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Abstract
We present a distributed minimum spanning tree algorithm with near-optimal round complexity
of Õ(D +

√
n) and message complexity Õ(min{n3/2,m}). This is the first algorithm with sub-

linear message complexity and near-optimal round complexity and it improves over the recent
algorithms of Elkin [PODC’17] and Pandurangan et al. [STOC’17], which have the same round
complexity but message complexity Õ(m). Our method also gives the first broadcast algorithm
with o(n) time complexity – when that is possible at all, i.e., when D = o(n) – and o(m) mes-
sages. Moreover, our method leads to an Õ(

√
nD)-round GOSSIP algorithm with bounded-size

messages. This is the first such algorithm with a sublinear round complexity.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Distributed Algorithms, Minimum Spanning Tree, Round Complexity,
Message Complexity, Gossiping, Broadcast

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.30

Acknowledgements We are grateful to Merav Parter for helpful discussions.

1 Introduction

This paper presents a distributed algorithm for computing a Minimum Spanning Tree (MST)
with a nearly optimal round complexity and an improved message complexity. Our method
also leads to improvements for two other basic problems, namely broadcast and gossiping.
Let us start with briefly recalling the CONGEST model, which is the standard synchronous
message-passing model of distributed computing with small messages:

The CONGEST Model [37]. The network is abstracted as a weighted graph G = (V,E,w)
where n = |V |, m = |E|. Moreover, we use D to denote the diameter of the graph. Initially,
each node has a unique Θ(logn)-bit identifier and knows its own edges – i.e., the identifier
of the other endpoint of the edges – as well as the weight of these edges. At the end, each
node should know its own part of the output, e.g., which of its edges are in the computed
minimum spanning tree. Per round, each node can send one O(logn)-bit message to each of
its neighbors. The round complexity of an algorithm is the number of rounds until all nodes
are done with their computation, and the message complexity of the algorithm is the total
number of messages sent throughout the algorithm.
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History and Significance of MST in Distributed Algorithms. Minimum Spanning Tree
(MST) is one of the central problems in the study of distributed graph algorithms, and it has
been studied extensively since 1980s [12, 6, 11, 2, 13, 30, 39, 38, 8, 10, 26, 7, 28, 27, 16, 18, 36,
9, 32]. One can argue that much of the developments in the CONGEST model of distributed
computing have been centered around (MST); the algorithmic or impossibility techniques
developed for MST led to important results for other fundamental graph problems.

The work on distributed MST started with the algorithm of Gallager, Humblet, and
Spira [12], which has time complexity O(n logn), and can be seen as a variant of the 1926
algorithm of Boruvka [35]. The time complexity was gradually improved [6, 11], eventually
leading to the “optimal” O(n)-round algorithm of Awerbuch [2]. At the time, a round
complexity of O(n) was regarded as being optimal, because there are graphs of diameter
D = Ω(n) on which one cannot do better (e.g., the n-node cycle).

A pioneering work of Garay, Kutten and Peleg [30, 13] shifted the are toward sublinear
time algorithms in graphs of sublinear diameter, i.e., where this excuse of graphs with
D = Ω(n) is ruled out. In particular, Garay et al. [13] presented an O(D+n0.61)-round MST
algorithm, which was subsequently improved by Kutten and Peleg [30] to O(D +

√
n log∗ n).

Shortly after, Rubinovich and Peleg [38] proved a lower bound of Ω̃(D +
√
n) for the round

complexity of any distributed MST algorithm. By now, we understand that a wide range
of other fundamental graph problems can be solved or approximated in time (close to)
Õ(D+

√
n): the list includes minimum cut [14, 34], single-source shortest path [31, 33, 24, 4],

tree embedding [19], maximum s-t flow [17], and minimum connected dominating set [15].
Moreover, this time complexity is optimal for essentially all of these problems [7]. Many of
these results build on the methods and results developed initially for MST.

