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1. Introduction

In recent years, there has been an increasing interest in the

design of batch plants due to the growth of specialty chemical,

biochemical, pharmaceutical and food industries. Batch processes

have thus emerged as the preferredmode of operation for the low-

volume synthesis of many high-value added products, mainly due

to their flexibility in a market-driven environment.

More precisely, the problemof optimal design of amultiproduct

batch chemical plant is defined by Papageorgaki and Reklaitis [1] in

the following terms: determine a structure of workshop which

makes it possible to ensure the production (capacity and a number

of the equipment and storage tanks) to optimize some perfor-

mance criteria, being given:

� The set of products, the specifications on their production and a

horizon of time.

� The set of available equipment.

� Recipes for manufacturing each product including the relations

of anteriority between operations and corresponding operating

times.

� The availability of storages.

According to this definition the optimal design of multiproduct

batch plants was formulated in the years 90s as a single-objective

mixed-integer nonlinear programming (MINLP) problem (see Patel

et al. [2], Montagna et al. [3]), where a techno-economic objective

was optimized. However, in real industrial applications, engineers

often need to make decisions when faced with competing

objectives, related for example to environment, security, flexibility,

etc. Indeed, the optimal design problem becomes today essentially

a multiobjective one. Another supplementary difficulty is that at

the design stage the problem data are not exactly known, as for

example some costs and the future demand for products. From a

practical point of view, the design occurring at a preliminary stage

where the historical data on uncertainties is not yet made up, a

probabilistic approach of the problem seems unrealistic, and an

efficient way to tackle the problem is to resort to the fuzzy set

theory. So this article deals with multiobjective design of batch

plants according to three objective functions related to economics
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A B S T R A C T

This paper addresses the problem of the optimal design of batch plants with imprecise demands in

product amounts. The design of such plants necessary involves how equipment may be utilized, which

means that plant scheduling and production must constitute a basic part of the design problem. Rather

than resorting to a traditional probabilistic approach for modeling the imprecision on product demands,

this work proposes an alternative treatment by using fuzzy concepts. The design problem is tackled by

introducing a new approach based on a multiobjective genetic algorithm, combined wit the fuzzy set

theory for computing the objectives as fuzzy quantities. The problem takes into account simultaneous

maximization of the fuzzy net present value NP̃V and of two other performance criteria, i.e. the

production delay/advance and a flexibility index. The delay/advance objective is computed by

comparing the fuzzy production time for the products to a given fuzzy time horizon, and the flexibility

index represents the additional fuzzy production that the plant would be able to produce. The

multiobjective optimization provides the Pareto’s front which is a set of scenarios that are helpful for

guiding the decision’s maker in its final choices. About the solution procedure, a genetic algorithm was

implemented since it is particularly well-suited to take into account the arithmetic of fuzzy numbers.

Furthermore because a genetic algorithm is working on populations of potential solutions, this type of

procedure is well adapted for multiobjective optimization.
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(the net present value), the respect of due dates (advances/delays)

and a flexibility criterion. The innovative approach presented in

this paper combines a multiobjective genetic algorithmwith fuzzy

arithmetic for computing the three objective functions above

mentioned. The fuzzy net present value NP̃V is calculated from

fuzzy revenue Ṽp and fuzzy depreciation D̃ p, the advance/delay

criterion is given by the common surface between the time horizon

H̃ represented by a rectangular fuzzy number and the fuzzy

trapezoidal production time H̃i for product i, and the flexibility, in

the case of an advance (respectively a delay), represents the

additional production (the demand not satisfied) that the batch

plant is able to produce.

The article is organized as follows. Section 2 presents the

literature analysis; Section 3 is devoted to process description and

problem formulation. Section 4 presents a brief overview of fuzzy

set theory; the multiobjective genetic algorithm is briefly

described in the following part. The paper is then illustrated by

some typical results presented in Section 6. Finally, the general

conclusions on this work are drawn in the last part.

2. Previous works

2.1. Uncertainties

The most common form of batch plant design formulation

considered in the literature is a deterministic one, in which fixed

production requirements of each product must be fulfilled.

However, because of the constant evolution of the environment

and complexity of the needs, the specifications of the production

system are often imperfectly known (Shah and Pantelides [4]). The

initial data of design present a vague, dubious character and even

vagueness. Even if an optimal process design is performed, it

cannot give satisfactory results if the data available for the design

phase are erroneous or too vague. Thus, it is often impossible to

obtain precise information on the future demand for products, at

the step of design of a discontinuous workshop. Nevertheless,

decisionsmust be taken on the plant capacity. This capacity should

be able to balance the product demand satisfaction and extra plant

capacity in order to reduce the loss on the excessive investment

cost or on market share due to the varying product demands (Cao

and Yuan [5]). Consequently, the mission of the designer, assisted

by traditional tools, may prove to be hazardous and makes

essential the resort to a more robust approach.

The literature presents three basic approaches to the problem of

design under uncertainty (Vajda [6]). They can be classified within

the wait-and-see approach, the two-stage formulation and the

probabilistic model.

