786 research outputs found

    Enhanced genetic algorithm-based fuzzy multiobjective strategy to multiproduct batch plant design

    Get PDF
    This paper addresses the problem of the optimal design of batch plants with imprecise demands in product amounts. The design of such plants necessary involves how equipment may be utilized, which means that plant scheduling and production must constitute a basic part of the design problem. Rather than resorting to a traditional probabilistic approach for modeling the imprecision on product demands, this work proposes an alternative treatment by using fuzzy concepts. The design problem is tackled by introducing a new approach based on a multiobjective genetic algorithm, combined wit the fuzzy set theory for computing the objectives as fuzzy quantities. The problem takes into account simultaneous maximization of the fuzzy net present value and of two other performance criteria, i.e. the production delay/advance and a flexibility index. The delay/advance objective is computed by comparing the fuzzy production time for the products to a given fuzzy time horizon, and the flexibility index represents the additional fuzzy production that the plant would be able to produce. The multiobjective optimization provides the Pareto's front which is a set of scenarios that are helpful for guiding the decision's maker in its final choices. About the solution procedure, a genetic algorithm was implemented since it is particularly well-suited to take into account the arithmetic of fuzzy numbers. Furthermore because a genetic algorithm is working on populations of potential solutions, this type of procedure is well adapted for multiobjective optimization

    Ant Colony Optimization For Multiobjective Buffers Sizing Problems

    Get PDF
    International audienc

    Controller tuning by means of multi-objective optimization algorithms: a global tuning framework

    Full text link
    © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.A holistic multi-objective optimization design technique for controller tuning is presented. This approach gives control engineers greater flexibility to select a controller that matches their specifications. Furthermore, for a given controller it is simple to analyze the tradeoff achieved between conflicting objectives. By using the multi-objective design technique it is also possible to perform a global comparison between different control strategies in a simple and robust way. This approach thereby enables an analysis to be made of whether a preference for a certain control technique is justified. This proposal is evaluated and validated in a nonlinear multiple-input multiple-output system using two control strategies: a classical proportional- integral-derivative control scheme and a feedback state controller.This work was supported in part by the FPI-2010/19 Grant and the Project PAID-06-11 from the Universitat Politecnica de Valencia and in part by the Projects DPI2008-02133, TIN2011-28082, and ENE2011-25900 from the Spanish Ministry of Science and Innovation.Reynoso Meza, G.; García-Nieto Rodríguez, S.; Sanchís Saez, J.; Blasco, X. (2013). Controller tuning by means of multi-objective optimization algorithms: a global tuning framework. IEEE Transactions on Control Systems Technology. 21(2):445-458. https://doi.org/10.1109/TCST.2012.2185698S44545821
    corecore