Message Complexity Comes Back. In the above line of work, the primary focus has been
the round complexity. However, now that we understand the round complexity aspect of
MST rather well, there has been a revived interest in getting algorithms with improved
message complexity. The time-optimal Õ(D+

√
n)-round algorithm of Kutten and Peleg has

message complexity Õ(m+n3/2). In a recent work, Pandurangan et al. [36] provided the first
(randomized) MST algorithm with round complexity Õ(D +

√
n) and message complexity

Õ(m). Shortly after, Elkin [9] presented a simpler deterministic algorithm with similar time
and message complexities (in fact with improvements in the logarithmic factors).

By a result of Awerbuch et al. [3], this Õ(m) message complexity is known to be optimal
for deterministic algorithms. Moreover, it is the best possible if either we restrict ourselves
to randomized comparison-based algorithms [3] or to the variant of the distributed model
where at the beginning, each node does not know its neighbors [3, 29] (this is sometimes
called the KT0 variant of the model, as opposed to the KT1 version where at the beginning
nodes know their neighbors). However, if at the beginning, each node knows all its neighbors
and we are allowed to use general randomized algorithms, this Ω̃(m) message complexity
lower bound does not apply. In fact, a beautiful result of King, Kutten, and Thorup [27]
presents an algorithm with message complexity Õ(n), however at the expense of having time
complexity Õ(n).

Open Question. This state of the art exhibits one clear open question:

Can we find a time-optimal MST algorithm with message complexity o(m)?
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1.1 Our Results
MST. Our primary result in this paper is to provide a positive answer to the above open
question. In particular, we prove that

I Theorem 1. There is a distributed randomized MST algorithm with round complexity
Õ(D +

√
n) and message complexity Õ(min{n3/2,m}).

Broadcast. Along the way to this MST algorithm, we find a single-message broadcast
algorithm – which can deliver a message from any source to all nodes – with an improved
message complexity. We find this to be important on its own, given the centrality of the
broadcast problem throughout distributed computing.

I Theorem 2. There is a distributed randomized algorithm that broadcasts one message to
all nodes in Õ(D +

√
n) using Õ(min{n3/2,m}) messages.

We note that prior to this result, all known broadcast algorithms needed to use at least
Ω(m) messages (in which case a simple flooding delivers the message to all in O(D) rounds),
with only one exception: the only known broadcast algorithm with message complexity o(m)
would need to use Ω(n) rounds [27].

Gossiping. The method that we develop for a message-efficient MST algorithm has one
more significant consequence: it leads to the first sublinear-time GOSSIP algorithm in general
graphs with bounded size messages [21, 5, 22]. In this problem, initially one node knows an
O(logn)-bit message, which should be delivered to all nodes. Per round each node can either
PUSH an O(logn)-bit message to an arbitrary neighbor or PULL an O(logn)-bit message
from an arbitrary neighbor.

I Theorem 3. There is a distributed randomized algorithm that broadcasts one message to
all nodes in Õ(

√
nD) rounds of the GOSSIP model.

2 Preliminaries

In this section, we introduce two tools that will be used throughout our algorithms: one
is an adaptation of the well-known 1926 algorithm of Boruvka for computing a minimum
spanning tree [35], and the other is a randomized linear sketching tool.

Boruvka’s algorithm. The algorithm is made of Θ(logn) phases, where we gradually merge
fragments (i.e., subtrees) of the MST with each other until we have exactly one fragment,
i.e., the MST. Initially, each node is its own fragment. Per phase, we do as follows: Each
fragment C picks the lightest edge that connects C to nodes outside C. It is well-known and
easy to see that all these lighest edges, one per fragment, belong to the MST. We will add
only some of these edges to the MST, in a way that ensures that the corresponding fragment
merges have a small depth (in a sense that will become clear soon); this allows us to perform
these merges efficiently. In particular, each fragment throws a Head/Tails fair coin. Then,
for each edge e = (v, u) which is the lightest edge of the fragment C 3 v who connects to
fragment C ′ 3 u, we accept edge e for a merge if and only if C has a Tail coin toss and C ′
has a Head coin toss. The accepted merge edges get added to the output MST. As a result,
we perform a merge along each accepted merge edge by unifying the fragments connected
via accepted merge edges, all at the same time. Notice that each new fragment is formed by
merging a number of previous fragments in a star shape. That is, the new fragment is made