In the wait-and-see formulation, a separate optimal design is

found for each realization of the set of uncertain parameters. The

cost of the plant is then calculated as the expected value of the

separate designs. The practical difficulties with this model are that

it is generally difficult to identify the design which yields a value of

the plant costwhich is equal to the expected value, and even if such

a design can be identified, there is usually no direct way

establishing to what extent this design will accommodate other

values of the uncertain parameters.

In the two-stage formulation, also called the ‘‘here-and-now’’

model, the design variables are selected ‘‘here-and-now’’ so as to

accommodate any future uncertain parameter realizations or

perhaps those which fall within some specified confidence limits.

The equipment sizes are determined at the first step or design

stage and the effect of the uncertain parameters on system

performances is established in the second or operating stage. The

second stage is, of course, the most important part of model since

this is the stage at which the flexibility of the design is checked, by

including considerations of variations of the operating variables to

accommodate the uncertain parameter realizations. Since this part

of the model is also the most computationally demanding,

researchers have sought to reduce the computational burden by

proposing various alternatives fully solving the second-stage

problem (Wellons and Reklaitais [7]). Two-stage stochastic

programming approaches has also been applied in several works

(see Ierapetritou and Pistikopolous [8]; Harding and Floudas [9];

Petkov and Maranas [10]; Cao and Yuan [5]).

The more traditional way would consist in using probabilistic

approaches representing the imprecision of demand by probability

distributions, considered as independent. In this approach, also

called the chance constrained model, a probability of constraint

satisfaction must be specified by the designer. As shown by

Charnes and Cooper [11], if normal distributions are assumed, if

the uncertain parameters linearly occur in the constraints and if

the constraints can be considered independent, then the prob-

abilistic constraints can be reduced to a deterministic form and

thus the model converts to an ordinary deterministic optimization

problem. But, these simplifying assumptions do not represent

reality since many parameters are, in practice, dependant from/to

Nomenclature

Ap depreciation ($)

AV annual volume

a tax rate

Bj batch j

Cost investment cost ($)

D̃ p operation cost ($)

dj term used for computing the processing time for

the batch j

f working capital ($)

gij term used for computing the processing time of

product i in the batch j

H̃ time horizon (h)

H̃i production time for product i (h)

I number of products

J number of batch steps

K number of semi-continuous steps

MINLP mixed-integer nonlinear programming

MOOP multiobjective optimization problem

mj number of parallel items for batch j

NP̃V net present value ($)

n number of periods

nk number of parallel items of semi-continuous in

step k

pij constant term used in the computation of the

processing time of product i in the batch j (h)

Q̃i demand in product i (kg)

Q̃new new production (kg)

Q̃initial initial production (kg)

r discount rate

S number of sub-processes

SCi semi-continuous operation i

SQP successive quadratic programming

sij size factor (l/kg)

TrFN trapezoidal fuzzy number

tij processing time of product i in the batch j (h)

V volume (l)

Vj volume of batch j (l)

Ṽp revenue ($)

v penalty factor



each other and cannot follow laws of symmetrical distributions.

Moreover, the design of workshop occurs at a preliminary stage

where the historical data base on the demand is not yet made up,

leading to practical difficulties for identifying probabilistic laws.

The techniques based on the theory of probability make it

possible to quantify only uncertainty (the probability of guaran-

teeing an annual volume of AV units for a given demand in product

A being equal to P). Actually information is also vague (the annual

volume of demand in product A lies in the range [N1,N2]). So in the

problem formulation, many data are vague, and cannot be

quantified by classical arithmetic. The well fitted formalism, to

handle this type of vague and imprecise data, is the theory of the

fuzzy subsets. In particular, the theory of the possibilities (Zadeh

[12], Dubois and Prade [13]) is particularly well adapted to the

treatment of subjective information. Thus, in the design phase, the

requests can be characterized by functions of membership

expressing the designer perception of the imprecision (Jacqmart

and Gien [14]).

2.2. Multobjective optimization

In conventional optimal design of a multiproduct batch

chemical plant, the production requirements for each product

and total production time for all products must be specified. The

number, required volume and size of parallel equipment units in

each stage are to be determined in order to minimize the

investment. Such an approach formulates the optimal design

problem as a single-objective mixed-integer nonlinear program-

ming (MINLP) problem (Grossmann and Sargent [15]; Patel et al.

[2], Montagna et al. [3]). However, in real world applications, the

chemical engineers often need to make decisions when faced with

competing objectives (Yao and Yuan [16], Collette and Siarry [17]).

