50,407 research outputs found

    Error Analysis in a Stereo Vision-Based Pedestrian Detection Sensor for Collision Avoidance Applications

    Get PDF
    This paper presents an analytical study of the depth estimation error of a stereo vision-based pedestrian detection sensor for automotive applications such as pedestrian collision avoidance and/or mitigation. The sensor comprises two synchronized and calibrated low-cost cameras. Pedestrians are detected by combining a 3D clustering method with Support Vector Machine-based (SVM) classification. The influence of the sensor parameters in the stereo quantization errors is analyzed in detail providing a point of reference for choosing the sensor setup according to the application requirements. The sensor is then validated in real experiments. Collision avoidance maneuvers by steering are carried out by manual driving. A real time kinematic differential global positioning system (RTK-DGPS) is used to provide ground truth data corresponding to both the pedestrian and the host vehicle locations. The performed field test provided encouraging results and proved the validity of the proposed sensor for being used in the automotive sector towards applications such as autonomous pedestrian collision avoidance

    Fuzzy Reasoning as a Base for Collision Avoidance Decision Support System

    Get PDF
    Despite the generally high qualifications of seafarers, many maritime accidents are caused by human error; such accidents include capsizing, collision, and fire, and often result in pollution. Enough concern has been generated that researchers around the world have developed the study of the human factor into an independent scientific discipline. A great deal of progress has been made, particularly in the area of artificial intelligence. But since total autonomy is not yet expedient, the decision support systems based on soft computing are proposed to support human navigators and VTS operators in times of crisis as well as during the execution of everyday tasks as a means of reducing risk levels.This paper considers a decision support system based on fuzzy logic integrated into an existing bridge collision avoidance system. The main goal is to determine the appropriate course of avoidance, using fuzzy reasoning

    ํ•ด์–‘ ์ž‘์—… ์ง€์›์„ ์˜ ์ž์œจ ์šดํ•ญ ๋ฐ ์„ค์น˜ ์ž‘์—… ์ง€์›์„ ์œ„ํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐฉ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์กฐ์„ ํ•ด์–‘๊ณตํ•™๊ณผ, 2019. 2. ๋…ธ๋ช…์ผ.Autonomous ships have gained a huge amount of interest in recent years, like their counterparts on land{autonomous cars, because of their potential to significantly lower the cost of operation, attract seagoing professionals and increase transportation safety. Technologies developed for the autonomous ships have potential to notably reduce maritime accidents where 75% cases can be attributed to human error and a significant proportion of these are caused by fatigue and attention deficit. However, developing a high-level autonomous system which can operate in an unstructured and unpredictable