1,488 research outputs found

    An Optimal Transmission Strategy for Kalman Filtering over Packet Dropping Links with Imperfect Acknowledgements

    Get PDF
    This paper presents a novel design methodology for optimal transmission policies at a smart sensor to remotely estimate the state of a stable linear stochastic dynamical system. The sensor makes measurements of the process and forms estimates of the state using a local Kalman filter. The sensor transmits quantized information over a packet dropping link to the remote receiver. The receiver sends packet receipt acknowledgments back to the sensor via an erroneous feedback communication channel which is itself packet dropping. The key novelty of this formulation is that the smart sensor decides, at each discrete time instant, whether to transmit a quantized version of either its local state estimate or its local innovation. The objective is to design optimal transmission policies in order to minimize a long term average cost function as a convex combination of the receiver's expected estimation error covariance and the energy needed to transmit the packets. The optimal transmission policy is obtained by the use of dynamic programming techniques. Using the concept of submodularity, the optimality of a threshold policy in the case of scalar systems with perfect packet receipt acknowledgments is proved. Suboptimal solutions and their structural results are also discussed. Numerical results are presented illustrating the performance of the optimal and suboptimal transmission policies.Comment: Conditionally accepted in IEEE Transactions on Control of Network System

    Towards Efficient Maximum Likelihood Estimation of LPV-SS Models

    Full text link
    How to efficiently identify multiple-input multiple-output (MIMO) linear parameter-varying (LPV) discrete-time state-space (SS) models with affine dependence on the scheduling variable still remains an open question, as identification methods proposed in the literature suffer heavily from the curse of dimensionality and/or depend on over-restrictive approximations of the measured signal behaviors. However, obtaining an SS model of the targeted system is crucial for many LPV control synthesis methods, as these synthesis tools are almost exclusively formulated for the aforementioned representation of the system dynamics. Therefore, in this paper, we tackle the problem by combining state-of-the-art LPV input-output (IO) identification methods with an LPV-IO to LPV-SS realization scheme and a maximum likelihood refinement step. The resulting modular LPV-SS identification approach achieves statical efficiency with a relatively low computational load. The method contains the following three steps: 1) estimation of the Markov coefficient sequence of the underlying system using correlation analysis or Bayesian impulse response estimation, then 2) LPV-SS realization of the estimated coefficients by using a basis reduced Ho-Kalman method, and 3) refinement of the LPV-SS model estimate from a maximum-likelihood point of view by a gradient-based or an expectation-maximization optimization methodology. The effectiveness of the full identification scheme is demonstrated by a Monte Carlo study where our proposed method is compared to existing schemes for identifying a MIMO LPV system

    An Information-Theoretic Analysis of Discrete-Time Control and Filtering Limitations by the I-MMSE Relationships

    Full text link
    Fundamental limitations or performance trade-offs/limits are important properties and constraints of control and filtering systems. Among various trade-off metrics, total information rate, which characterizes the sensitivity trade-offs and average performance of control and filtering systems, is conventionally studied by using the (differential) entropy rate and Kolmogorov-Bode formula. In this paper, by extending the famous I-MMSE (mutual information -- minimum mean-square error) relationship to the discrete-time additive white Gaussian channels with and without feedback, a new paradigm is introduced to estimate and analyze total information rate as a control and filtering trade-off metric. Under this framework, we enrich the trade-off properties of total information rate for a variety of discrete-time control and filtering systems, e.g., LTI, LTV, and nonlinear, and also provide an alternative approach to investigate total information rate via optimal estimation.Comment: Neng Wan and Dapeng Li contributed equally to this pape

    Transmission Power Scheduling for Energy Harvesting Sensor in Remote State Estimation

    Get PDF
    We study remote estimation in a wireless sensor network. Instead of using a conventional battery-powered sensor, a sensor equipped with an energy harvester which can obtain energy from the external environment is utilized. We formulate this problem into an infinite time-horizon Markov decision process and provide the optimal sensor transmission power control strategy. In addition, a sub-optimal strategy which is easier to implement and requires less computation is presented. A numerical example is provided to illustrate the implementation of the sub-optimal policy and evaluation of its estimation performance.Comment: Extended version of article to be published in the Proceedings of the 19th IFAC World Congress, 201

    Identification of LTV Dynamical Models with Smooth or Discontinuous Time Evolution by means of Convex Optimization

    Get PDF
    We establish a connection between trend filtering and system identification which results in a family of new identification methods for linear, time-varying (LTV) dynamical models based on convex optimization. We demonstrate how the design of the cost function promotes a model with either a continuous change in dynamics over time, or causes discontinuous changes in model coefficients occurring at a finite (sparse) set of time instances. We further discuss the introduction of priors on the model parameters for situations where excitation is insufficient for identification. The identification problems are cast as convex optimization problems and are applicable to, e.g., ARX models and state-space models with time-varying parameters. We illustrate usage of the methods in simulations of jump-linear systems, a nonlinear robot arm with non-smooth friction and stiff contacts as well as in model-based, trajectory centric reinforcement learning on a smooth nonlinear system

    Stability Analysis of Networked Control in Smart Grids

    Get PDF
    A suitable networked control scheme and its stability analysis framework have been developed for controlling inherent electromechanical oscillatory dynamics observed in power systems. It is assumed that the feedback signals are obtained at locations away from the controller/actuator and transmitted over a communication network with the help of phasor measurement units (PMUs). Within the generic framework of networked control system (NCS), the evolution of power system dynamics and associated control actions through a communication network have been modeled as a hybrid system. The data delivery rate has been modeled as a stochastic process. The closed-loop stability analysis framework has considered the limiting probability of data dropout in computing the stability margin. The contribution is in quantifying allowable data-dropout limit for a specified closed loop performance. The research findings are useful in specifying the requirement of communication infrastructure and protocol for operating future smart grids
    corecore