Using the formulation of multiobjective constrained problems of

Fonseca and Fleming [18], a general multiobjective problem

consists of a set f of n criteria fk, k = 1, . . ., n to be minimized or

maximized. Each fk may be nonlinear, but also discontinuous with

respect to some components of the general decision variable x in an

m-dimensional universe U:

f ðxÞ ¼ ð f 1ðxÞ; . . . ; f nðxÞÞ (1)

This kind of problem has not a unique solution in general, but

presents a set of non-dominated solutions named Pareto-optimal

set or Pareto-optimal front. The Pareto-domination concept lies on

the basic rule: in the universe U a given vector u = (u1, . . ., un)

dominates another vector v ¼ ðv1; . . . ; vnÞ, if and only if,

8 i2f1; . . . ;ng : ui � vi ^ 9 i2f1; . . . ;ng : ui < vi (2)

For a concrete mathematical problem, Eq. (2) gives the

following definition of the Pareto front: for a set of n criteria: a

solution f(x), related to a decision variable vector x = (x1, . . ., xm),

dominates an another solution f(y), related to y = (y, . . ., ym) when

the following condition is checked (for a minimization problem):

8 i2f1; . . . ;ng : f iðxÞ � f iðyÞ ^ 9 i2f1; . . . ;ng : f iðxÞ< f iðyÞ (3)

The last definition concerns the Pareto optimality: a solution

xu 2 U is called Pareto-optimal if and only if there is no xv 2U for

which v ¼ f ðxvÞ ¼ ðv1; . . . ; vnÞ dominates u ¼ f ðuvÞ ¼ ðu1; . . . ;unÞ.

These Pareto-optimal non-dominated individuals represent the

solutions of the multiobjective problem. In practice, the decision

maker has to select a single solution by searching among thewhole

Pareto front, and it may be difficult to pick one ‘‘best’’ solution out

of a large set of alternatives. Branke et al. [19], and Taboada and

Coit [20] suggest to pick the knees in the Pareto front, that is to say,

solutions where a small improvement in one objective function

would lead to a large deterioration in at least one other objectives.

2.3. Metaheuristic multiobjective optimization

Ametaheuristic is a heuristic method for solving a large class of

combinatorial problems by combining user-given black-box

procedures whose derivatives are not available, with heuristics

in the hope of obtaining a good solution for the problem. Some

metaheuristics maintain at any instant a single current state, and

replace that state by a new one (state transition or move). Some

metaheuristics work on pool of states containing several candidate

states. The new states are generated by combination or crossover

of two or more states of the pool. Since 1975, manymetaheuristics

appear: genetic algorithms (Holland [21]), simulated annealing

(Kirkpatrick et al. [22]), artificial immune systems (Farmer et al.

[23]), ant colonies (Dorigo [24]), particle swarm (Kennedy and

Eberhart [25]), artificial bee colonies (Nakrani and Tovey [26]).

All the above algorithms can be adapted to the multiobjective

case, but the two most popular in the chemical engineering field

are MOGA (multiobjective genetic algorithm, see Konac et al. [27])

and MOSA (multiobjective simulated annealing, see Shu et al. [28],

Smith et al. [29], Bandyopadhyay et al. [30]). None of these two

methods is perfect and selecting one depends on the requirements

of the particular design situation under consideration. From the

literature survey (Van Veldhuizen and Lamont [31], Branke et al.

[19], Turinsky et al. [32],Mansouri et al. [33]) it appears thatMOGA

is generally preferred to MOSA. Indeed, the main advantage of

genetic algorithms over other methods is that a GA manipulates a

population of individuals. It is therefore tempting to develop a

strategy inwhich the population captures thewhole Pareto front in

one single optimization run.

2.4. Basic principles of genetic algorithms (GA)

The choice of a GA as the solving procedure for multiobjective

optimization problems is all the more interesting as it provides a

set of compromise solutions (not dominated solutions, i.e. Pareto

front), by opposition to classical optimization techniques (deter-

ministic like SQP – successive quadratic programming – or

stochastic like simulated annealing) which give only one solution.

This property is a paramount advantage for using a genetic

algorithm. Genetic algorithms are mathematical optimization

techniques that simulate a natural evolution process. They are

based onDarwinian Theory, inwhich the fittest species survive and

propagate while the less adapted tend to disappear. The search

procedure consists in maintaining a population of potential

solutions while conducting a parallel investigation for non-

dominated solutions. Threemain steps exist in a genetic algorithm:

crossover, mutation, and selection. Many variants for crossover

operator are proposed in the literature, but the common principle

is to combine two chromosomes to generate next-generation

chromosomes, by a simple gene exchange with, or not, small

variations. Mutation randomly changes the gene’s values to

generate a new combination of genes for the next generation.

Mathematically, the main interest of mutation consists in jumping

out of local optimal solutions. Selection is the last step where the

best chromosome solutions are copied in the next generation.

2.5. Genetic algorithms and fuzzy multiobjective optimization

Among the most widespread multiobjective optimization

methods based on genetic algorithms, the following ones can be

mentioned: VEGA (genetic vector evaluated algorithm, Schaffer

[34]), NPGA (niched Pareto genetic algorithm, Horn et al. [35]),

MOGA (multiple objectives genetic algorithm, Fonseca and

Fleming [36]) and SPEA (strength Pareto evolutionary algorithm,

Zitzler and Thiele [37]). Comparative studies on multiobjective

genetic algorithms can be found in Coello Coello [38,39].



In the last decade, only a little number of papers dealing with

the fuzzy set theory combined with multiobjective GA for solving

engineering problems was published. See for example the books of

Sakawa [40,41] concerning process scheduling and operation

planning, the paper of Fayad and Petrovic [42] related to

scheduling in a printing company, and the articles of Yang and

Sun [43] dealing with water management in a river basin and

Huang andWang [44] devoted to the design of multipurpose batch

plants.

