Results
Our main result is a lower bound on the quantum query complexity of the Subgraph
Isomorphism Problem for H in terms of the maximum independence number of H.

I Theorem 1. For any non-empty H,

Q(fH) = Ω (
√
αH · n) ,

where αH denotes the size of a maximum independent set of H.

I Corollary 2. For any non-empty H,

1. Q(fH) = Ω
(

n√
davg(H)

)
,

2. Q(fH) = Ω
(

n√
χH

)
,

3. Q(fH) = Ω
(√

n
p

)
,

where davg(H) denotes the average degree of the vertices of H, χH denotes the chromatic
number of H, and p denotes the critical probability [10] of H.

In particular, we get an Ω(n) bound when the graph H is sparse (|E(H)| = O(n)), or H has
a constant chromatic number, or the critical probability of H is O(1/n). Friedgut, Kahn,
and Wigderson [10] show an Ω(n/p) bound for the randomized query complexity of general
monotone properties. Quantization of this bound remains open. General monotone properties
can be thought of as the Subgraph Isomorphism for a family of minimal subgraphs. The
item 3 above, gives a quantization of [10] in the case when the family contains only a single
subgraph.

I Corollary 3. For any non-empty H,

Q(fH) = Ω(n3/4).

Prior to this work only an Ω(n2/3) bound was known from the work of Santha and Yao [16]
on general monotone graph properties.

We extend our result to the 3-uniform hypergraphs. In particular, we show:

I Theorem 4. Let H be a non-empty 3-uniform hypergraph on n vertices. Then,

Q(fH) = Ω(n4/5).

This improves the Ω(n3/4) bound obtained via the minimum certificate size.
The second part of this paper concerns the Subgraph Homomorphism Problem for H,

denoted by f[H]. Here we show the following two theorems:

I Theorem 5. For any non-empty H,

Q(f[H]) = Ω(n).
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I Theorem 6. For any non-empty 3-uniform hypergraph H on n vertices:

Q(f[H]) = Ω(n3/2).

Our proofs crucially rely on the duality of monotone functions and appropriate embeddings
of tribe and threshold functions. All our lower bounds hold for the approximate degree
d̃eg(f), which is known to be strictly smaller than the quantum query complexity [4].

Organization
Section 2 contains some preliminaries. Section 3 and Section 4 deal with the Subgraph
Isomorphism Problem. Section 3 contains the proofs of Theorem 1, Corollary 2 and Corollary 3.
Then Section 4 contains the proof of Theorem 4. The next two sections (Section 5 and
Section 6) involve the Subgraph Homomorphism Problem and contains the proof of Theorem 5
and Theorem 6. Finally Section 7 contains conclusion and some open ends.

2 Preliminaries

In this section, we review some preliminary concepts and restate some previously known
results.

Let [n] denote the set {1, . . . , n}.

I Definition 7 (Dual of a Property). The dual P, denoted by P∗, is:

P∗(x) := ¬P(¬x),

where ¬x denotes the binary string obtained by flipping each bit in x.
Note that P∗∗ = P and Q(P) = Q(P∗).

A property P is said to be monotone increasing if for every x ≤ y we have P(x) ≤ P(y),
where x ≤ y denotes xi ≤ yi for all i.

Note that if P is monotone, then so is P∗.
A minimal certificate of size s for a monotone increasing property P is an input z such

that (a) The hamming weight of z, i.e, |z|, is s, (b) P(z) = 1, and (c) for any y with
|y| < s, P(y) = 0. Every minimal certificate z can be uniquely associated with the subset
Sz := {i | zi = 1}.

I Lemma 8 (Minimal Certificate [7]). If P has a minimal certificate of size s then

Q(P) ≥ Ω(
√
s).

We say that two minimal certificates z1 and z2 pack together, if Sz1 ∩ Sz2 = ∅.

I Lemma 9 (Packing Lemma [19]). If z1 is a minimal certificate of P and z2 is a minimal
certificate of P∗ then z1 and z2 cannot be packed together.

I Lemma 10 (Turán [2]). If the average degree of a graph G is d then G contains an
independent set of size at least Ω(n/d).

