2 research outputs found

    When FPGAs are better at floating-point than microprocessors

    Get PDF
    It has been shown that FPGAs could outperform high-end microprocessors on floating-point computations thanks to massive parallelism. However, most previous studies re-implement in the FPGA the operators present in a processor. This is a safe and relatively straightforward approach, but it doesn't exploit the greater flexibility of the FPGA. This article is a survey of the many ways in which the FPGA implementation of a given floating-point computation can be not only faster, but also more accurate than its microprocessor counterpart. Techniques studied here include custom precision, specific accumulator design, dedicated architectures for coarser operators which have to be implemented in software in processors, and others. A real-world biomedical application illustrates these claims. This study also points to how current FPGA fabrics could be enhanced for better floating-point support

    Conceptual design and realization of a dynamic partial reconfiguration extension of an existing soft-core processor

    Get PDF
    Viele aktuelle Field Programmable Gate Arrays (FPGAs) unterstützen die Technik der partiellen Rekonfiguration (PR), durch die dynamisch zur Laufzeit ein Hardware-Design auch nur teilweise ausgetauscht werden kann. Die vorliegende Arbeit integriert PR-Funktionalität in die an der Technischen Universität Ilmenau für harte Echtzeitaufgaben mit hochpräzisen Fließkommaberechnungen entwickelte VHDL Integrated Softcore Architecture for Reconfigurable Devices (ViSARD). Zu diesem Zweck wird die arithmetisch-logische Einheit angepasst, um das Auswechseln von Fließkomma-Ausführungseinheiten zu ermöglichen. Ziele der Entwicklung des PR-Systems sind hohe Geschwindigkeit, niedrige Latenz, niedrige Ressourcenkosten und harte Echtzeitfähigkeit. Erreicht werden diese durch die Umsetzung einer eigenen Steuereinheit (partial reconfiguration controller), die partielle Bitströme aus externem RAM über einen standardmäßigen AXI-Bus lädt sowie die entsprechende Erweiterung der ViSARD. In einem Testdesign, das zwischen drei verschiedenen Konfigurationen mit je zwischen einer und drei Ausführungseinheiten wechselt, hat das entwickelte PR-System den maximal spezifierten Bitstromdurchsatz auf dem Ziel-FPGA erreicht und den Verbrauch an Lookup-Tabellen um etwa 40 % verringert.Many modern field-programmable gate arrays (FPGAs) support partial reconfiguration, which allows to dynamically replace only a part of a design at run time. In this thesis, partial reconfiguration capability is integrated with the VHDL Integrated Softcore Architecture for Reconfigurable Devices (ViSARD) developed at Technische Universität Ilmenau and conceived for hard real-time tasks requiring floating-point calculations with high precision. Specifically, its arithmetic logic unit is modified to allow exchanging floating-point arithmetic execution units. Design goals of the partial reconfiguration system are high speed, low latency, low resource overhead, and hard real-time capability. They are reached by implementing a custom partial reconfiguration controller loading partial bitstreams from external RAM over a standard AXI bus and extending the ViSARD appropriately. In a test design that switched between 3 different configurations each containing between 1 and 3 execution units, the proposed partial reconfiguration system achieved the maximum specified bitstream throughput on the target FPGA and allowed for roughly 40 % reduced look-up table usage
    corecore