environment is still a challenging task. When the autonomous ships are operating in the congested waterway with other manned or unmanned vessels, the collision avoidance algorithm is the crucial point in keeping the safety of both the own ship and any encountered ships. Instead of developing new traffic rules for the autonomous ships to avoid collisions with each other, autonomous ships are expected to follow the existing guidelines based on the International Regulations for Preventing Collisions at Sea (COLREGs). Furthermore, when using the crane on the autonomous ship to transfer and install subsea equipment to the seabed, the heave and swaying phenomenon of the subsea equipment at the end of flexible wire ropes makes its positioning at an exact position is very difficult. As a result, an Anti-Motion Control (AMC) system for the crane is necessary to ensure the successful installation operation. The autonomous ship is highly relying on the effectiveness of autonomous systems such as autonomous path following system, collision avoidance system, crane control system and so on. During the previous two decades, considerable attention has been paid to develop robust autonomous systems. However, several are facing challenges and it is worthwhile devoting much effort to this. First of all, the development and testing of the proposed control algorithms should be adapted across a variety of environmental conditions including wave, wind, and current. This is one of the challenges of this work aimed at creating an autonomous path following and collision avoidance system in the ship. Secondly, the collision avoidance system has to comply with the regulations and rules in developing an autonomous ship. Thirdly, AMC system with anti-sway abilities for a knuckle boom crane remains problems regarding its under-actuated mechanism. At last, the performance of the control system should be evaluated in advance of the operation to perform its function successfully. In particular, such performance analysis is often very costly and time-consuming, and realistic conditions are typically impossible to establish in a testing environment. Consequently, to address these issues, we proposed a simulation framework with the following scenarios, which including the autonomous navigation scenario and crane operation scenario. The research object of this study is an autonomous offshore support vessel (OSV), which provides support services to offshore oil and gas field development such as offshore drilling, pipe laying, and oil producing assets (production platforms and FPSOs) utilized in EP (Exploration Production) activities. Assume that the autonomous OSV confronts an urgent mission under the harsh environmental conditions: on the way to an imperative offshore construction site, the autonomous OSV has to avoid target ships while following a predefined path. When arriving at the construction site, it starts to install a piece of subsea equipment on the seabed. So what technologies are needed, what should be invested for ensuring the autonomous OSV could robustly kilometers