I Lemma 11 (Extended Turán [2]). If the average degree of a k-uniform hypergraph G is d
then G contains an independent set of size at least Ω(n/d

1
k−1 ).
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A Boolean function f(x1, . . . , xn) is called transitive if there exists a group Γ acting
transitively on the indices {1, . . . , n} such that f is invariant under the action, i.e., for every
σ ∈ Γ we have f(xσ1 , . . . , xσn

) = f(x1, . . . , xn).
Note that graph properties and hypergraph properties are transitive functions.

I Lemma 12 (Transitive Packing [18]). Let f be a monotone transitive function on n variables.
If f has a minimal certificate of size s then every certificate of f∗ must have size at least n/s.

A Threshold function T tn(z1, . . . , zn) is a function on n variables such that T tn outputs 1
if and only if at least t variables are 1.

We are now ready to prove the quantum query complexity lower bound for the Subgraph
Isomorphism Problem.

3 Subgraph Isomorphism for Graphs

Before proving Theorem 1 we first prove two lemmas.
Let Sd denote the star graph with d edges. Then fSd

is the property of having a vertex
of at least degree d. First we show:

I Lemma 13. For 1 ≤ d ≤ n− 1,

Q(fSd
) = Ω(n).

Proof. We divide the proof into two cases:

Case 1: d > n/2. Fix a clique on the vertices 1, . . . , bn/2c and fix an independent set on
the vertices bn/2c+ 1, . . . , n. Note that we still have bn/2c × dn/2e edge-variables that are
not yet fixed. Now as soon as any vertex v from the clique has (d − bn/2c + 1) edges to
the independent set present, we have a d-star. Thus fSd

becomes an ORbn/2c ◦ T
(d−bn

2 c+1)
dn/2e

function, which has a lower bound of Ω(n) via the Composition Theorem for quantum query
complexity [21].

Case 2: d ≤ n/2. A minimum certificate of fSd
is a d-star. Now by the Lemma 9 we know

that this d-star cannot be packed with any minimal certificate of the dual f∗Sd
. Thus every

vertex in the dual f∗Sd
must have degree > n − d. Hence the minimal certificate size is at

least Ω(n2) and Q(f∗Sd
) = Q(fSd

) = Ω(n). J

Let t denote the smallest integer such that f∗H(Kt) = 1, where Kt denotes the complete
graph on t vertices. Note that t = αH + 1.

I Lemma 14.

Q(fH) ≥ Ω(
√
t(n− t)).

Proof. We embed T tn in f∗H (on inputs of Hamming weight t − 1 and t) via the following
mapping: Let xij := zi · zj and let f ′(z1, . . . , zn) := f∗H({xij}). Note that f ′ ≡ T tn. Also
note3 that Q(fH) = Q(f∗H) and d̃eg(f ′) ≤ 2 · d̃eg(f∗H). Since Q(f) ≥ d̃eg(f), it remains to
prove the following:

3 Since xij = zi.zj , every monomial of f∗H of size d becomes a monomial of size at most 2d in f ′.
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I Claim 1. d̃eg(f ′) = Ω(
√
t(n− t))

We need the following lemma due to Paturi [17]:

I Lemma 15. Let g be a function on n variables such that g(z) = 0 for all z with |z| = t− 1
and g(z) = 1 for all z with |z| = t. Then: d̃eg(g) = Ω(

√
t(n− t)).

Proof of Claim 1. Note that f ′ (≡ T tn) satisfies the condition of the Lemma 15. J

This finishes the proof of the Lemma 14. J

Now we are in a position to prove the Theorem 1.

Proof of Theorem 1. Recall that t denotes the smallest integer such that f∗H(Kt) = 1. We
divide the proof into two cases:

Case 1: t > n/2. In this case, we reduce the fH to fSp
for some p = Ω(n). Let νH denote

the minimum vertex cover size of H. Since t > n/2, we have νH ≤ n/2. When νH = 1 the
property is trivially a star property and from the Lemma 13 we already get Q(fH) = Ω(n).
Otherwise we restrict fH by picking a clique on νH − 1 vertices and joining all the other
n− νH + 1 remaining vertices to each vertex in this clique. The resulting function takes a
graph on p = n− νH + 1 vertices as input. Let’s denote these vertices by S.

