591 research outputs found

    Survey on wireless technology trade-offs for the industrial internet of things

    Get PDF
    Aside from vast deployment cost reduction, Industrial Wireless Sensor and Actuator Networks (IWSAN) introduce a new level of industrial connectivity. Wireless connection of sensors and actuators in industrial environments not only enables wireless monitoring and actuation, it also enables coordination of production stages, connecting mobile robots and autonomous transport vehicles, as well as localization and tracking of assets. All these opportunities already inspired the development of many wireless technologies in an effort to fully enable Industry 4.0. However, different technologies significantly differ in performance and capabilities, none being capable of supporting all industrial use cases. When designing a network solution, one must be aware of the capabilities and the trade-offs that prospective technologies have. This paper evaluates the technologies potentially suitable for IWSAN solutions covering an entire industrial site with limited infrastructure cost and discusses their trade-offs in an effort to provide information for choosing the most suitable technology for the use case of interest. The comparative discussion presented in this paper aims to enable engineers to choose the most suitable wireless technology for their specific IWSAN deployment

    Impact of EU duty cycle and transmission power limitations for sub-GHz LPWAN SRDs : an overview and future challenges

    Get PDF
    Long-range sub-GHz technologies such as LoRaWAN, SigFox, IEEE 802.15.4, and DASH7 are increasingly popular for academic research and daily life applications. However, especially in the European Union (EU), the use of their corresponding frequency bands are tightly regulated, since they must confirm to the short-range device (SRD) regulations. Regulations and standards for SRDs exist on various levels, from global to national, but are often a source of confusion. Not only are multiple institutes responsible for drafting legislation and regulations, depending on the type of document can these rules be informational or mandatory. Regulations also vary from region to region; for example, regulations in the United States of America (USA) rely on electrical field strength and harmonic strength, while EU regulations are based on duty cycle and maximum transmission power. A common misconception is the presence of a common 1% duty cycle, while in fact the duty cycle is frequency band-specific and can be loosened under certain circumstances. This paper clarifies the various regulations for the European region, the parties involved in drafting and enforcing regulation, and the impact on recent technologies such as SigFox, LoRaWAN, and DASH7. Furthermore, an overview is given of potential mitigation approaches to cope with the duty cycle constraints, as well as future research directions

    Distributed scheduling algorithms for LoRa-based wide area cyber-physical systems

    Get PDF
    Low Power Wide Area Networks (LPWAN) are a class of wireless communication protocols that work over long distances, consume low power and support low datarates. LPWANs have been designed for monitoring applications, with sparse communication from nodes to servers and sparser from servers to nodes. Inspite of their initial design, LPWANs have the potential to target applications with higher and stricter requirements like those of Cyber-Physical Systems (CPS). Due to their long-range capabilities, LPWANs can specifically target CPS applications distributed over a wide-area, which is referred to as Wide-Area CPS (WA-CPS). Augmenting WA-CPSs with wireless communication would allow for more flexible, low-cost and easily maintainable deployment. However, wireless communications come with problems like reduced reliability and unpredictable latencies, making them harder to use for CPSs. With this intention, this thesis explores the use of LPWANs, specifically LoRa, to meet the communication and control requirements of WA-CPSs. The thesis focuses on using LoRa due to its high resilience to noise, several communication parameters to choose from and a freely modifiable communication stack and servers making it ideal for research and deployment. However, LoRaWAN suffers from low reliability due to its ALOHA channel access method. The thesis posits that "Distributed algorithms would increase the protocol's reliability allowing it to meet the requirements of WA-CPSs". Three different application scenarios are explored in this thesis that leverage unexplored aspects of LoRa to meet their requirements. The application scenarios are delay-tolerant vehicular networks, multi-stakeholder WA-CPS deployments and water distribution networks. The systems use novel algorithms to facilitate communication between the nodes and gateways to ensure a highly reliable system. The results outperform state-of-art techniques to prove that LoRa is currently under-utilised and can be used for CPS applications.Open Acces

    A LoRaWAN Architecture for Communications in Areas without Coverage: Design and Pilot Trials

    Get PDF
    This research was partially funded by the Andalusian Knowledge Agency (projects A-TIC-241-UGR18 and B-TIC-568-UGR20), the Spanish Ministry of Science and Innovation (project PID2019-108713RB-C53), the Spanish Ministry of Economic Affairs and Digital Transformation (project TSI-063000-2021-28) and the Spanish Ministry of Universities (FPU Grant Number: 20/02621).This article proposes a system based on a long-distance communications system with low economic and energy costs that allows connectivity to be carried out independently from the existing cellular coverage in the area. In addition, it describes the design, development, implementation and analysis of an Internet of Things (IoT) architecture based on Long-RangeWide-Area Network (LoRaWAN). Moreover, the system has been deployed as a prototype, and the behavior and scope of the system have been analyzed in various real environments: urban, rural and natural. The results obtained from the analysis show that the system is suitable for working in areas without coverage such as mountains.Andalusian Knowledge Agency A-TIC-241-UGR18 B-TIC-568-UGR20Spanish Government PID2019-108713RB-C53Spanish Ministry of Economic Affairs and Digital Transformation TSI-063000-2021-28Spanish Ministry of Universities (FPU) 20/0262