from shore, and how can an autonomous OSV be made at least as safe as the conventional ship. In this dissertation, we focus on the above critical activities for answering the above questions. In the general context of the autonomous navigation and crane control problem, the objective of this dissertation is thus fivefold: โ€ข Developing a COLREGs-compliant collision avoidance system. โ€ข Building a robust path following and collision avoidance system which can handle the unknown and complicated environment. โ€ข Investigating an efficient multi-ship collision avoidance method enable it easy to extend. โ€ข Proposing a hardware-in-the-loop simulation environment for the AHC system. โ€ข Solving the anti-sway problem of the knuckle boom crane on an autonomous OSV. First of all, we propose a novel deep reinforcement learning (RL) algorithm to achieve effective and efficient capabilities of the path following and collision avoidance system. To perform and verify the proposed algorithm, we conducted simulations for an autonomous ship under unknown environmental disturbance iiito adjust its heading in real-time. A three-degree-of-freedom dynamic model of the autonomous ship was developed, and the Line-of-sight (LOS) guidance system was used to converge the autonomous ship to follow the predefined path. Then, a proximal policy optimization (PPO) algorithm was implemented on the problem. By applying the advanced deep RL method, in which the autonomous OSV learns the best behavior through repeated trials to determine a safe and economical avoidance behavior in various circumstances. The simulation results showed that the proposed algorithm has the capabilities to guarantee collision avoidance of moving encountered ships while ensuring following a predefined path. Also, the algorithm demonstrated that it could manage complex scenarios with various encountered ships in compliance with COLREGs and have the excellent adaptability to the unknown, sophisticated environment. Next, the AMC system includes Anti-Heave Control (AHC) and Anti-Sway Control (ASC), which is applied to install subsea equipment in regular and irregular for performance analysis. We used the proportional-integral-derivative (PID) control method and the sliding mode control method respectively to achieve the control objective. The simulation results show that heave and sway motion could be significantly reduced by the proposed control methods during the construction. Moreover, to evaluate the proposed control system, we have constructed the HILS environment for the AHC system, then conducted a performance analysis of it. The simulation results show the AHC system could be evaluated effectively within the HILS environment. We can conclude that the proposed or adopted methods solve the problems issued in autonomous system design.