DISC 2018
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of a number Tail old fragments which merge with one central Head old fragment. Then, we
proceed to the next phase. It is known that after Θ(logn) phases, with high probability, we
have exactly one fragment which is the final MST. See e.g. [16] for the correctness proof of
this method.

We also note that the algorithm can be extended directly to disconnected graphs, in which
case it computes a minimum spanning tree in each connected component. Thus, overall, it
provides a maximal forest with minimum weight.

Linear Sketching. The linear sketching tool that we will use was first used by Ahn et
al. [1] in streaming algorithms. By now, variants of it have been used in various distributed
algorithms [23, 27, 20, 25]. In a rough sense, this tool creates a “sketch” of a large set of
elements (particularly, edges in our applications) which has only a few bits, and such that
out of these few bits, we can still decode one element of the set. Since the sketch is linear
(concretely, a bit-wise XOR), adding the sketches of two sets gives a linear sketch of their
symmetric set difference. This last property will be important for our application. We can
abstract this sketching as the following lemma.

I Lemma 4 (Linear Sketching). Consider a set E of elements, each with a unique Θ(logn)
bit identifier. There is a family F of encoder-decoder function pairs, where |F | = 2Θ(log3 n),
with the following properties: Here, in each pair in F , the encoder is a function ENC : E →
{0, 1}Θ(log3 n) and the decoder is a function DEC : {0, 1}Θ(log3 n) → E. The family F is such
that if we pick one pair of encoder function ENC and the corresponding decoder function
DEC at random from F , then for each set S ∈ E, we have DEC(⊕e∈SENC(e)) ∈ S, with
probability at least 1− 1/n5.

3 Minimum Spanning Tree

In this section, we prove the following result, which is a more detailed version of Theorem 1
and provides a time-optimal MST algorithm, up to logarithmic factors, with an improved
message complexity.

I Theorem 5 (Sublinear Messages & Near-Optimal Time). There is a randomized distributed
algorithm that in any n-node m-edge weighted graph G = (V,E,w) with diameter D computes
an MST with round complexity Õ(D +

√
n) and message complexity Õ(min{n3/2,m}), with

high probability.

Roadmap. The algorithm for computing this MST is made of two parts. We first compute
a sparser subgraph which has at most Õ(n3/2) edges and still the diameter of it does not
exceed Õ(D +

√
n). Moreover, this subgraph is such that we are able to compute it in

Õ(D+
√
n) rounds and using Õ(n3/2) messages. Then, we can easily compute a breadth first

tree T of this sparse subgraph, which has depth at most Õ(D +
√
n), in Õ(D +

√
n) rounds

and using Õ(min{n3/2,m}) messages. This part is captured by Lemma 6. This lemma itself
has the direct corollary for the boardcast problem, it proves Theorem 2, showing that we can
perform a global broadcast in Õ(D +

√
n) rounds and using Õ(n3/2) messages. To finish the

proof of Theorem 5, we then explain how to use the low-depth tree T constructed by Lemma
6 to compute the MST, in Õ(D +

√
n) rounds and using Õ(n) messages. This second part is

captured by Lemma 7. Putting Lemma 6 and Lemma 7 together proves Theorem 5.
Finally, we comment that one can generalize Lemma 7 and prove that for every ε ∈ [0, 1/2],

there exists a randomized algorithm for constructing MST using Õ(D + n1−ε) rounds and
Õ(min{n1+ε,m}) messages.
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I Lemma 6 (Sparsification Lemma). There is a distributed algorithm that in any n-node
m-edge weighted graph G = (V,E,w) with diameter D, computes a spanning subgraph that has
diameter Õ(D +

√
n) and Õ(n3/2) edges, in Õ(D +

√
n) rounds and using Õ(min{n3/2,m})

messages. Then, we can also compute a spanning tree of diameter Õ(D+
√
n), in Õ(D+

√
n)

rounds and using Õ(min{n3/2,m}) messages.

