454 research outputs found

    A Comprehensive Survey on Moving Networks

    Get PDF
    The unprecedented increase in the demand for mobile data, fuelled by new emerging applications such as HD video streaming and heightened online activities has caused massive strain on the existing cellular networks. As a solution, the 5G technology has been introduced to improve network performance through various innovative features such as mmWave spectrum and HetNets. In essence, HetNets include several small cells underlaid within macro-cell to serve densely populated regions. Recently, a mobile layer of HetNet has been under consideration by the researchers and is often referred to as moving networks. Moving networks comprise of mobile cells that are primarily introduced to improve QoS for commuting users inside public transport because the QoS is deteriorated due to vehicular penetration losses. Furthermore, the users inside fast moving public transport also exert excessive load on the core network due to large group handovers. To this end, mobile cells will play a crucial role in reducing overall handover count and will help in alleviating these problems by decoupling in-vehicle users from the core network. To date, remarkable research results have been achieved by the research community in addressing challenges linked to moving networks. However, to the best of our knowledge, a discussion on moving networks in a holistic way is missing in the current literature. To fill the gap, in this paper, we comprehensively survey moving networks. We cover the technological aspects and their applications in the futuristic applications. We also discuss the use-cases and value additions that moving networks may bring to future cellular architecture and identify the challenges associated with them. Based on the identified challenges we discuss the future research directions.Comment: This survey has been submitted to IEEE Communications Surveys & Tutorial

    QoS-aware User Association and Transmission Scheduling for Millimeter-Wave Train-ground Communications

    Full text link
    With the development of wireless communication, people have put forward higher requirements for train-ground communications in the high-speed railway (HSR) scenarios. With the help of mobile relays (MRs) installed on the roof of the train, the application of Millimeter-Wave (mm-wave) communication which has rich spectrum resources to the train-ground communication system can realize high data rate, so as to meet users' increasing demand for broad-band multimedia access. Also, full-duplex (FD) technology can theoretically double the spectral efficiency. In this paper, we formulate the user association and transmission scheduling problem in the mm-wave train-ground communication system with MR operating in the FD mode as a nonlinear programming problem. In order to maximize the system throughput and the number of users meeting quality of service (QoS) requirements, we propose an algorithm based on coalition game to solve the challenging NP-hard problem, and also prove the convergence and Nash-stable structure of the proposed algorithm. Extensive simulation results demonstrate that the proposed coalition game based algorithm can effectively improve the system throughput and meet the QoS requirements of as many users as possible, so that the communication system has a certain QoS awareness.Comment: 14 page

    Ultra-wide bandwidth systems for the surveillance of railway crossing Areas

    Get PDF
    Level crossings are critical elements of railway networks where a large number of accidents take place every year. With the recent enforcement of new and higher safety standards for railway transportation systems, dedicated and reliable technologies for level crossing surveillance must be introduced in order to comply with the safety requirements. In this survey the worldwide problem of level crossing surveillance is addressed, with particular attention to the recent European safety regulations. In this context, the capability of detecting, localizing, and discriminating the vehicle/obstacle that might be entrapped in a level crossing area is considered of paramount importance to save lives, and at the same time avoid costly false alarms. In this article the main solutions available today are illustrated and their pros and cons discussed. In particular, the recent ultra-wide bandwidth technology, combined with proper signal processing and backhauling over the already deployed optical fiber backbone, is shown to represent a promising solution for safety improvement in level crossings

    A Survey of Wireless Communication Technologies & Their Performance for High Speed Railways

    Get PDF
    High Speed Railway (HSR) provides its customers not only safety, security, comfort and on-time commuting, but also a fast transportation alternative to air travel or regular passenger rail services. Providing these benefits would not be possible without the tremendous growth and prevalence of wireless communication technologies. Due to advances in wireless communication systems, both trains and passengers are connected through high speed wireless networks to the Internet, data centers and railroad control centers. Railroad communities, academia, related industries and standards bodies, even the European Space Agency, are involved in advancing developments of HSR for highly connected train communication systems. The goal of these efforts is to provide the capabilities for uninterrupted high-speed fault-tolerant communication networks for all possible geographic, structural and weather conditions. This survey provides an overview of the current state-of-the-art and future trends for wireless technologies aiming to realize the concept of HSR communication services. Our goal is to highlight the challenges for these technologies, including GSM-R, Wi-Fi, WIMAX, LTE-R, RoF, LCX & Cognitive Radio, the offered solutions, their performance, and other related issues. Currently, providing HSR services is the goal of many countries across the globe. Europe, Japan & Taiwan, China, as well as North & South America have increased their efforts to advance HSR technologies to monitor and control not only the operations but also to deliver extensive broadband solutions to passengers. This survey determined a trend of the industry to transition control plane operations towards narrowband frequencies, i.e. LTE400/700, and to utilize concurrently other technologies for broadband access for passengers such that services of both user and train control systems are supported. With traditional technologies, a tradeoff was required and often favored train control services over passenger amenities. However, with the advances in communication systems, such as LTE-R and cognitive radios, it is becoming possible for system designers to offer rich services to passengers while also providing support for enhanced train control operations such as Positive Train Control

    A Survey of Wireless Communication Technologies & Their Performance for High Speed Railways

    Get PDF
    High Speed Railway (HSR) provides its customers not only safety, security, comfort and on-time commuting, but also a fast transportation alternative to air travel or regular passenger rail services. Providing these benefits would not be possible without the tremendous growth and prevalence of wireless communication technologies. Due to advances in wireless communication systems, both trains and passengers are connected through high speed wireless networks to the Internet, data centers and railroad control centers. Railroad communities, academia, related industries and standards bodies, even the European Space Agency, are involved in advancing developments of HSR for highly connected train communication systems. The goal of these efforts is to provide the capabilities for uninterrupted high-speed fault-tolerant communication networks for all possible geographic, structural and weather conditions. This survey provides an overview of the current state-of-the-art and future trends for wireless technologies aiming to realize the concept of HSR communication services. Our goal is to highlight the challenges for these technologies, including GSM-R, Wi-Fi, WIMAX, LTE-R, RoF, LCX & Cognitive Radio, the offered solutions, their performance, and other related issues. Currently, providing HSR services is the goal of many countries across the globe. Europe, Japan & Taiwan, China, as well as North & South America have increased their efforts to advance HSR technologies to monitor and control not only the operations but also to deliver extensive broadband solutions to passengers. This survey determined a trend of the industry to transition control plane operations towards narrowband frequencies, i.e. LTE400/700, and to utilize concurrently other technologies for broadband access for passengers such that services of both user and train control systems are supported. With traditional technologies, a tradeoff was required and often favored train control services over passenger amenities. However, with the advances in communication systems, such as LTE-R and cognitive radios, it is becoming possible for system designers to offer rich services to passengers while also providing support for enhanced train control operations such as Positive Train Control
    • …
    corecore