ํ•ด์–‘ ์ž‘์—… ์ง€์›์„  (Offshore Support Vessel: OSV)์˜ ๊ฒฝ์šฐ ๊ทนํ•œ์˜ ํ™˜๊ฒฝ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์ถœํ•ญํ•˜์—ฌ ํ•ด์ƒ์—์„œ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•ด์•ผ ํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์œ„ํ—˜์—์˜ ๋…ธ์ถœ์„ ์ตœ์†Œํ™”ํ•˜๊ธฐ ์œ„ํ•ด ์ž์œจ ์šดํ•ญ์— ๋Œ€ํ•œ ์š”๊ตฌ๊ฐ€ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ์—ฌ๊ธฐ์„œ์˜ ์ž์œจ ์šดํ•ญ์€ ์„ ๋ฐ•์ด ์ถœ๋ฐœ์ง€์—์„œ ๋ชฉ์ ์ง€๊นŒ์ง€ ์‚ฌ๋žŒ์˜ ๋„์›€ ์—†์ด ์ด๋™ํ•จ์„ ์˜๋ฏธํ•œ๋‹ค. ์ž์œจ ์šดํ•ญ ๋ฐฉ๋ฒ•์€ ๊ฒฝ๋กœ ์ถ”์ข… ๋ฐฉ๋ฒ•๊ณผ ์ถฉ๋Œ ํšŒํ”ผ ๋ฐฉ๋ฒ•์„ ํฌํ•จํ•œ๋‹ค. ์šฐ์„ , ์šดํ•ญ ๋ฐ ์ž‘์—… ์ค‘ ํ™˜๊ฒฝ ํ•˜์ค‘ (๋ฐ”๋žŒ, ํŒŒ๋„, ์กฐ๋ฅ˜ ๋“ฑ)์— ๋Œ€ํ•œ ๊ณ ๋ ค๋ฅผ ํ•ด์•ผ ํ•˜๊ณ , ๊ตญ์ œ ํ•ด์ƒ ์ถฉ๋Œ ์˜ˆ๋ฐฉ ๊ทœ์น™ (Convention of the International Regulations for Preventing Collisions at Sea, COLREGs)์— ์˜ํ•œ ์„ ๋ฐ•๊ฐ„์˜ ํ•ญ๋ฒ• ๊ทœ์ •์„ ๊ณ ๋ คํ•˜์—ฌ ์ถฉ๋Œ ํšŒํ”ผ ๊ทœ์น™์„ ์ค€์ˆ˜ํ•ด์•ผ ํ•œ๋‹ค. ํŠนํžˆ ์—ฐ๊ทผํ•ด์˜ ๋ณต์žกํ•œ ํ•ด์—ญ์—์„œ๋Š” ๋งŽ์€ ์„ ๋ฐ•์„ ์ž๋™์œผ๋กœ ํšŒํ”ผํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ๊ธฐ์กด์˜ ํ•ด์„์ ์ธ ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์„ ๋ฐ•๋“ค์— ๋Œ€ํ•œ ์ •ํ™•ํ•œ ์‹œ์Šคํ…œ ๋ชจ๋ธ๋ง์ด ๋˜์–ด์•ผ ํ•˜๋ฉฐ, ๊ทธ ๊ณผ์ •์—์„œ ๊ฒฝํ—˜ (experience)์— ์˜์กดํ•˜๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹์ด ํ•„์ˆ˜์ ์ด๋‹ค. ๋˜ํ•œ, ํšŒํ”ผํ•ด์•ผ ํ•  ์„ ๋ฐ• ์ˆ˜๊ฐ€ ๋งŽ์•„์งˆ ๊ฒฝ์šฐ ์‹œ์Šคํ…œ ๋ชจ๋ธ์ด ์ปค์ง€๊ฒŒ ๋˜๊ณ  ๊ณ„์‚ฐ ์–‘๊ณผ ๊ณ„์‚ฐ ์‹œ๊ฐ„์ด ๋Š˜์–ด๋‚˜ ์‹ค์‹œ๊ฐ„ ์ ์šฉ์ด ์–ด๋ ต๋‹ค๋Š” ๋‹จ์ ์ด ์žˆ๋‹ค. ๋˜ํ•œ, ๊ฒฝ๋กœ ์ถ”์ข… ๋ฐ ์ถฉ๋Œ ํšŒํ”ผ๋ฅผ ํฌํ•จํ•˜์—ฌ ์ž์œจ ์šดํ•ญ ๋ฐฉ๋ฒ•์„ ์ ์šฉํ•˜๊ธฐ๊ฐ€ ์–ด๋ ต๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ฐ•ํ™” ํ•™์Šต (Reinforcement Learning: RL) ๊ธฐ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ๊ธฐ์กด ํ•ด์„์ ์ธ ๋ฐฉ๋ฒ•์˜ ๋ฌธ์ œ์ ์„ ๊ทน๋ณตํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๊ฒฝ๋กœ๋ฅผ ์ถ”์ข…ํ•˜๋Š” ์„ ๋ฐ• (agent)์€ ์™ธ๋ถ€ ํ™˜๊ฒฝ (environment)๊ณผ ์ƒํ˜ธ์ž‘์šฉํ•˜๋ฉด์„œ ํ•™์Šต์„ ์ง„ํ–‰ํ•œ๋‹ค. State S_0 (์„ ๋ฐ•์˜ ์›€์ง์ž„๊ณผ ๊ด€๋ จ๋œ ๊ฐ์ข… ์ƒํƒœ) ๊ฐ€์ง€๋Š” agent๋Š” policy (ํ˜„์žฌ ์œ„์น˜์—์„œ ์–ด๋–ค ์›€์ง์ž„์„ ์„ ํƒํ•  ๊ฒƒ์ธ๊ฐ€)์— ๋”ฐ๋ผ action A_0 (์›€์ง์ผ ๋ฐฉํ–ฅ) ์ทจํ•œ๋‹ค. ์ด์— environment๋Š” agent์˜ ๋‹ค์Œ state S_1 ์„ ๊ณ„์‚ฐํ•˜๊ณ , ๊ทธ์— ๋”ฐ๋ฅธ ๋ณด์ƒ R_0 (ํ•ด๋‹น ์›€์ง์ž„์˜ ์ ํ•ฉ์„ฑ)์„ ๊ฒฐ์ •ํ•˜์—ฌ agent์—๊ฒŒ ์ „๋‹ฌํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ž‘์—…์„ ๋ฐ˜๋ณตํ•˜๋ฉด์„œ ๋ณด์ƒ์ด ์ตœ๋Œ€๊ฐ€ ๋˜๋„๋ก policy๋ฅผ ํ•™์Šตํ•˜๊ฒŒ ๋œ๋‹ค. ํ•œํŽธ, ํ•ด์ƒ์—์„œ ํฌ๋ ˆ์ธ์„ ์ด์šฉํ•œ ์žฅ๋น„์˜ ์ด๋™์ด๋‚˜ ์„ค์น˜ ์ž‘์—… ์‹œ ์œ„ํ—˜์„ ์ค„์ด๊ธฐ ์œ„ํ•ด ํฌ๋ ˆ์ธ์˜ ๊ฑฐ๋™ ์ œ์–ด์— ๋Œ€ํ•œ ์š”๊ตฌ๊ฐ€ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ ํ•ด์ƒ์—์„œ๋Š” ์„ ๋ฐ•์˜ ์šด๋™์— ์˜ํ•ด ํฌ๋ ˆ์ธ์— ๋งค๋‹ฌ๋ฆฐ ๋ฌผ์ฒด๊ฐ€ ์ƒํ•˜ ๋™์š” (heave)์™€ ํฌ๋ ˆ์ธ์„ ๊ธฐ์ค€์œผ๋กœ ์ขŒ์šฐ ๋™์š” (sway)๊ฐ€ ๋ฐœ์ƒํ•˜๋Š”๋ฐ, ์ด๋Ÿฌํ•œ ์šด๋™์€ ์ž‘์—…์„ ์ง€์—ฐ์‹œํ‚ค๊ณ , ์ •ํ™•ํ•œ ์œ„์น˜์— ๋ฌผ์ฒด๋ฅผ ๋†“์ง€ ๋ชปํ•˜๊ฒŒ ํ•˜๋ฉฐ, ์ž์นซ ์ฃผ๋ณ€ ๊ตฌ์กฐ๋ฌผ๊ณผ์˜ ์ถฉ๋Œ์„ ์•ผ๊ธฐํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด์™€ ๊ฐ™์€ ๋™์š”๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” Anti-Motion Control (AMC) ์‹œ์Šคํ…œ์€ Anti-Heave Control (AHC)๊ณผ Anti-Sway Control (ASC)์„ ํฌํ•จํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํ•ด์–‘ ์ž‘์—… ์ง€์›์„ ์— ์ ํ•ฉํ•œ AMC ์‹œ์Šคํ…œ์˜ ์„ค๊ณ„ ๋ฐ ๊ฒ€์ฆ ๋ฐฉ๋ฒ•์„ ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ๋จผ์ € ์ƒํ•˜ ๋™์š”๋ฅผ ์ตœ์†Œํ™”ํ•˜๊ธฐ ์œ„ํ•ด ํฌ๋ ˆ์ธ์˜ ์™€์ด์–ด ๊ธธ์ด๋ฅผ ๋Šฅ๋™์ ์œผ๋กœ ์กฐ์ •ํ•˜๋Š” AHC ์‹œ์Šคํ…œ์„ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ๋˜ํ•œ, ๊ธฐ์กด์˜ ์ œ์–ด ์‹œ์Šคํ…œ์˜ ๊ฒ€์ฆ ๋ฐฉ๋ฒ•์€ ์‹ค์ œ ์„ ๋ฐ•์ด๋‚˜ ํ•ด์–‘ ๊ตฌ์กฐ๋ฌผ์— ํ•ด๋‹น ์ œ์–ด ์‹œ์Šคํ…œ์„ ์ง์ ‘ ์„ค์น˜ํ•˜๊ธฐ ์ „์—๋Š” ๊ทธ ์„ฑ๋Šฅ์„ ํ…Œ์ŠคํŠธํ•˜๊ธฐ๊ฐ€ ํž˜๋“ค์—ˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” Hardware-In-the-Loop Simulation (HILS) ๊ธฐ๋ฒ•์„ ํ™œ์šฉํ•˜์—ฌ AHC ์‹œ์Šคํ…œ์˜ ๊ฒ€์ฆ ๋ฐฉ๋ฒ•์„ ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ๋˜ํ•œ, ASC ์‹œ์Šคํ…œ์„ ์„ค๊ณ„ํ•  ๋•Œ ์ œ์–ด ๋Œ€์ƒ์ด under-actuated ์‹œ์Šคํ…œ์ด๊ธฐ ๋•Œ๋ฌธ์— ์ œ์–ดํ•˜๊ธฐ๊ฐ€ ๋งค์šฐ ์–ด๋ ต๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” sliding mode control ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ด์šฉํ•˜๋ฉฐ ๋‹ค๊ด€์ ˆ ํฌ๋ ˆ์ธ (knuckle boom crane)์˜ ๊ด€์ ˆ (joint) ๊ฐ๋„๋ฅผ ์ œ์–ดํ•˜์—ฌ ์ขŒ์šฐ ๋™์š”๋ฅผ ์ค„์ผ ์ˆ˜ ์žˆ๋Š” ASC ์‹œ์Šคํ…œ์„ ์„ค๊ณ„ํ•˜์˜€๋‹ค.Chapter 1 Introduction 1 1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . 1 1.2 Requirements for Autonomous Operation . . . . . . . . . . . . . 5 1.2.1 Path Following for Autonomous Ship . . . . . . . . . . . . 5 1.2.2 Collision Avoidance for Autonomous Ship . . . . . . . . . 5 1.2.3 Anti-Motion Control System for Autonomous Ship . . . . 6 1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.1 Related Work for Path Following System . . . . . . . . . 9 1.3.2 Related Work for Collision Avoidance System . . . . . . . 9 1.3.3 Related Work for Anti-Heave Control System . . . . . . . 13 1.3.4 Related Work for Anti-Sway Control System . . . . . . . 14 1.4 Configuration of Simulation Framework . . . . . . . . . . . . . . 16 1.4.1 Application Layer . . . . . . . . . . . . . . . . . . . . . . 16 1.4.2 Autonomous Ship Design Layer . . . . . . . . . . . . . . . 17 1.4.3 General Technique Layer . . . . . . . . . . . . . . . . . . 17 1.5 Contributions (Originality) . . . . . . . . . . . . . . . . . . . . . 19 Chapter 2 Theoretical Backgrounds 20 2.1 Maneuvering Model for Autonomous Ship . . . . . . . . . . . . . 20 2.1.1 Kinematic Equation for Autonomous Ship . . . . . . . . . 20 2.1.2 Kinetic Equation for Autonomous Ship . . . . . . . . . . 21 2.2 Multibody Dynamics Model for Knuckle Boom Crane of Autonomous Ship. . . 25 2.2.1 Embedding Techniques . . . . . . . . . . . . . . . . . . . . 25 2.3 Control System Design . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.1 Proportional-Integral-Derivative (PID) Control . . . . . . 31 2.3.2 Sliding Mode Control . . . . . . . . . . . . . . . . . . . . 31 2.4 Deep Reinforcement Learning Algorithm . . . . . . . . . . . . . . 34 2.4.1 Value Based Learning Method . . . . . . . . . . . . . . . 36 2.4.2 Policy Based Learning Method . . . . . . . . . . . . . . . 37 2.4.3 Actor-Critic Method . . . . . . . . . . . . . . . . . . . . . 41 2.5 Hardware-in-the-Loop Simulation . . . . . . . . . . . . . . . . . . 43 2.5.1 Integrated Simulation Method . . . . . . . . . . . . . . . 43 Chapter 3 Path Following Method for Autonomous OSV 46 3.1 Guidance System . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.1.1 Line-of-sight Guidance System . . . . . . . . . . . . . . . 