Proof. Before describing the algorithm, we comment that the algorithm is described with
focus on graphs that have Ω(n3/2) edges; for these, we show that our algorithm will use
Õ(n3/2) messages. The algorithm is such that it passes at most poly(logn) messages through
each edge and therefore, it automatically has message complexity at most Õ(m). Hence, we
can write the message complexity as Õ(min{n3/2,m}).

Heavy and Light Nodes and the Heavy Subgraph G′. Call a node heavy if its degree
exceeds

√
n and light otherwise. Let G′ be the subgraph of G induced by heavy vertices,

i.e., the subgraph made of all edges that both of their endpoints are heavy. We call this the
Heavy Subgraph. Notice that (G \G′) has at most n3/2 edges.

Step 1 – Forming Stars. Define S to be a random subset of all vertices where each node
is included in S with probability 10 logn√

n
. We add all these vertices and their edges to the

so-called heavy subgraph G′. It is easy to see that, w.h.p., |S| = O(
√
n logn) and moreover,

each heavy node has at least one neighbor in S. Make each node in S send a message to
each of its neighbors. This uses O(n3/2 logn) messages overall. Then, make each heavy node
v /∈ S that receives a message from a neighbor in S pick one such neighbor as its center. For
each node s ∈ S, this defines a star subgraph centered at s along with some of its neighbors.
These stars are disjoint for different centers and they satisfy the following guarantees: We
have O(n3/2 logn) stars and each heavy node is in exactly one star.

Step 2 – Boruvka on the Heavy Subgraph, and Starting From the Stars. Now, we run
Boruvka’s algorithm – as explained in Section 2 – for computing a certain maximal spanning
forest F of G′, with the initial configuration that each star is one fragment of F . We remark
that here we can ignore the edge weights as we are interested in simply one maximal spanning
forest, with no regard for the weights. Hence, per phase, for each component, it suffices to
find one outgoing edge for each fragment C of F . Notice that the naive way for detecting
whether an edge e = u, v incident on a node v ∈ C is outgoing or not, i.e., whether u ∈ C
or not, would require communicating through this edge e, which overall can lead to O(m)
message complexity. To circumvent that, we follow a linear sketching method of King, Kutten,
and Thorup [27]. The key aspect of this linear sketching is abstracted by Lemma 4.

We make the center of fragment C pick one sketch (i.e., a pair of encoder and decoder
functions) from the family F of Lemma 4 at random and we deliver the Θ(log3 n) bits of
the description of F to all nodes of C, via a simple broadcast along the tree of fragment C.
Then, each node v computes ENC(e) for each edge e incident on v. Then, we aggregate a
bit-wise XOR of these values END(e), through a convergecast, at the root of the fragment.
Notice that for each internal edge e = u, v which has both u and v in fragment C, the related
encoding ENC(e) gets added to the computed bit-wise XOR twice, once from each endpoint.
Hence, it gets canceled out. On the other hand, ENC(e) for each outgoing edge e is added
exactly once to the bit-wise XOR and therefore, it does not get canceled out. By Lemma 4,
once the fragment center receives this bit-wise XOR, that is ⊕e∈OENC(e) where O denotes
the set of edges going out of fragment C, it can decode it using the function DEC(). Thus,
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the fragment center then obtains one outgoing edge e ∈ O. We then broadcast this outgoing
edge to all vertices of the fragment. In particular the endpoint of e in C knows that its edge
e is chosen as a potential edge for a merge.