Amongst the above references, only the paper of Huang and

Wang [44] deals with a subject nearby close by the one presented in

this article—the fuzzy decision-making design of a chemical plant,

but a brief comparison shows that the problems are different. The

authorsperformamultiobjectiveoptimization (maximizationof the

revenue and minimization of the investment cost, operation cost

and total production time). The fuzzy aggregation functions

presentedbySakawa [40] are implemented.Amembership function

is used todefine the degree of satisfaction of each objective function,

so that the problem is converted to a highly nonlinear MINLP one.

The problem is solved by using a mixed-integer hybrid differential

evolution procedure, which belongs to the class of genetic

algorithms. In the article presented here, the uncertainties lie on

demand and fuzzy sets are implemented for maximizing the net

present value together two other performance objectives related to

delay/advance and flexibility.

Instead of adapting one of these above procedures, a specific

algorithm, based on the previous works of Dietz [45] and Aguilar

et al. [46] is used in this study to simultaneously maximize the net

present value NP̃V and two other performance indexes, i.e. the

production delay/advance and a flexibility criterion.

3. Problem formulation

3.1. Problem statement

In real world applications, the chemical engineers often need to

make decisions when faced with competing objectives. The

designers must not only satisfy various techno-economic criteria,

but also respect some due dates. In this framework, this study

introduces a new design approach to maximize the net present

value and two other performance criteria, i.e. the production delay/

advance and a flexibility criterion detailed below. Such the optimal

design problem falls into the class of multiobjective optimization

problems (MOOP).

A significant level of difficulty lies in the fact that in order to

specify the production requirements for each product and total

production time for all the products, it is almost impossible to

obtain some precise information. Indeed, the ability of batch plants

to deal with irregular product demand patterns reflecting market

uncertainties or seasonal fluctuations is one of themain reasons for

the recently renewed interest in batch operations. So the problem

to solve is of MOOP type, where some part of the objectives and

constraints are imperfectly known.

3.2. Assumptions

The model formulation for batch plant design problems

adopted in this paper is based on the Modi’s approach (Modi

and Karimi [47]). It considers not only treatment in batch stages,

which usually appears in all types of formulation, but also

represents semi-continuous units that are part of the whole

process (pumps, heat exchangers, etc.). A semi-continuous unit is

defined as a continuous unit alternating idle times and normal

activity periods.

Besides, this formulation takes into account mid-term inter-

mediate storage tanks. They are just used to divide the whole

process into sub-processes, in order to store an amount of

materials corresponding to the difference between sub-process

productivity. This representation mode confers to the plant a

better flexibility: it prevents the whole process production from

being paralysed by one limiting stage. So, a batch plant is finally

represented by series of batch stages, semi-continuous stages and

storage tanks.

The modeling process is based on the following assumptions:

(i) The devices used in a same production line cannot be used

twice by one same batch.

(ii) The production is achieved through a series of single product

campaigns.

(iii) The units of the same batch or semi-continuous stage have the

same type and size.

(iv) There is no limitation for utilities.

(v) The cleaning time of the batch items is included into the

processing time.

(vi) The item sizes are continuous bounded variables.

3.3. Formulation of objectives

The model considers the synthesis of I products treated in J

batch stages and K semi-continuous stages. Each batch stage

consists of mj out-of-phase parallel items with same size Vj. Each

semi-continuous stage consists of nk out-of-phase parallel items

with same processing rate Rk (i.e. treatment capacity, measured in

volume unit per time unit). The item sizes (continuous variables)

and equipment numbers per stage (discrete variables) are

bounded. The S ÿ 1 storage tanks, divide the whole process into

S sub-processes.

3.3.1. Economic objective function

In the following of the paper symbols surmounted by a tilde (�)

represent fuzzy terms. The net present value method ðNP̃VÞ of

evaluating a major project allows to consider the time value of

money. Essentially, it helps to find the present value in ‘‘today’s

value money’’ of the future net cash flow of a project. Then, this

amount can be compared with the amount of money needed to

implement the project. When using the formula below, the values

of the number of periods (n), discount rate (r) and tax rate (a) take

respectively the following classical values 5, 10( and 0 (computa-

tion before tax). In order to calculate investment cost (Cost), the

working capital (f), revenue ðṼPÞ, operation cost ðD̃PÞ and

depreciation (AP) are introduced.

MaxðNP̃VÞ ¼ ÿCost ÿ f þ
Xn

p¼1

ðṼp ÿ D̃ p ÿ ApÞð1ÿ aÞ þ Ap

ð1þ rÞn
(4)

Cost ¼
XJ

j¼1

ðm ja jV
a jÞ þ

XK

k¼1

ðnkbkR
bk

k Þ þ
XS

s¼1

ðcsV
gs
s Þ (5)

3.3.2. Advance/delay objective function

This criterion translates the delays and advances for the

production time necessary for the synthesis of all the products: for

this purpose, the time horizon H̃ represented by a fuzzy quantity

has to be compared with the production time H̃i (see below). For

the comparison of fuzzy numbers, the Liou and Wang’s method

(Liou and Wang [48]) was adopted.