As the clique on νH − 1 vertices cannot accommodate all the vertices in the minimum
vertex cover of H, in order to satisfy the property fH at least one vertex v in the vertex
cover must occur among S. This vertex v may have some edges incident on the vertices of
the clique and some edges incident on the vertices of S. In the restriction all the possible
edges to the clique are already present. Thus as soon as we have the remaining edges to the
vertices of S the property fH is satisfied.

Hence the property is now reduced to finding a star graph with d edges, fSd
where d

is defined as follows: Let C be a vertex cover. Furthermore let dout(v) denote the number
of neighbors of a vertex v in C that are outside C and dout(C) be the minimum over all
such vertices v in C. Then d is the minimum dout(C) of a minimum vertex cover C of H
(minimized over all the minimum vertex covers). Thus as soon as we have the star graph
with d edges, our original restricted fH is satisfied.

Now from the Lemma 13 we get Q(fH) = Ω(n).

Case 2: t ≤ n/2. Note that t > αH . And since t ≤ n/2, we have n − t = Ω(n). Hence
from the Lemma 14 we get the bound of Ω(

√
t(n− t)), which is Ω(√αH · n). J

Proof of Corollary 2.
1. From Turán’s theorem, we have: αH ≥ n/(2 · davg(H)).
2. Since αH · χH ≥ n we have αH ≥ n/χH .
3. Since the critical probability of H is p, the average degree of H is at most pn. Hence

from Corollary 2(1), we get the Ω(n/p) bound. J

Proof of Corollary 3. When davg(H) ≥
√
n the Lemma 8 gives an Ω(n3/4) bound. Otherwise

when davg(H) <
√
n we use the Corollary 2(1), which gives the same bound. J

STACS 2016
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γH

αH

H

C i
Gi

Figure 1 Structure of H.

4 Subgraph Isomorphism for 3-Uniform Hypergraphs

In this section we extend the Ω(n3/4) bound for the Subgraph Isomorphism for graphs to
the 3-uniform hypergraphs. In particular, we obtain an Ω(n4/5) bound for the Subgraph
Isomorphism for 3-uniform hypergraphs, improving upon the Ω(n3/4) bound obtained via
the minimal certificate size.

Before going to the proof of Theorem 4, we extend the Lemma 14 to the 3-uniform
hypergraphs. Let t be the smallest such that f∗H(Kt) = 1. Note that t = αH + 1.

I Lemma 16. Let H be a 3-uniform hypergraph on n vertices. Then:

Q(fH) ≥ Ω(
√
t(n− t)).

Proof. Let T tn(z1, . . . , zn) denote the threshold function on n variables that outputs 1 if and
only if at least t variables are 1. We embed a T tn in f∗H (on inputs of Hamming weight t− 1
and t) via the following mapping: Let xijk := zi · zj · zk. Let f ′(z1, . . . , zn) := f∗H({xijk}).
Note that f ′ ≡ T tn. Also note4 that the d̃eg(f ′) ≤ 3 · d̃eg(f∗H). Since Q(f) ≥ d̃eg(f), it
remains to prove that d̃eg(f ′) = Ω(

√
t(n− t)), which follows from the Lemma 15. J

Now we give a proof of the Theorem 4.

Proof of Theorem 4. We divide the proof into two main cases.

Case 1: αH > n/2. Let H be a 3-uniform hypergraph on n vertices. Let C denote a
minimal vertex cover of H. Let |C| = νH . Note that the hypergraph induced on V − C is
empty. For a vertex i ∈ C let Gi denote the projection graph of the neighbors of i on V −C,
i.e., (i, u, v) ∈ E(H) (see Figure 1).

Let PH denote the restriction of the fH defined as follows: set the hyper-clique on νH − 1
vertices to be present and add all the hyper-edges incident on the vertices of this clique.
Let S denote the set of remaining n− νH + 1 vertices. The hyper-edges among S are still
undetermined. Note that PH is a non-trivial property of n − νH + 1 vertex hypergraphs,

4 Since xijk = zi · zj · zk, every monomial of f∗H of size d becomes a monomial of size at most 3d in f ′.
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Figure 2 The Restriction P ′′: the hyper-clique KνH−1 is present, all the hyper-edges in the gray
area are present. All the hyper-edges in blue region are present, all the hyper-edges in yellow region
are absent. G is fixed. White region symbolizes the hyper-edges with two-end points in S1 and one
in S2 to be absent and one end point in S1 and two end points in S2 to be undertermined.

since H cannot be contained in the νH − 1 hyper-clique and edges incident on it as the
minimum vertex cover size of H is νH .