The above process explains how we compute one outgoing edge for each fragment (unless
the fragment already fully spans its component and no edge can be added to it, in which
case the sketch shows an empty set of outgoing edges). Moreover, it uses Õ(n) messages
overall because we are simply performing O(1) convergecasts and broadcasts in the tree of
each fragment, each of them carrying poly(logn) bit messages, and all the trees together
have at most n− 1 edges. Furthermore, this procedure has round complexity equal to the
maximum fragment diameter, up to logarithmic factors. Since we have Õ(n1/2) stars and
each edge of G′ is incident on one of the stars, and because in each fragment all nodes of
each star also have all of their star edges as a part of the fragment, the maximum fragment
diameter is Õ(n1/2). This completes the process of selecting outgoing edges.

Then, selecting the accepted outgoing edges for merge, using the related Head/Tail coins
of the fragments, and performing the corresponding merges can be done similarly with simple
broadcasts and convergecasts, same as described in the description of Boruvka’s algorithm
in Section 2. This again takes Õ(n1/2) rounds and Õ(n) messages. After going through all
the Θ(logn) phases of Boruvka, we get a maximal spanning forest F of G′. throughout step
2, we have used Õ(n) messages and Õ(n1/2) rounds.

Arguing that (G \ G′) ∪ F is our desired sparse low-diameter spanning subgraph. Con-
sider the spanning subgraph H with all edges of (G \ G′) ∪ F . This subgraph clearly has
at most Õ(n3/2) edges. We next argue that it has diameter at most Õ(D +

√
n). Consider

two arbitrary nodes v, u ∈ G. We prove that there is a path of length at most Õ(D +
√
n)

in H between u and v. Suppose that in G, we contract each connected component of F
into a single node, and call the resulting graph H ′. There must still be a path of length at
most D between u and v in this contracted graph H ′. Let Pu,v be the shortest path in H ′
between u and v. Now we can transform Pu,v to a path of length D +O(

√
n logn) in H as

follows: any contracted part of the path Pu,v can be “un-contracted” – essentially undoing
the process of contraction – and replaced with the portion of the maximal forest F that
spans that component of F . This step increases the length of the path by at most a constant
factor of the number of stars in that connected component of F . Since the total number of
stars is O(

√
n logn), over all the components, this “un-contracting” process increase the

path length from D to at most D +O(
√
n logn). This path now exists in H = (G \G′) ∪ F .

Since this argument holds for any two arbitrary nodes v, u ∈ G, we get that the spanning
subgraph H has diameter at most Õ(D +

√
n).

Computing a Low-Diameter Spanning Tree. Once we have H, we can also perform a
breadth first search (BFS) in H, which finds a spanning tree (of G) that has diameter
Õ(D +

√
n). Since H has at most Õ(min{n3/2,m}) edges, the construction of this BFS tree

uses at most Õ(min{n3/2,m}) edges, thus proving the second part of the lemma. J

We next describe our MST computation method which we shall use with the help of the
computed low-diameter spanning tree provided by Lemma 6.

I Lemma 7 (MST Computation). Suppose that we are given a spanning tree with depth
d = Õ(D +

√
n) of the graph. Then, we can compute the MST in Õ(D +

√
n) rounds and

using Õ(n) messages.
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Proof Sketch. We will use Boruvka’s MST algorithm, combined with the linear sketching
method of King et al. [27] for finding the lightest outgoing edge of each fragment, as well
as an idea of Elkin [9]. Roughly speaking, the latter will allow us to primarily work on
low-depth fragments, except for switching to computation on the global spanning tree, at
the end. The algorithm is made of two parts, which we explain next.

