1,457 research outputs found

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    On the use of tracking loops for low-complexity multi-path channel estimation in OFDM systems

    No full text
    International audience—This paper treats pilot aided multi-path channel estimation with tracking loops for OFDM systems under slow to moderate fading conditions. Recent works have presented theoretical results for the tuning of second-order and third-order tracking loops in the particular context of Jakes's Doppler spectrum channel. The method for getting the loop coefficients resorted either to the use of a given constraint, which made the obtained coefficients sub-optimal, or was obtained in part by simulations. Here, we perform a global optimization of the coefficients without constraints to get the optimal coefficients, and analytical formulas are provided. One remarkable result of this optimization is that only the natural frequency depends on the transmission parameters, i.e., the channel Doppler spectrum, the power delay profile, and the noise variance. Consequently, only one parameter has to be tuned. Moreover, asymptotic performance is formulated in a more general way as a function of the 2rth moments of the Doppler spectrum (r is the loop order). Hence, all our derivations are usable for any Doppler spectrum and are not specific to Jakes's Doppler spectrum. A complete table sums up for the three orders the theoretical results of the optimal coefficients together with the asymptotic performance. The performance is also compared with that of the asymptotic Kalman filter

    Ultra Wideband

    Get PDF
    Ultra wideband (UWB) has advanced and merged as a technology, and many more people are aware of the potential for this exciting technology. The current UWB field is changing rapidly with new techniques and ideas where several issues are involved in developing the systems. Among UWB system design, the UWB RF transceiver and UWB antenna are the key components. Recently, a considerable amount of researches has been devoted to the development of the UWB RF transceiver and antenna for its enabling high data transmission rates and low power consumption. Our book attempts to present current and emerging trends in-research and development of UWB systems as well as future expectations

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    MIMO-OFDM communication systems: channel estimation and wireless location

    Get PDF
    In this new information age, high data rate and strong reliability features our wireless communication systems and is becoming the dominant factor for a successful deployment of commercial networks. MIMO-OFDM (multiple input multiple output-orthogonal frequency division multiplexing), a new wireless broadband technology, has gained great popularity for its capability of high rate transmission and its robustness against multi-path fading and other channel impairments. A major challenge to MIMO-OFDM systems is how to obtain the channel state information accurately and promptly for coherent detection of information symbols and channel synchronization. In the first part, this dissertation formulates the channel estimation problem for MIMO-OFDM systems and proposes a pilot-tone based estimation algorithm. A complex equivalent base-band MIMO-OFDM signal model is presented by matrix representation. By choosing equally-spaced and equally-powered pilot tones from sub-carriers in one OFDM symbol, a down-sampled version of the original signal model is obtained. Furthermore, this signal model is transformed into a linear form solvable for the LS (least-square) estimation algorithm. Based on the resultant model, a simple pilot-tone design is proposed in the form of a unitary matrix, whose rows stand for different pilot-tone sets in the frequency domain and whose columns represent distinct transmit antennas in the spatial domain. From the analysis and synthesis of the pilot-tone design in this dissertation, our estimation algorithm can reduce the computational complexity inherited in MIMO systems by the fact that the pilot-tone matrix is essentially a unitary matrix, and is proven an optimal channel estimator in the sense of achieving the minimum MSE (mean squared error) of channel estimation for a fixed power of pilot tones. In the second part, this dissertation addresses the wireless location problem in WiMax (worldwide interoperability for microwave access) networks, which is mainly based on the MIMO-OFDM technology. From the measurement data of TDOA (time difference of arrival), AOA (angle of arrival) or a combination of those two, a quasi-linear form is formulated for an LS-type solution. It is assumed that the observation data is corrupted by a zero-mean AWGN (additive white Gaussian noise) with a very small variance. Under this assumption, the noise term in the quasi-liner form is proved to hold a normal distribution approximately. Hence the ML (maximum-likelihood) estimation and the LS-type solution are equivalent. But the ML estimation technique is not feasible here due to its computational complexity and the possible nonexistence of the optimal solution. Our proposed method is capable of estimating the MS location very accurately with a much less amount of computations. A final result of the MS (mobile station) location estimation, however, cannot be obtained directly from the LS-type solution without bringing in another independent constraint. To solve this problem, the Lagrange multiplier is explored to find the optimal solution to the constrained LS-type optimization problem
    corecore