    Implementation of a LoRa Mesh library

    Get PDF
    LoRa is a popular communication technology in the Internet of Things (IoT) domain, providing low-power and long-range communications. Most LoRa IoT applications use the LoRaWAN architecture, which builds a star topology between LoRa end nodes and the gateway they connect to. However, LoRa can also be used for the communication between end nodes themselves, forming a mesh network topology. In this paper, we present a library that allows to integrate LoRa end nodes into a LoRa mesh network, in which a routing protocol is used. Thus, an IoT application running on these nodes can use the library to send and receive data packets to and from other nodes in the LoRa mesh network. The designed routing protocol is proactive, and maintains the routing table at each node updated by sending routing messages between neighboring nodes. The implemented library has been tested on embedded boards featuring an ESP32 microcontroller and a LoRa single-channel radio. By using our LoRa mesh library, nodes do not need to connect to a LoRaWAN gateway, but among themselves. This opens the possibility for new, distributed applications solely built upon tiny IoT nodes.This work was supported by the Ministry of Science and Innovation of the Spanish Government through the State Research Agency (AEI) under Project PID2019-106774RB-C21, Project PCI2019-111851-2 (LeadingEdge CHIST-ERA), and Project PCI2019-111850-2 (DiPET CHIST-ERA).Peer ReviewedPostprint (published version

    Slotted ALOHA Overlay on LoRaWAN: a Distributed Synchronization Approach

    Full text link
    LoRaWAN is one of the most promising standards for IoT applications. Nevertheless, the high density of end-devices expected for each gateway, the absence of an effective synchronization scheme between gateway and end-devices, challenge the scalability of these networks. In this article, we propose to regulate the communication of LoRaWAN networks using a Slotted-ALOHA (S-ALOHA) instead of the classic ALOHA approach used by LoRa. The implementation is an overlay on top of the standard LoRaWAN; thus no modification in pre-existing LoRaWAN firmware and libraries is necessary. Our method is based on a novel distributed synchronization service that is suitable for low-cost IoT end-nodes. S-ALOHA supported by our synchronization service significantly improves the performance of traditional LoRaWAN networks regarding packet loss rate and network throughput.Comment: 4 pages, 8 figure

    Delay-Tolerant ICN and Its Application to LoRa

    Full text link
    Connecting long-range wireless networks to the Internet imposes challenges due to vastly longer round-trip-times (RTTs). In this paper, we present an ICN protocol framework that enables robust and efficient delay-tolerant communication to edge networks. Our approach provides ICN-idiomatic communication between networks with vastly different RTTs. We applied this framework to LoRa, enabling end-to-end consumer-to-LoRa-producer interaction over an ICN-Internet and asynchronous data production in the LoRa edge. Instead of using LoRaWAN, we implemented an IEEE 802.15.4e DSME MAC layer on top of the LoRa PHY and ICN protocol mechanisms in RIOT OS. Executed on off-the-shelf IoT hardware, we provide a comparative evaluation for basic NDN-style ICN [60], RICE [31]-like pulling, and reflexive forwarding [46]. This is the first practical evaluation of ICN over LoRa using a reliable MAC. Our results show that periodic polling in NDN works inefficiently when facing long and differing RTTs. RICE reduces polling overhead and exploits gateway knowledge, without violating ICN principles. Reflexive forwarding reflects sporadic data generation naturally. Combined with a local data push, it operates efficiently and enables lifetimes of >1 year for battery powered LoRa-ICN nodes.Comment: 12 pages, 7 figures, 2 table

    Selective Jamming of LoRaWAN using Commodity Hardware

    Full text link
    Long range, low power networks are rapidly gaining acceptance in the Internet of Things (IoT) due to their ability to economically support long-range sensing and control applications while providing multi-year battery life. LoRa is a key example of this new class of network and is being deployed at large scale in several countries worldwide. As these networks move out of the lab and into the real world, they expose a large cyber-physical attack surface. Securing these networks is therefore both critical and urgent. This paper highlights security issues in LoRa and LoRaWAN that arise due to the choice of a robust but slow modulation type in the protocol. We exploit these issues to develop a suite of practical attacks based around selective jamming. These attacks are conducted and evaluated using commodity hardware. The paper concludes by suggesting a range of countermeasures that can be used to mitigate the attacks.Comment: Mobiquitous 2017, November 7-10, 2017, Melbourne, VIC, Australi
    • …
    corecore