Part 1 – MST Growth With Low-Diameter Fragments. During the first part, we grow a
partial forest T of the MST. This will be done such that at the end, each fragment of T has
diameter in [d, 5d]. We always make sure not to have any fragment of diameter exceeding 5d.
Initially, T is the trivial forest made of each node as its own fragment. Then, throughout
Θ(logn) phases, we merge some fragments with each other similar to Boruvka’s algorithm
explained in Section 2, but with some modification: In each phase, we do as follows. Any
fragment C of diameter at most d is called active and each other fragment is called inactive.
Each inactive fragment C will not initiate a merge, that is, it will not compute its lightest
outgoing edge to propose it to be added to MST. But C is still receptive to merges, i.e., if an
active fragment C ′ proposes a merge with C (and C has a Head coin toss and C ′ has a Tail
coin toss), we accept this merge.

Let us discuss how we compute the lightest outgoing edge for each active component.
This is done via a binary search through the range of the weights. Each time if the active
search range for fragment C is [L,U ], we sketch all edges incident on C with weight in
[L, L+U

2 ] and deliver this sketch to the root of fragment C using a convergecast of the XOR
of sketches (similar to proof of Lemma 6). If this sketch indicates an empty edge-set, then
the binary search zooms into search range [L+U

2 , U ]. Otherwise, it zooms into [L, L+U
2 ] as

the search range. In either case, the upper and lower bound of the search range are then
broadcast to all nodes of the fragment C. After O(logn) steps of the binary search, each of
which takes Õ(d) rounds, we find the lightest outgoing edge of C and this edge is known
to all nodes of C. Then, the merge operations are similar to Section 2, along edges that go
from Tail coin active fragments to Head coin fragments.

Once these merges happen, the diameter of the resulting fragment might exceed 5d.
However, it still will be at most 7d+ 2 = O(d). This is because the new fragment is made
of a star merge centered at one fragment of diameter at most 5d with a number of side
fragments, each of diameter at most d. We then spend Θ(d) rounds to truncated the fragment
to diameter at most 5d. In particular, for each fragment that has diameter exceeding 5d,
we select some edges of it to be discarded from the current forest such that each remaining
fragment has diameter in [d, 5d]. This can be done in O(d) rounds as the next paragraph
explains.

To cut this component tree into fragments with diameter in [d, 5d], we do as follows: first,
perform a broadcast on the fragment tree so that each node knows its distance from the
root of the fragment. Then, for each node v with distance an integer multiple of (d + 1),
the edge of that node to its parent will be discarded from the forest. This ensures that
each fragment of the remaining forest has diameter at most 2d. However, an unfortunate
side-effect is that there might be some nodes v whose edge to its parent gets discarded and
such that the subtree rooted at v has a height smaller than d. We can detect such nodes
using a simple convergecast from the leaves toward the root. For every such node v, we undo
the step of discarding the edge connecting v to its parent and thus effectively we merge back
its subtree with its parent fragment. This might increase the depth of its parent fragment
but the corresponding diameter cannot exceed 4d.
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Now that the fragments are truncated to have diameter in [d, 5d], we proceed to the next
phase. After Θ(logn) phases, the first part of the algorithm is done. At that point, we have
reached a setting where we have a forest F made of O(n/d) fragments, each with diameter
in [d, 5d]. Moreover, all edges of this forest belong to the minimum spanning tree. Overall,
this first part uses Õ(d) rounds and Õ(n) messages.

Part 2 – MST Growth Beyond Low-Diameter Fragments. Now, the second part of the
algorithm starts. Here, we grow the eventual MST T , but using a different method. Initially,
we set T = F . The forest T will grow over time while F is maintained as is, permanently.
We again will have Θ(logn) Boruvka-style phases of growing the fragments of T . At each
time, each fragment of T is made of a number of fragments of F .

