424 research outputs found

    Error Minimization in Indoor Wireless Sensor Network Localization Using Genetic Technique

    Get PDF
    Using the genetic technique, error minimisation in indoor wireless sensor network localisation improves indoor wireless sensor network localisation during this field research. Sensor localisation-based techniques; several wireless device network applications require awareness of each node's physical location. The discovery of the position complete utilising range measurements also as sensor localisation received signal strength in time of arrival and sensor localisation received signal strength in a time difference of arrival and angle of arrival. WSN in positioning algorithms like the angle of arrival between two neighbour nodes. A wireless sensor network using positioning techniques in the area is assumed as localisation. WSNs always operate in an unattended manner, various situations like dynamic situations in the wireless network. It's impossible to exchange sensor manner after deployment. Therefore, a fundamental objective is to optimise the sensor manner lifetime. There has been much specialising in mobile sensor networks, and we have even seen the event of small-profile sensing devices that are ready to control their movement. Although it's been shown that mobility alleviates several issues regarding sensor network coverage and connectivity, many challenges remain node localisation in wireless device network is extremely important for several applications and received signal strength indicator has the capability of sensing, actuating the environmental data the actual-time and favourable information are often collected using the sensor in WSN systems. WSN is often combined with the internet of things to permit the association and extensive access to sensor data, and genetic techniques search the position of the nodes in WSN using all anchor nodes. A proposed algorithm as a genetic technique supported received signal strength, angle of arrival, receptive wireless device and also localisation wireless network. In the study, this paper problem that accuracy is low and error more, but the proposed algorithm overcomes this problem and minimises the error rate. Finally, the simplest possible location satisfies each factor with a minimal error rate and absolute best solution using GA

    A survey of localization in wireless sensor network

    Get PDF
    Localization is one of the key techniques in wireless sensor network. The location estimation methods can be classified into target/source localization and node self-localization. In target localization, we mainly introduce the energy-based method. Then we investigate the node self-localization methods. Since the widespread adoption of the wireless sensor network, the localization methods are different in various applications. And there are several challenges in some special scenarios. In this paper, we present a comprehensive survey of these challenges: localization in non-line-of-sight, node selection criteria for localization in energy-constrained network, scheduling the sensor node to optimize the tradeoff between localization performance and energy consumption, cooperative node localization, and localization algorithm in heterogeneous network. Finally, we introduce the evaluation criteria for localization in wireless sensor network

    A Review of Range-based RSSI Algorithms for Indoor Wireless Sensor Network Localization

    Get PDF
    The secure localisation of unknown nodes in Wireless Sensor Networks (WSNs) is a crucial research topic due to the vast range of applications of WSNs. These applications drive the development of WSNs, as real-world obstacles typically motivate them. WSN technology is rapidly evolving, and this paper provides a brief overview of WSNs, including key research findings on energy conservation and node deployment. The paper discusses the applications of WSNs in medical health, environment and agriculture, intelligent home furnishing and construction, and military, space, and marine exploration. The paper focuses on the research of RSS-based locating algorithms in WSNs and is divided into two sections. Firstly, accurate location depends on the accurate RSSI received from nodes. This experiment analyses the distribution trend of RSSI and derives the loss model of signal propagation by processing experimental data. Secondly, Gaussian fitting calculates the distance between receiving and sending nodes by processing individual RSSI at different distances. The primary challenge in studying this RSSI range-based technique is the low positioning accuracy, low energy, and high error rate. To solve this problem, a recommended GA is used to find the optimal site by minimising error, providing the best feasible solution, and being energy-sensitive, with accuracy based on the least error inside the network. The proposed approach aims to optimise sensor placements for improved performance

    Supporting Cyber-Physical Systems with Wireless Sensor Networks: An Outlook of Software and Services

    Get PDF
    Sensing, communication, computation and control technologies are the essential building blocks of a cyber-physical system (CPS). Wireless sensor networks (WSNs) are a way to support CPS as they provide fine-grained spatial-temporal sensing, communication and computation at a low premium of cost and power. In this article, we explore the fundamental concepts guiding the design and implementation of WSNs. We report the latest developments in WSN software and services for meeting existing requirements and newer demands; particularly in the areas of: operating system, simulator and emulator, programming abstraction, virtualization, IP-based communication and security, time and location, and network monitoring and management. We also reflect on the ongoing efforts in providing dependable assurances for WSN-driven CPS. Finally, we report on its applicability with a case-study on smart buildings

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    A Review on Wireless Sensor Networks

    Get PDF
    The study of wireless sensor networks is challenging in that it requires an enormous breadth of knowledge. A wireless sensor network (WSN) is a computer network consisting of spatially distributed autonomous devices using sensors to cooperatively monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or pollutants at different locations. The development of wireless sensor networks was originally motivated by military applications such as battlefield surveillance. However, wireless sensor networks are now used in many civilian application areas, including environment and habitat monitoring, healthcare applications, home automation and traffic control. Keywords: WSN, Senso

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    Sensor Networks in the Low Lands

    Get PDF
    This paper provides an overview of scientific and industrial developments of the last decade in the area of sensor networks in The Netherlands (Low Lands). The goal is to highlight areas in which the Netherlands has made most contributions and is currently a dominant player in the field of sensor networks. On the one hand, motivations, addressed topics, and initiatives taken in this period are presented, while on the other hand, special emphasis is given to identifying current and future trends and formulating a vision for the coming five to ten years. The presented overview and trend analysis clearly show that Dutch research and industrial efforts, in line with recent worldwide developments in the field of sensor technology, present a clear shift from sensor node platforms, operating systems, communication, networking, and data management aspects of the sensor networks to reasoning/cognition, control, and actuation
    corecore