The criterion relative to the advances or to the delays is

calculated by the formulas 6 and 7, respectively. The corresponding

mathematical expressions of the objective functions are

proposed as follows, where the term ‘‘common surface’’ noted x,



is defined below:

Max ðCriterion o f adÞ ¼ x�$ (6)

Max ðCriterion o f delaysÞ ¼
x

$
(7)

The penalty term v is defined in order to penalize more

delays than advances. A sensitivity analysis leads to adopt a

value of 3 for v.

3.3.3. Flexibility index objective function

Finally, an additional criterion was computed in the case of an

advance (respectively a delay), representing the additional

production (the demand not satisfied) that the batch plant is able

to produce. Without going further in the detailed presentation of

the computation procedure, it can be simply said that this

flexibility index is computed by dividing the potential capacity

of the plant by its actual value.

3.3.4. Constraint formulation

The problem statement involves three forms of different

constraints as reported in the literature (Modi and Karimi [47]):

(i) Dimension constraints: every unit has to be restricted into its

allowable range.

(ii) Time constraint: the summation of available production time

for all the products is less than to the total production time.

(iii) Productivity constraint: the global productivity for product i

(on thewhole process) is equal to the lowest local productivity

(of each sub-process).

4. Fuzzy computations

4.1. Representation of fuzzy numbers

The proposed approach involves arithmetic operations on fuzzy

numbers and quantifies the imprecision of the demand by means

of fuzzy sets (trapezoidal). In this case, the flat line over the interval

(q2, q3) represents the precise demand with an interval of

confidence at level a = 1, while the intervals (q1, q2) and (q3, q4)

represent the ‘‘more or less possible values’’ of the demand, where

0 < a < 1 (see Fig. 1). For example, the net present value ðNP̃VÞ is

shown in Fig. 2. For each product i, the production time H̃i is also

represented by a TrFN. In order to carry out fuzzy number

comparisons by using the Liou andWang’smethod (Liou andWang

[48]), the given time horizon is represented by a rectangular fuzzy

number (see Fig. 3).

4.2. Computation of advance/delay objective function

The production time necessary to satisfy each product demand

must be less than the given time horizon, but due to the nature of

the fuzzy numbers, eight different cases for determination of the

advance/delay criterion may occur. These different cases are

reported in Fig. 4.

The advance/delay objective function is computed according to

the ‘‘common surface’’, representing the intersection between the

sum of the production times (trapezoid) and the horizon of time to

respect (rectangle). The calculation of the criterion depends on

each case: for example, case 1 illustrates the solutionswhich arrive

just in time. The criterion relative to the advances (2, 4, 6 and 8) or

to the delays (3, 5 and 7) is calculated by the formulas 6 and 7 given

before.

4.3. Computation of the flexibility index objective function

This flexibility index represents the gain (respectively the loss)

in production (during the time interval Dt shown in Fig. 5,

respectively Fig. 6) in the case of an advance (respectively delay).

The new production Q̃new is computed according toDt by summing

for each product its production computed on this new time interval

and compared with the initial production Q̃initial. In fact, the

flexibility index objective function is given by the ratio (�1 in the

Fig. 1. Trapezoidal fuzzy number TrFN Q Q̃ ¼ ðq1; q2; q3; q4Þ.

Fig. 2. Fuzzy NPV NP̃V ¼ ðnpv1; n pv2; n pv3; n pv4Þ.

Fig. 3. Rectangular time horizon.

Fig. 4. Eight cases for the advances/delays.

Fig. 5. Computation of the flexibility index for an advance case.



case of an advance and �1 in the case of a delay):

Flexibilityindex ¼
Qnew

Q initial
(8)

where the termsQnew and Qinitial represent the defuzzified values of

Q̃new and Q̃initial (computed according to themethod of the centre of

gravity).

5. Solving the MOOP

5.1. Encoding of solutions

The encoding of potential solutions in the form of a

numerical chromosome is a fundament al step for using a GA,

insofar as it guides the scanning of the solution set. The solution

encoding was carried out by dividing the chromosome, i.e.

the complete set of code, into two parts. The first one deals with

the item volumes, which are continuous in the initial formula-

tion. Nevertheless, on the market the equipment volumes must

fall in standard discrete values, and consequently they were

discretized here with a 50 unit step within the range defined by

their upper and lower bounds. The second part of the

chromosome corresponds to the number of equipment items

per stage.

5.2. Generation of the initial population

The procedure for creating the initial population corresponds to

a random sampling of each decision variable within its specific

range of variation. This strategy guarantees a population various

enough to cover large zones of the search space.

5.3. Fitness evaluation

The optimization criterion considered for fitness evaluation

involves the net present value NP̃V and two other performance

criteria, i.e. the production delay/advance and the flexibility

criterion. Traditionally, a GA uses a fitness function, whichmust be

maximized. The fitness for these criteria is equal to their calculated

values (the fuzzy NP̃V is defuzzified).

