81 research outputs found

    Improved Distributed Algorithms for Exact Shortest Paths

    Full text link
    Computing shortest paths is one of the central problems in the theory of distributed computing. For the last few years, substantial progress has been made on the approximate single source shortest paths problem, culminating in an algorithm of Becker et al. [DISC'17] which deterministically computes (1+o(1))(1+o(1))-approximate shortest paths in O~(D+n)\tilde O(D+\sqrt n) time, where DD is the hop-diameter of the graph. Up to logarithmic factors, this time complexity is optimal, matching the lower bound of Elkin [STOC'04]. The question of exact shortest paths however saw no algorithmic progress for decades, until the recent breakthrough of Elkin [STOC'17], which established a sublinear-time algorithm for exact single source shortest paths on undirected graphs. Shortly after, Huang et al. [FOCS'17] provided improved algorithms for exact all pairs shortest paths problem on directed graphs. In this paper, we present a new single-source shortest path algorithm with complexity O~(n3/4D1/4)\tilde O(n^{3/4}D^{1/4}). For polylogarithmic DD, this improves on Elkin's O~(n5/6)\tilde{O}(n^{5/6}) bound and gets closer to the Ω~(n1/2)\tilde{\Omega}(n^{1/2}) lower bound of Elkin [STOC'04]. For larger values of DD, we present an improved variant of our algorithm which achieves complexity O~(n3/4+o(1)+min{n3/4D1/6,n6/7}+D)\tilde{O}\left( n^{3/4+o(1)}+ \min\{ n^{3/4}D^{1/6},n^{6/7}\}+D\right), and thus compares favorably with Elkin's bound of O~(n5/6+n2/3D1/3+D)\tilde{O}(n^{5/6} + n^{2/3}D^{1/3} + D ) in essentially the entire range of parameters. This algorithm provides also a qualitative improvement, because it works for the more challenging case of directed graphs (i.e., graphs where the two directions of an edge can have different weights), constituting the first sublinear-time algorithm for directed graphs. Our algorithm also extends to the case of exact κ\kappa-source shortest paths...Comment: 26 page

    Near-Optimal Distributed Approximation of Minimum-Weight Connected Dominating Set

    Full text link
    This paper presents a near-optimal distributed approximation algorithm for the minimum-weight connected dominating set (MCDS) problem. The presented algorithm finds an O(logn)O(\log n) approximation in O~(D+n)\tilde{O}(D+\sqrt{n}) rounds, where DD is the network diameter and nn is the number of nodes. MCDS is a classical NP-hard problem and the achieved approximation factor O(logn)O(\log n) is known to be optimal up to a constant factor, unless P=NP. Furthermore, the O~(D+n)\tilde{O}(D+\sqrt{n}) round complexity is known to be optimal modulo logarithmic factors (for any approximation), following [Das Sarma et al.---STOC'11].Comment: An extended abstract version of this result appears in the proceedings of 41st International Colloquium on Automata, Languages, and Programming (ICALP 2014

    Tight Bounds for Distributed Minimum-Weight Spanning Tree Verification

    Get PDF
    International audienceThis paper introduces the notion of distributed verification without preprocessing. It focuses on the Minimum-weight Spanning Tree (MST) verification problem and establishes tight upper and lower bounds for the time and message complexities of this problem. Specifically, we provide an MST verification algorithm that achieves simultaneously O(m) messages and O(√ n+D) time, where m is the number of edges in the given graph G, n is the number of nodes, and D is G's diameter. On the other hand, we show that any MST verification algorithm must send Ω(m) messages and incur Ω(√ n + D) time in worst case. Our upper bound result appears to indicate that the verification of an MST may be easier than its construction, since for MST construction, both lower bounds of Ω(m) messages and Ω(√ n+D) time hold, but at the moment there is no known distributed algorithm that constructs an MST and achieves simultaneously O(m) messages and O(√ n + D) time. Specifically, the best known time-optimal algorithm (using O(√ n + D) time) requires O(m + n 3/2) messages, and the best known message-optimal algorithm (using O(m) messages) requires O(n) time. On the other hand, our lower bound results indicate that the verification of an MST is not significantly easier than its construction

    Distributed Edge Connectivity in Sublinear Time

    Full text link
    We present the first sublinear-time algorithm for a distributed message-passing network sto compute its edge connectivity λ\lambda exactly in the CONGEST model, as long as there are no parallel edges. Our algorithm takes O~(n11/353D1/353+n11/706)\tilde O(n^{1-1/353}D^{1/353}+n^{1-1/706}) time to compute λ\lambda and a cut of cardinality λ\lambda with high probability, where nn and DD are the number of nodes and the diameter of the network, respectively, and O~\tilde O hides polylogarithmic factors. This running time is sublinear in nn (i.e. O~(n1ϵ)\tilde O(n^{1-\epsilon})) whenever DD is. Previous sublinear-time distributed algorithms can solve this problem either (i) exactly only when λ=O(n1/8ϵ)\lambda=O(n^{1/8-\epsilon}) [Thurimella PODC'95; Pritchard, Thurimella, ACM Trans. Algorithms'11; Nanongkai, Su, DISC'14] or (ii) approximately [Ghaffari, Kuhn, DISC'13; Nanongkai, Su, DISC'14]. To achieve this we develop and combine several new techniques. First, we design the first distributed algorithm that can compute a kk-edge connectivity certificate for any k=O(n1ϵ)k=O(n^{1-\epsilon}) in time O~(nk+D)\tilde O(\sqrt{nk}+D). Second, we show that by combining the recent distributed expander decomposition technique of [Chang, Pettie, Zhang, SODA'19] with techniques from the sequential deterministic edge connectivity algorithm of [Kawarabayashi, Thorup, STOC'15], we can decompose the network into a sublinear number of clusters with small average diameter and without any mincut separating a cluster (except the `trivial' ones). Finally, by extending the tree packing technique from [Karger STOC'96], we can find the minimum cut in time proportional to the number of components. As a byproduct of this technique, we obtain an O~(n)\tilde O(n)-time algorithm for computing exact minimum cut for weighted graphs.Comment: Accepted at 51st ACM Symposium on Theory of Computing (STOC 2019