I Lemma 17. If ∃C, ∃i : |E(Gi)| = O(n7/5), then Q(fH) = Ω(n4/5).

Proof. In this case PH has a certificate of size O(n7/5). Hence from Lemma 12 the certificate
size of P∗H is Ω( n3

n7/5 ) = Ω(n8/5). Now from the Lemma 8 we get Q(fH) = Ω(n4/5). J

Hence from now onwards we assume that for all i, |E(Gi)| = Ω(n7/5). Moreover, we may
also note that νH = O(n1/5), if not we have a minimal certificate for PH of size Ω(n8/5).
And hence from the Lemma 8 we already get the desired bound of Q(fH) = Ω(n4/5).

Now we obtain a restriction P ′ of PH as follows: divide S into two parts say S1 and S2
of size n1 and n2 respectively, where we choose n1 = Θ(n1/5) and n2 = Θ(n). Set all the
hyper-edges within S1 to be present and set all the hyper-edges within S2 to be absent. Also
set all the hyper-edges with two endpoints in S1 and one in S2 to be absent. Only possible
undetermined hyper-edges are with one endpoint in S1 and two in S2. Note that even after
setting all hyper edges in S1 to be present we can safely assume that the property remains
non-trivial. Otherwise we would have a certificate for PH of size O(n3/5), hence the dual
will have large (� Ω(n8/5)) certificates.

Let G be a projection graph among all the Gi’s containing the least number of edges
inside S2. We further obtain a restriction P ′′ by fixing a copy of G inside S2 and allowing
only potential hyper-edges with one endpoint in S1 and the other two endpoints forming an
edge of G (see Figure 2).

Let C be a vertex cover of H of minimum cardinality. Note that in order to satisfy PH ,
at least one of the vertices from C must move to S. Let us call a vertex of C that moves
to S as pivot. Let k be the largest integer such that PH has a minimal certificate with k
pivots. Note that from Lemma 17 each pivot has Ω(n7/5) edges incident on it. Therefore
if k > n1/2 then we already have a minimal certificate whose size is Ω(n8/5). Otherwise:
k ≤ n1/2. First we argue that any pivot must belong to S1. If on the contrary, it were in S2
then the only possible edges incident on such a pivot v are of the form (v, u, w) where u ∈ S1
and w ∈ S2. But there can be at most O(n6/5) such edges, which contradicts the fact that
any pivot supports at least Ω(n7/5) edges. Let the degree of a pivot be the number of edges
inside S2 that are adjacent to it. Next we choose a certificate for PH with at most k ≤ n1/2

STACS 2016
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pivots such that the degree of the minimum degree pivot is minimum possible. Then we
leave aside the minimum degree pivot in this certificate and fix the k − 1 other pivots and
their projection on S2. From each of the remaining n1− k+ 1 vertices we keep the projection
of the minimum degree pivot on S2 as the only possible edges.

Now from minimality of our choice at least one of these vertices must have all these
Ω(n7/5) edges in order for the original graph to contain H. Thus we get an

∨
Ω(n1/5)

∧
Ω(n7/5)

function as the restriction.
Since an OR ◦ AND on m variables admits an Ω(

√
m) lower bound on the quantum

query complexity we get Q(fH) = Ω(n4/5).

Case 2: αH ≤ n/2. In this case we use Lemma 16. Since n− αH ≥ n/2, we immediately
get Q(fH) = Ω(√αH · n).

Now in order to prove Theorem 4, we need to show that the above bound always yields
an Ω(n4/5) bound. Thus we further consider two cases based on the average degree. And in
fact this gives us a larger Ω(n5/6) bound for the case 2.

Let d denote the average degree of H.

Case 2a: d > n2/3. In this case |E(H)| > Ω(n5/3). Hence from Lemma 8 we get an
Ω(n5/6) bound.