5.4. Selection of survivals

The multiobjective aspects are taken into account during the

selection procedure, inspired of the work of Dietz [45]. On the

current population a first selection is performed by implement-

ing the classical Goldberg’s wheel for each criterion. The method

of Liou and Wang [48] is used to compare the objectives. Then a

hybrid selection based on Pareto rank-tournament was pro-

posed and showed a better performance than the classical

Goldberg’s wheel, systematically leading to a higher number of

not dominated solutions. The procedure is detailed in Aguilar

[49].

5.5. Crossover

Two randomly selected parents are submitted to the crossover

operator to produce two children. The crossover is carried out with

an assigned probability, which is generally rather high. If a

randomly generated number is superior to the probability, the

crossover is performed. Otherwise, the children are copies of the

parents. The crossover operator is a classical one-point crossover.

5.6. Mutation

The genetic mutation introduces diversity in the population by

an occasional random replacement of some individuals. Like for the

crossover, the mutation is performed on the basis of an assigned

probability, generally less than the probability of crossover. A

random number is used to determine if a new individual will be

produced to substitute the one generated by crossover. The

mutation procedure consists in replacing one of the decision

variable values of the chosen individual, while keeping the

remaining variables unchanged. The replaced variable is randomly

chosen, and its new value is calculated by randomly sampling

within its specific range.

5.7. Elitism

In order to preserve the best individuals of the current

generation, a single elitism procedure is carried out by system-

atically copying the best individual according to each objective

function in the next generation.

5.8. Generation of the Pareto’s front

A Pareto’s sort procedure is carried out at the end of the

algorithm over all the evaluated solutions during the procedure, so

the whole set of the not dominated Pareto’s optimal solutions, is

obtained.

5.9. Parameters of the procedure

The parameters of the GA are summarized in Table 1 and Fig. 7

shows the main steps of the procedure.

6. Illustrative example

6.1. Example definition

The example chosen to illustrate the approach fuzzy-multi-

objective optimization was initially presented by Ponsich et al.

[50]: the plant, divided into two sub-processes, consists of six

batch stages Bi and eight semi-continuous processes SCj to

manufacture three products A, B and C. So it comes I = 3, J = 6,

K = 8 and S = 2. The storage tank is assumed large enough to be

considered as infinite, it will not be studied here. The first sub-

process is composed by the sequence [SC1, B1, SC2, B2, SC3] and the

second one by the sequence [SC4, B3, SC5, B4, SC6, B5, SC7, B6, SC8]. In

the table of results (see Table 4) equipments are numbered from 1

(1 corresponds to SC1) to 14 (14 corresponds to SC8).

Fig. 6. Computation of the flexibility index for a delay case.

Table 1

Parameters of the GA.

Population size 200

Number of generations (stopping criterion) 400

Crossover probability 0.40

Mutation probability 0.30

Elitism The best individuals of

each generation



From Table 2, the quantity of product in a batch is calculated

thanks to the size factor sij [l kg
ÿ1] representing the volume of

batch j occupied per unit of mass of product i. For the storage tank,

a size factor of 1 is assumed for all the products. The terms pij, gij
and di are used to compute the processing time tij (h) of product i in

batch j according to the following equation:

ti j ¼ pi j þ gi js
d j
i j (9)

The economic data are reported in Table 3. For all the semi-

continuous processes it is assumed that the cost ($) is given by

250V0.6 (where the volume V is expressed in liters). All the other

computations are given in Aguilar [49]. For all the equipments

(batch or semi-continuous) the minimum size is 250 l and the

maximum one is 10 000 l.

6.2. Constructing fuzzy data

Starting from the crisp values used by Ponsich et al. [50] for the

demands on products (in kg) Q1 = 437 000, Q2 = 324 000,

Q3 = 258 000 and for the time horizon H = 6000 h, the data were

arbitrarily fuzzified into TrFN for the demands and rectangular

form for the time horizon as indicated in Fig. 8. The following fuzzy

numbers are deduced:

Q̃1 ¼ ½419520;428260;441370;454480�

Q̃2 ¼ ½311040;319140;330480;336960�

Q̃3 ¼ ½247680;258000;263160;268320�

H̃ ¼ ½5760;5760;6240;6240�

6.3. Optimization results

Amono-objective optimization of the fuzzy net present value is

first performed, in order to study the dissipation of the

(defuzzified) NP̃V when other objectives like advance/delay or

efficiency index are also simultaneously optimized.

6.3.1. Mono-objective optimization of NP̃V

In this mono-optimization case, at each generation the best

individuals, that are the surviving ones, are chosen according to

their fitness which is directly the NP̃V . Since these fitness values

are represented by fuzzy numbers, they were defuzzified before

performing the selection.

GA typical results are presented in Table 4 (taking into account

the stochastic nature of the procedure, 10 runs of the GA were

performed). In each run, the value of the best individual of each

generation and the average value of the objective function

computed on each generation take a traditional form of regular

increase, to stabilize itself at the end of the research. In Table 4,

Fig. 7. Multiobjective genetic algorithm.