46 3.2 Deep Reinforcement Learning for Path Following System . . . . . 50 3.2.1 Deep Reinforcement Learning Setup . . . . . . . . . . . . 50 3.2.2 Neural Network Architecture . . . . . . . . . . . . . . . . 56 3.2.3 Training Process . . . . . . . . . . . . . . . . . . . . . . . 58 3.3 Implementation and Simulation Result . . . . . . . . . . . . . . . 62 3.3.1 Implementation for Path Following System . . . . . . . . 62 3.3.2 Simulation Result . . . . . . . . . . . . . . . . . . . . . . 65 3.4 Comparison Results . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.4.1 Comparison Result of PPO with PID . . . . . . . . . . . 83 3.4.2 Comparison Result of PPO with Deep Q-Network (DQN) 87 Chapter 4 Collision Avoidance Method for Autonomous OSV 89 4.1 Deep Reinforcement Learning for Collision Avoidance System . . 89 4.1.1 Deep Reinforcement Learning Setup . . . . . . . . . . . . 89 4.1.2 Neural Network Architecture . . . . . . . . . . . . . . . . 93 4.1.3 Training Process . . . . . . . . . . . . . . . . . . . . . . . 94 4.2 Implementation and Simulation Result . . . . . . . . . . . . . . . 95 4.2.1 Implementation for Collision Avoidance System . . . . . . 95 4.2.2 Simulation Result . . . . . . . . . . . . . . . . . . . . . . 100 4.3 Implementation and Simulation Result for Multi-ship Collision Avoidance Method . . . . . . . . . . . . . . . . . . . . . . . . . . 107 4.3.1 Limitations of Multi-ship Collision Avoidance Method - 1 107 4.3.2 Limitations of Multi-ship Collision Avoidance Method - 2 108 4.3.3 Implementation of Multi-ship Collision Avoidance Method 110 4.3.4 Simulation Result of Multi-ship Collision Avoidance Method 118 Chapter 5 Anti-Motion Control Method for Knuckle Boom Crane 129 5.1 Configuration of HILS for Anti-Heave Control System . . . . . . 129 5.1.1 Virtual Mechanical System . . . . . . . . . . . . . . . . . 132 5.1.2 Virtual Sensor and Actuator . . . . . . . . . . . . . . . . 138 5.1.3 Control System Design . . . . . . . . . . . . . . . . . . . . 141 5.1.4 Integrated Simulation Interface . . . . . . . . . . . . . . . 142 5.2 Implementation and Simulation Result of HILS for Anti-Heave Control System . . . . . . . . 145 5.2.1 Implementation of HILS for Anti-Heave Control System . 145 5.2.2 Simulation Result of HILS for Anti-Heave Control System 146 5.3 Validation of HILS for Anti-Heave Control System . . . . . . . . 159 5.3.1 Hardware Setup . . . . . . . . . . . . . . . . . . . . . . . 159 5.3.2 Comparison Result . . . . . . . . . . . . . . . . . . . . . . 161 5.4 Configuration of Anti-Sway Control System . . . . . . . . . . . . 162 5.4.1 Mechanical System for Knuckle Boom Crane . . . . . . . 162 5.4.2 Anti-Sway Control System Design . . . . . . . . . . . . . 165 5.4.3 Implementation and Simulation Result of Anti-Sway Control . . . . . . . . . . . . . . 168 Chapter 6 Conclusions and Future Works 176 Bibliography 178 Chapter A Appendix 186 ๊ตญ๋ฌธ์ดˆ๋ก 188Docto

    An analysis of communication and navigation issues in collision avoidance support systems

    Get PDF