To compute the lightest outgoing edge of each fragment t of T , we do the corresponding
binary search differently. Suppose the current weight range of binary search for t is some
range [L,U ], which is known to all nodes of t. We then make each of the fragments f ∈ F
which are a part of t compute its own sketch of edges incident on f with weight in [L, L+U

2 ]
using a convegecast inside f . This results in one Θ(log3 n)-bit sketch for the whole fragment
f . Then, we broadcast all these sketch, one for each fragment of F , to the root of the
whole graph using the given spanning tree of depth d. Since each fragment of F sends one
Θ(log3 n)-bit message, F has O(n/d) fragments, and each message travels d hops to reach
the root of the spanning tree, the overall message complexity is Õ(n/d · d) = Õ(n). Once the
root receives all these sketches, it can compute one outgoing edge for each fragment t of T
(if there was some edge in the corresponding search range and the sketch was not empty).
Then, the root can broadcast these edges back to the nodes of t by simply putting the
identifier and weight of that found edge in the message that arrived from each subfragment
f ∈ F of t and reversing the schedule of the convergecast, now delivering messages from
the root to all nodes. This completes one step of the binary search. After O(logn) such
steps of the binary search, the root knows the lightest outgoing edge of each fragment t of
T . Thus, the root can perform one phase of Boruvka-style merges on T . It then updates
T accordingly, by merging the related fragments, and reports the new fragment IDs to all
nodes. This is again done by putting this T -fragment ID back in the message that came from
the corresponding subfragment f ∈ F of t and reversing the schedule of the convergecast,
after which a broadcast inside fragment f ∈ F delivers it to all nodes of that fragment. This
finishes the description for one phase of Boruvka.

Repeating a similar process for Θ(logn) phases finishes the computation of the MST.
The round complexity of the process is Õ(d), since each phase is made of poly(logn) many
broadcasts and convergecasts, each it trees of diameter d. Moreover, the message complexity
is Õ(n), again because the convergecasts and broadcasts inside fragments of F clearly use at
most Õ(n) messages, and the broadcast and converecasts in the overall spanning tree use
Õ(n/d · d) = Õ(n) messages. J

4 Fast Gossiping with Bounded-Size Messages

In this section, we prove the following results, which is a more detailed version of Theorem 3.

I Theorem 8. There is a distributed algorithm that spreads a rumor from one node to all
in Õ(

√
nD) rounds of the GOSSIP model, where per round each node initiates one PUSH or

PULL contact with one of its neighbors, communicating an O(logn) bit message.
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Proof. We first find a sparse spanning subgraph and then perform a gossiping broadcast
on this subgraph. The sparsity of the subgraph allows us to have a fast algorithm in the
GOSSIP model, as it enables each node to contact only a few other nodes. To build the sparse
subgraph, the general method is mostly similar to the one used in Lemma 6. However, we
now need to adapt the construction method to the GOSSIP model and analyze the resulting
round complexity. Here, we explain the changes.

Step 1 – Forming Stars. Now, we call a node heavy if its degree exceeds
√
n/D and

light otherwise. The subgraph G′ made of all edges induced by heavy vertices is called the
heavy subgraph. We pick 10

√
nD logn nodes at random in expectation to be the set S of

centers of the stars – i.e., we include each node of the graph in S randomly with probability
10

√
D/n logn. To form the stars, each (heavy) node goes through its neighbors and pulls

from them, one by one, until finding the first node who is chosen to be a star. Notice that
each heavy node will find a star within O(

√
n/D) pulls, with high probability. Moreover,

each contacted node can always respond whether it is star center or not.