Table 2

Data for the products.

Product Term B1 B2 B3 B4 B5 B6

1 sij 8.28 6.92 9.70 2.95 6.57 10.60

2 5.58 8.03 8.09 3.27 6.17 6.57

3 2.34 9.19 10.30 5.70 5.98 3.14

1 pij 1.15 3.98 9.86 5.28 1.20 3.57

2 5.95 7.52 7.01 7.00 1.08 5.78

3 3.96 5.07 6.01 5.13 0.66 4.37

1 gij 0.20 0.36 0.24 0.40 0.50 0.40

2 0.15 0.50 0.35 0.70 0.42 0.38

3 0.34 0.64 0.50 0.85 0.30 0.22

dj 0.40 0.29 0.33 0.30 0.20 0.35

Table 3

Economic data.

Product Unit selling price ($/kg) Unit operating cost ($/kg)

1 0.70 0.08

2 0.74 0.10

3 0.84 0.07



only the results (volume of each operation and number of parallel

items constituting the operation) corresponding to the best

defuzzified value of NP̃V are reported. For example, V1 corresponds

to the total volume of the semi-continuous operation SC1, which

involves two parallel and identical units. The optimal value of the

NP̃V ($) is the TrFN [740 641, 804 244, 921 524, 989 552] and its

average (defuzzified) value is 863 990. The sum of production

times for the three products is given byP3
i¼1 H̃i ¼ ½5760;5925;6097;6240�, and its average value is 6005.

Let us note that when optimization is performed with the crisp

values of demands and horizon time, the solutions obtained are

near these average values.

6.3.2. Bicriteria optimization NP̃V – advances/delays

This first bicriteria analysis concerns the simultaneous opti-

mization of NP̃V and the objective which represents the advances

or delays of the time horizon. Three tests were made with the GA

and the algorithm did not find any solution belonging to case 1,

because the rectangle representing the horizon of time to respect is

smaller than the trapezoids obtained by the sum of times of

production for the three products. In Table 5, the 238 not

dominated individuals obtained and the results for the various

cases are presented.

The analysis is only performed on solutions having on the one

hand, the larger common surface (corresponding to an advance of

case 2—see Fig. 4) and, on the other hand, the best NP̃V . Table 6

shows the results of this bicriteria optimization, where it can be

noted that the mean value of NP̃V decreases compared with the

mono-objective case.

6.3.3. Bicriteria optimization NP̃V – flexibility index

The second bicriteria analysis takes into account NP̃V and the

criterionwhich represents the flexibility index of the configuration

chosen to produce a possible additional demand. Fig. 9 and Table 7

Exhibit 277 not dominated solutions of the advance cases (2, 4, 6

and 8) and of the delay cases (3, 5 and 7).

Two solutions of case 2 (the first one is the solution with the

best NP̃V and the second configuration has the best index of

flexibility) are presented in Table 8. As in the previous case, the

mean value of NP̃V decreases compared with the mono-objective

case. From Table 8, it can also be observed that the mean value of

NP̃V decreases when the flexibility index increases. However, for

the second value of flexibility index (1.020), if the value of extra

NPV (12 383) is added to themean value ofNP̃V (854 711), this new

mean value (867 094) is greater than the mean value (863 990)

obtained in the mono-objective study. This result shows the

relevance of carrying out the bicriteria optimization of NP̃V –

flexibility index.

6.3.4. Tricriteria optimization NP̃V – advances/delays – flexibility

index

Finally, the fuzzy optimal design of batch plant takes

simultaneously into account the three criteria, i.e. NP̃V , advances

or delays (common surface) and index of flexibility. The method

proposes a sufficiently large range of compromise solutions

making it possible to the decision’s maker to tackle the problem

of the final choice, with relevant information. Fig. 10 displays the

results (5881 not dominated solutions) obtained after three runs of

the GA on a three-dimensional curve. In Table 9 it can be observed

Fig. 8. Fuzzy representation of product demands and of time horizon.

Table 4

Optimal values of volumes and number of parallel units for each operation.

V1 V2 V3 V4 V5 V6 V7

8042.2 9787.5 9267.8 5128.9 7068.2 9999.0 301.0

n1 n2 n3 n4 n5 n6 n7
2 2 3 2 1 2 1

V8 V9 V10 V11 V12 V13 V14

3210.0 427.1 495.0 1592.0 4181.0 886.8 1271.0

n8 n9 n10 n11 n12 n13 n14
1 1 1 1 1 1 1

Table 5

Number and percentage of not dominated solutions obtained for each case.

Case

1 2 3 4 5 6 7 8

Not dominated solutions 0 12 145 0 69 0 12 0

% 0 5.0 60.9 0 29.0 0 5.0 0

Table 6

Bicriteria optimization NP̃V – advances/delays for case 2 (advance).

NP̃V (mean

value)

Common

surface

NP̃V ($) and production time
P

H̃i (h)

Case 2 860 358 653 NP̃V ¼ ½736120;817 367;906144;981801�P
H̃i ¼ ½5758;5916;6089;6238�

Fig. 9. Bicriteria optimization NP̃V – flexibility index.