    Collision avoidance support systems (CASS) are nowadays one of the main fields of interest in the area of road transportation. Among the different approaches, those systems based on vehicle cooperation to avoid collisions present the most promising perspectives. Works available in the current literature have in common that the performance of such solutions strongly relies on the operation of two on-board subsystems: navigation and communications. However, the performance of these two subsystems is usually underestimated when the whole solution is evaluated. Collision avoidance support applications can be considered among the most critical vehicular services, and this is the reason why this paper focuses on the performance issues of these two subsystems. Main issues regarding navigation and communication performance are discussed along the paper, and a study of the literature in the field is completed with the evaluation of different system prototypes. Communication and navigation tests in real environments yield further conclusions discussed in the paper.The Authors would like to thank the Spanish Ministerio de Fomento and the Ministerio de Ciencia e Innovacion for sponsoring these research activities under the grants FOM/2454/2007, TIN2008-06441-C02-02 and AP2005-1437. Last one in frames of the FPU program. This work has been carried out inside the Intelligent Systems group of the University of Murcia, awarded as an excellence researching group in frames of the Spanish Plan de Ciencia y Tecnologฤฑa de la Region de Murcia (04552/GERM/06)

    A collision avoidance system for a spaceplane manipulator arm

    Get PDF
    Part of the activity in the area of collision avoidance related to the Hermes spaceplane is reported. A collision avoidance software system which was defined, developed and implemented in this project is presented. It computes the intersection between the solids representing the arm, the payload, and the objects. It is feasible with respect to the resources available on board, considering its performance

    Evaluating Design Options for a Dynamic Traffic Sign

    Get PDF
    This study describes two usability methods that were used to determine the final design of a prototype dynamic traffic sign. The Cooperative Intersection Collision Avoidance System-Stop Sign Assist (CICAS-SSA) is an infrastructure-based driver support system to improve gap acceptance at rural stop-controlled intersections. This study evaluated driversโ€™ comprehension of recommended design changes made to the SSA message set using paper-andpencil and computerized testing. The goal was to choose the final interface design that would later be tested using driving simulation. Overall, comprehension was highest for sign messages that showed prohibitive information and was lowest for signs indicating no traffic was detected near the intersection. The results for the design options were similar between studies, allowing for the selection of a final set of design features for the interface. Results also suggest that the two methodologies provided a low-cost alternative to simulation for down-selecting the design options
    • โ€ฆ
    corecore