Step 2 – Boruvka on the Heavy Subgraph, and Starting From the Stars. Having formed
these stars, the algorithm continues essentially the same as in Lemma 6 to build a maximal
forest F of the graph G′ made of all edges with at least one heavy endpoint (and the
corresponding nodes). There is only one comment in order: We should explain that we
can perform the convergecast and broadcasts of Boruvka’s algorithm in the GOSSIP model,
because these trees do not necessarily have small degrees. Suppose that we have a rooted tree
of depth d for each fragment of the forest and each node knows its depth in this tree. Then,
we can perform a broadcast (sending a single-message from the root to all) or convergecast
(e.g., computing one aggregate function such as sum by sending messages from the leaves
up towards the root) in this tree in time O(d) also in the GOSSIP model. In the case of
broadcast, in the ith round, each node v at depth i makes a PULL contact to its parent.
A simple induction shows that each node at depth i receives the message in round i. A
convergecast is similar; in the ith round each node v at depth d− i makes a PUSH contact
to its parent, sending the message of the convergecast to its parent. Again, via a simple
induction, we can prove that after d rounds the root receives the result of the convegecast.
Having this broadcast and convergecast, we can build the maximal forest F of the subgraph
G′ similar to Lemma 6. At the end, each component of this maximal forest F is rooted in
one of its nodes and each node of that component knows its deoth in the rooted tree of that
component. Since we now have O(

√
nD logn) stars, the diameter of each fragment is at most

O(
√
nD logn). Therefore, also the construction of F finishes in O(

√
nD logn) rounds of the

GOSSIP model.

Gossiping on the Sparse Subgraph. Now, we use the spanning subgraph defined by (G \
G′) ∪ F to perform the gossiping of one message to all nodes. For that, we divide time into
phases, each made of two rounds. In odd rounds, each informed node – who already has
the gossiping message – picks one of its edges at random – if it has any – and pushes the
message through that edge and each uninformed node pulls from one of its neighbors chosen
at random. In even rounds, each uninformed node pulls from its parent in the forest F and
each informed node pushes to its parent.

We now argue that the message reaches all nodes in O(
√
nD logn) rounds, with high

probability. Let v be the source of the gossiping, i.e., the node that initially holds the
gossip message. As in the proof of Lemma 6, we can see that for every vertex u, there is a
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path Pv,u of length D +O(
√
nD logn) in (G \G′) ∪ F connecting v to u. Let us say edge

{w1, w2} ∈ Pv,u is in the waiting mode during all the rounds that w1 is the closest informed
node on Pv,u to u. In articular, during these times w1 is informed and w2 is not informed.
We analyze the time that the edges of Pv,u spend in the waiting mode, in two parts, one for
(G \G′) and one for F . We show that the summation of the time that different edges of Pu,v
spend in the waiting mode is at most O(

√
nD logn) rounds. Hence, the message reaches

from v to u in O(
√
nD logn) rounds. Notice that by definition, per round at most one edge

of Pv,u is in the waiting mode.
Similar to the proof of the last part of Lemma 6, we can see that at most D hops of the

path Pv,u are edges of (G \G′) and the rest are edges of F . Now, because of the odd rounds,
whenever a low-degree node w1 gets informed, each of its neighbors w2 in the subgraph
G \G′ gets informed with high probability in O(

√
n/D) rounds. Hence, the message travels

one hop through G \ G′ per O(
√
n/D) rounds. Let us say edge {w1, w2} ∈ (G \ G′) is in

the waiting mode during all the rounds that w1 is informed but w2 is not informed (or vice
verse). Thus, each edge is in the waiting mode at most O(

√
n/D) rounds, w.h.p. Overall,

the time that the message spends waiting to travel through the edges of Pv,u ∩ (G \G′) is at
most D ·O(

√
n/D). Now, we focus on the waiting time of edges of F .

Because of the even rounds, when the message reaches some node of a fragment of F , it
gets pushed to the root and then pulled to all the nodes of the fragment, in a number of
phases asymptotically equal to the depth of that forest fragment. Notice that this depth
is upper bounded asymptotically by the number of stars in that fragment. Hence, the
total waiting time of the edges of Pv,u in that fragment is upper bounded asymptotically
by the number of stars in that fragment. Since overall the number of stars is at most
O(
√
nD logn), the message spends at most O(

√
nD logn) rounds going through the edges

of Pu,v ∩ F . Hence, overall the time the message takes to reach from v to u is at most
D ·O(

√
n/D) +O(

√
nD logn) = O(

√
nD logn). J
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