Table 7

Number and percentage of not dominated solutions obtained for each case.

Case

1 2 3 4 5 6 7 8

Not dominated solutions 0 28 18 4 29 5 9 184

% 0 10 6.5 1.4 10.5 1.8 3.2 66.4

Table 8

Bicriteria optimization NP̃V – flexibility index for case 2 (advance).

NP̃V (mean

value)

Flexibility

index

NP̃V ($) and production time
P

H̃i (h)

Case 2 857 085 1.005 NP̃V ¼ ½732860;814104;902868;978 510�P
H̃i ¼ ½5728;5886;6058;6206�

Extra NPV = 3110 $

Case 2 854 711 1.020 NP̃V ¼ ½730352;811691;900550;976256�P
H̃i ¼ ½5637;5792;5961;6107�

Extra NPV = 12 383 $



that no solution corresponding to a delay case (cases 3, 5 and 7)

was obtained by the three GA’s.

To analyze the results obtained from the tricriteria optimiza-

tion, six not dominated solutions are selected: three of case 2, two

of case 4 and one of case 6 (see Table 10). These solutions were

selected by taking into account the values of the net present value

and the index of flexibility, giving a possibility of obtaining an

additional benefit. Like in the bicriteria study, for the higher value

of the flexibility index (1.066 for case 6) if the value of extra NPV

(34 400) is added to the mean value of NP̃V (830 164), this new

mean value (864 564) is greater than the mean value (863 990)

obtained in the mono-objective study. Compared with the

bicriteria case (NP̃V – flexibility index), the gain in the mean

NP̃V value is lower, but the advance/delay objective is more

satisfied.

7. Conclusions

In conventional design of multiproduct batch chemical plants,

the designers have to specify the production requirement of each

product and the total production time. However, at the step of

preliminary design no precise product demand predictions and

total horizon time are generally known. In most cases, these data

are imprecisely defined. For this reason, an efficient treatment of

the imprecision by using fuzzy concepts is introduced in this paper.

In real world applications, designers not only search for

minimizing the investment cost, but have also to perform an

economic study based on the computation of the net present value

(NPV) of a project (considering investment operating cost and

revenue). In addition, other objectives like the production delays/

advances and flexibility measurement of the future plant have to

be considered together with the NPV.

This multiobjective optimization problem with imprecise data

is tackled in this study, by defining a multiobjective genetic

algorithm able to handle imprecise values represented in the form

of fuzzy numbers (trapezoidal or rectangular). The study is

illustrated by an example coming from the literature.

First a mono-objective of the fuzzy NPV (NP̃V) is performed for

defining a basis of comparison. Then bicriteria optimizations of

NP̃V and advances/delays of products and NP̃V and a flexibility

index of the plant representing the possible additional production

are carried out. Finally a tricriteria optimization including the three

objectives brings still further information than in the bicriteria

case, insofar as a sufficiently broad set of compromise solutions are

proposed. This set of relevant solutions will be helpful for guiding

the decision-maker in its final choices.

The main advances of the paper can be summarized as follows.

� Fuzzy concepts allow to model imprecision particularly in cases

where historical data are not readily available for using a

probabilistic representation.

� Heuristic search algorithms can be easily extended to the fuzzy

case, insofar as they do not resort to complex calculations such as

computations of derivatives, matrix manipulations needed in

deterministic optimization.

Fig. 10. Tricriteria optimization.

Table 9

Number and percentage of not dominated solutions obtained for each case for the

tricriteria optimization.

Case

1 2 3 4 5 6 7 8

Not dominated solutions 0 2467 0 2527 0 868 0 19

% 0 41.9 43.0 0 14.7 0 0.3

Table 10

Results of the tricriteria optimization.

NP̃V (mean value) Common surface Flexibility index NP̃V ($) and production time
P

H̃i (h)

Case 2 826 932 561 1.020
P

H̃i ¼ ½5647;5810;5979;6118�

NP̃V ¼ ½701315;783386;873188;949839�

Extra NPV = 10 371 $

Case 2a 825 821 643 1.005
P

H̃i ¼ ½5731;5897;6068;6209�

NP̃V ¼ ½700577;782396;871917;948395�

Extra NPV = 2585 $

Case 2b 816 533 622 1.010
P

H̃i ¼ ½5699;5864;6034;6174�

NP̃V ¼ ½691187;773 067;862663;939217�

Extra NPV = 5536 $

Case 4 827 359 377 1.038
P

H̃i ¼ ½5554;5713;5880;6017�

NP̃V ¼ ½702231;783983;873490;949733�

Extra NPV = 19 522 $

Case 4a 826 564 438 1.032
P

H̃i ¼ ½5582;5742;5910;6047�

NP̃V ¼ ½701377;783160;872720;949002�

Extra NPV = 16 763 $

Case 6 830 164 75 1.066
P

H̃i ¼ ½5409;5564;5726;5860�

NP̃V ¼ ½705422;786993;876139;952102�

Extra NPV = 34 400 $



� Because it is working on populations of potential solutions, a

genetic algorithm is well-suited for multiobjective optimization.
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