Case 2b: d ≤ n2/3. Here we use the extension of Turán’s Theorem (see Lemma 11) to
3-uniform hypergraphs. Since the average degree is O(n2/3), we get αH ≥ Ω(n2/3). Therefore
from Lemma 16 we get Q(fH) = Ω(n5/6).

This completes the proof of Theorem 4. J

In the following two sections we study the Subgraph Homomorphism Problem. We
first prove the quantum query complexity lower bounds for graphs and then for 3-uniform
hypergraphs.

5 Subgraph Homomorphism for Graphs

Proof of Theorem 5. Let χ(H) denote the chromatic number of H. Note that H has a
homomorphism into Kt for t = χ(H), i.e., f[H](Kt−1) = 0 and f[H](Kt) = 1.

We consider the following two cases.

Case 1: t ≥ n/2. As Kt−1 is a no instance and Kt is an yes instance for the property
f[H], the minimum certificate size, m(f[H]) = Ω(t2) = Ω(n2). Hence from Lemma 8 we get
an Ω(n) lower bound on the quantum query complexity.

Case 2: t < n/2. Consider the following restriction: We set a clique Kt−2 on t− 2 vertices
to be present and we also set all the edges from the remaining n − t + 2 vertices to this
clique to be present. Now notice that as soon as there is an edge between any two of the
remaining n− t+ 2 vertices, we have a Kt. Hence the property f[H] has become the property
of containing an edge among the n− t+ 2 vertices. Since t < n/2, this is an OR function on
Ω(n2) variables. Thus Q(f[H]) = Ω(n). J

I Remark. Our proof in fact shows that the minimum certificate size of either f[H] or f∗[H] is
Ω(n2). Hence we also obtain

R(f[H]) = Ω(n2)
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.

We now proceed to prove the quantum query complexity lower bound of the Subgraph
Homomorphism Problem for 3-uniform hypergraph.

6 Subgraph Homomorphism for 3-Uniform Hypergraphs

Proof of Theorem 6. Proof of this theorem is similar to proof of Theorem 5.
Let χ(H) denote the chromatic number of H. Note that H has a homomorphism into Kt

for t = χ(H), i.e., f[H](Kt−1) = 0 and f[H](Kt) = 1.
We consider the following two cases.

Case 1: t ≥ n/2. Unlike the graph homomorphism case, we cannot claim the presence of
a Kt in this case. However we can still use the following fact:

I Fact 1 (Alon [3]). If H is a 3-uniform hypergraph which is not k colorable then

|E(H)| = Ω(k3).

Therefore, the minimum certificate size m(f[H]) = Ω(t3) = Ω(n3). Hence from Lemma 8 we
get an Ω(n3/2) lower bound on the quantum query complexity.

Case 2: t < n/2. Consider the following restriction: We set a clique Kt−3 on t− 3 vertices
to be present and we also set all the edges from remaining (n− t+ 3) vertices to this clique to
be present. Now notice that as soon as there is an edge between any three of the remaining
(n − t + 3) vertices, we have a Kt. Hence the property f[H] has become the property of
containing an edge among the n− t+ 3 vertices. Since t < n/2, this is an OR function on
Ω(n3) variables. Thus Q(f[H]) = Ω(n3/2). J

7 Conclusion & Open Ends

We obtained an Ω(n3/4) lower bound for the quantum query complexity of Subgraph
Isomorphism Problem for graphs, improving upon previously known Ω(n2/3) bound for the
same. We extend our result to the 3-uniform hypergraphs by exhibiting an Ω(n4/5) bound,
which improves on previously known Ω(n3/4) bound. Besides the obvious question of settling
the randomized and quantum query complexity of the Subgraph Isomorphism problem, there
are a few interesting questions that might be approachable. We list some of them below:

I Question 1. Is it true that for any n-vertex graph H we have:
(a) R(fH) = Ω(αH · n)?
(b) R(fH) = Ω(n2/dHavg))?
(c) R(fH) = Ω(n2/χH)?

I Question 2. Is it true that for any 3-uniform hypergraph H we have:

Q(fH) = Ω(n)?

Note that, in the proof of Theorem 4 we managed to get a slightly stronger Ω(n5/6) bound
for the case 2. Thus an improved lower bound of Ω(n5/6) for the case 1 (when αH > n/2)
would improve the overall bound.

STACS 2016
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