    Almost-Tight Distributed Minimum Cut Algorithms

    Full text link
    We study the problem of computing the minimum cut in a weighted distributed message-passing networks (the CONGEST model). Let λ\lambda be the minimum cut, nn be the number of nodes in the network, and DD be the network diameter. Our algorithm can compute λ\lambda exactly in O((nlogn+D)λ4log2n)O((\sqrt{n} \log^{*} n+D)\lambda^4 \log^2 n) time. To the best of our knowledge, this is the first paper that explicitly studies computing the exact minimum cut in the distributed setting. Previously, non-trivial sublinear time algorithms for this problem are known only for unweighted graphs when λ3\lambda\leq 3 due to Pritchard and Thurimella's O(D)O(D)-time and O(D+n1/2logn)O(D+n^{1/2}\log^* n)-time algorithms for computing 22-edge-connected and 33-edge-connected components. By using the edge sampling technique of Karger's, we can convert this algorithm into a (1+ϵ)(1+\epsilon)-approximation O((nlogn+D)ϵ5log3n)O((\sqrt{n}\log^{*} n+D)\epsilon^{-5}\log^3 n)-time algorithm for any ϵ>0\epsilon>0. This improves over the previous (2+ϵ)(2+\epsilon)-approximation O((nlogn+D)ϵ5log2nloglogn)O((\sqrt{n}\log^{*} n+D)\epsilon^{-5}\log^2 n\log\log n)-time algorithm and O(ϵ1)O(\epsilon^{-1})-approximation O(D+n12+ϵpolylogn)O(D+n^{\frac{1}{2}+\epsilon} \mathrm{poly}\log n)-time algorithm of Ghaffari and Kuhn. Due to the lower bound of Ω(D+n1/2/logn)\Omega(D+n^{1/2}/\log n) by Das Sarma et al. which holds for any approximation algorithm, this running time is tight up to a polylogn \mathrm{poly}\log n factor. To get the stated running time, we developed an approximation algorithm which combines the ideas of Thorup's algorithm and Matula's contraction algorithm. It saves an ϵ9log7n\epsilon^{-9}\log^{7} n factor as compared to applying Thorup's tree packing theorem directly. Then, we combine Kutten and Peleg's tree partitioning algorithm and Karger's dynamic programming to achieve an efficient distributed algorithm that finds the minimum cut when we are given a spanning tree that crosses the minimum cut exactly once

    Distributed Approximation Algorithms for Weighted Shortest Paths

    Full text link
    A distributed network is modeled by a graph having nn nodes (processors) and diameter DD. We study the time complexity of approximating {\em weighted} (undirected) shortest paths on distributed networks with a O(logn)O(\log n) {\em bandwidth restriction} on edges (the standard synchronous \congest model). The question whether approximation algorithms help speed up the shortest paths (more precisely distance computation) was raised since at least 2004 by Elkin (SIGACT News 2004). The unweighted case of this problem is well-understood while its weighted counterpart is fundamental problem in the area of distributed approximation algorithms and remains widely open. We present new algorithms for computing both single-source shortest paths (\sssp) and all-pairs shortest paths (\apsp) in the weighted case. Our main result is an algorithm for \sssp. Previous results are the classic O(n)O(n)-time Bellman-Ford algorithm and an O~(n1/2+1/2k+D)\tilde O(n^{1/2+1/2k}+D)-time (8klog(k+1)1)(8k\lceil \log (k+1) \rceil -1)-approximation algorithm, for any integer k1k\geq 1, which follows from the result of Lenzen and Patt-Shamir (STOC 2013). (Note that Lenzen and Patt-Shamir in fact solve a harder problem, and we use O~()\tilde O(\cdot) to hide the O(\poly\log n) term.) We present an O~(n1/2D1/4+D)\tilde O(n^{1/2}D^{1/4}+D)-time (1+o(1))(1+o(1))-approximation algorithm for \sssp. This algorithm is {\em sublinear-time} as long as DD is sublinear, thus yielding a sublinear-time algorithm with almost optimal solution. When DD is small, our running time matches the lower bound of Ω~(n1/2+D)\tilde \Omega(n^{1/2}+D) by Das Sarma et al. (SICOMP 2012), which holds even when D=Θ(logn)D=\Theta(\log n), up to a \poly\log n factor.Comment: Full version of STOC 201

    Distributed MST and Broadcast with Fewer Messages, and Faster Gossiping

    Get PDF
    We present a distributed minimum spanning tree algorithm with near-optimal round complexity of O~(D+sqrt{n}) and message complexity O~(min{n^{3/2}, m}). This is the first algorithm with sublinear message complexity and near-optimal round complexity and it improves over the recent algorithms of Elkin [PODC\u2717] and Pandurangan et al. [STOC\u2717], which have the same round complexity but message complexity O~(m). Our method also gives the first broadcast algorithm with o(n) time complexity - when that is possible at all, i.e., when D=o(n) - and o(m) messages. Moreover, our method leads to an O~(sqrt{nD})-round GOSSIP algorithm with bounded-size messages. This is the first such algorithm with a sublinear round complexity
    corecore