4,019 research outputs found

    Ontology population for open-source intelligence: A GATE-based solution

    Get PDF
    Open-Source INTelligence is intelligence based on publicly available sources such as news sites, blogs, forums, etc. The Web is the primary source of information, but once data are crawled, they need to be interpreted and structured. Ontologies may play a crucial role in this process, but because of the vast amount of documents available, automatic mechanisms for their population are needed, starting from the crawled text. This paper presents an approach for the automatic population of predefined ontologies with data extracted from text and discusses the design and realization of a pipeline based on the General Architecture for Text Engineering system, which is interesting for both researchers and practitioners in the field. Some experimental results that are encouraging in terms of extracted correct instances of the ontology are also reported. Furthermore, the paper also describes an alternative approach and provides additional experiments for one of the phases of our pipeline, which requires the use of predefined dictionaries for relevant entities. Through such a variant, the manual workload required in this phase was reduced, still obtaining promising results

    Distributional Measures of Semantic Distance: A Survey

    Full text link
    The ability to mimic human notions of semantic distance has widespread applications. Some measures rely only on raw text (distributional measures) and some rely on knowledge sources such as WordNet. Although extensive studies have been performed to compare WordNet-based measures with human judgment, the use of distributional measures as proxies to estimate semantic distance has received little attention. Even though they have traditionally performed poorly when compared to WordNet-based measures, they lay claim to certain uniquely attractive features, such as their applicability in resource-poor languages and their ability to mimic both semantic similarity and semantic relatedness. Therefore, this paper presents a detailed study of distributional measures. Particular attention is paid to flesh out the strengths and limitations of both WordNet-based and distributional measures, and how distributional measures of distance can be brought more in line with human notions of semantic distance. We conclude with a brief discussion of recent work on hybrid measures

    Knowledge Organization Systems (KOS) in the Semantic Web: A Multi-Dimensional Review

    Full text link
    Since the Simple Knowledge Organization System (SKOS) specification and its SKOS eXtension for Labels (SKOS-XL) became formal W3C recommendations in 2009 a significant number of conventional knowledge organization systems (KOS) (including thesauri, classification schemes, name authorities, and lists of codes and terms, produced before the arrival of the ontology-wave) have made their journeys to join the Semantic Web mainstream. This paper uses "LOD KOS" as an umbrella term to refer to all of the value vocabularies and lightweight ontologies within the Semantic Web framework. The paper provides an overview of what the LOD KOS movement has brought to various communities and users. These are not limited to the colonies of the value vocabulary constructors and providers, nor the catalogers and indexers who have a long history of applying the vocabularies to their products. The LOD dataset producers and LOD service providers, the information architects and interface designers, and researchers in sciences and humanities, are also direct beneficiaries of LOD KOS. The paper examines a set of the collected cases (experimental or in real applications) and aims to find the usages of LOD KOS in order to share the practices and ideas among communities and users. Through the viewpoints of a number of different user groups, the functions of LOD KOS are examined from multiple dimensions. This paper focuses on the LOD dataset producers, vocabulary producers, and researchers (as end-users of KOS).Comment: 31 pages, 12 figures, accepted paper in International Journal on Digital Librarie

    A model for information retrieval driven by conceptual spaces

    Get PDF
    A retrieval model describes the transformation of a query into a set of documents. The question is: what drives this transformation? For semantic information retrieval type of models this transformation is driven by the content and structure of the semantic models. In this case, Knowledge Organization Systems (KOSs) are the semantic models that encode the meaning employed for monolingual and cross-language retrieval. The focus of this research is the relationship between these meanings’ representations and their role and potential in augmenting existing retrieval models effectiveness. The proposed approach is unique in explicitly interpreting a semantic reference as a pointer to a concept in the semantic model that activates all its linked neighboring concepts. It is in fact the formalization of the information retrieval model and the integration of knowledge resources from the Linguistic Linked Open Data cloud that is distinctive from other approaches. The preprocessing of the semantic model using Formal Concept Analysis enables the extraction of conceptual spaces (formal contexts)that are based on sub-graphs from the original structure of the semantic model. The types of conceptual spaces built in this case are limited by the KOSs structural relations relevant to retrieval: exact match, broader, narrower, and related. They capture the definitional and relational aspects of the concepts in the semantic model. Also, each formal context is assigned an operational role in the flow of processes of the retrieval system enabling a clear path towards the implementations of monolingual and cross-lingual systems. By following this model’s theoretical description in constructing a retrieval system, evaluation results have shown statistically significant results in both monolingual and bilingual settings when no methods for query expansion were used. The test suite was run on the Cross-Language Evaluation Forum Domain Specific 2004-2006 collection with additional extensions to match the specifics of this model

    An Introduction to Ontology

    Get PDF
    Analytical philosophy of the last one hundred years has been heavily influenced by a doctrine to the effect that one can arrive at a correct ontology by paying attention to certain superficial (syntactic) features of first-order predicate logic as conceived by Frege and Russell. More specifically, it is a doctrine to the effect that the key to the ontological structure of reality is captured syntactically in the ‘Fa’ (or, in more sophisticated versions, in the ‘Rab’) of first-order logic, where ‘F’ stands for what is general in reality and ‘a’ for what is individual. Hence “f(a)ntology”. Because predicate logic has exactly two syntactically different kinds of referring expressions—‘F’, ‘G’, ‘R’, etc., and ‘a’, ‘b’, ‘c’, etc.—so reality must consist of exactly two correspondingly different kinds of entity: the general (properties, concepts) and the particular (things, objects), the relation between these two kinds of entity being revealed in the predicate-argument structure of atomic formulas in first-order logic

    Bio-JOIE: Joint Representation Learning of Biological Knowledge Bases

    Full text link
    The widespread of Coronavirus has led to a worldwide pandemic with a high mortality rate. Currently, the knowledge accumulated from different studies about this virus is very limited. Leveraging a wide-range of biological knowledge, such as gene ontology and protein-protein interaction (PPI) networks from other closely related species presents a vital approach to infer the molecular impact of a new species. In this paper, we propose the transferred multi-relational embedding model Bio-JOIE to capture the knowledge of gene ontology and PPI networks, which demonstrates superb capability in modeling the SARS-CoV-2-human protein interactions. Bio-JOIE jointly trains two model components. The knowledge model encodes the relational facts from the protein and GO domains into separated embedding spaces, using a hierarchy-aware encoding technique employed for the GO terms. On top of that, the transfer model learns a non-linear transformation to transfer the knowledge of PPIs and gene ontology annotations across their embedding spaces. By leveraging only structured knowledge, Bio-JOIE significantly outperforms existing state-of-the-art methods in PPI type prediction on multiple species. Furthermore, we also demonstrate the potential of leveraging the learned representations on clustering proteins with enzymatic function into enzyme commission families. Finally, we show that Bio-JOIE can accurately identify PPIs between the SARS-CoV-2 proteins and human proteins, providing valuable insights for advancing research on this new disease.Comment: ACM BCB 2020, Best Student Pape
    corecore