51,077 research outputs found

    On the rational spectra of graphs with abelian singer groups

    Get PDF
    AbstractLet G be a finite abelian group. We investigate those graphs G admitting G as a sharply 1-transitive automorphism group and all of whose eigenvalues are rational. The study is made via the rational algebra P(G) of rational matrices with rational eigenvalues commuting with the regular matrix representation of G. In comparing the spectra obtainable for graphs in P(G) for various G's, we relate subschemes of a related association scheme, subalgebras of P(G), and the lattice of subgroups of G. One conclusion is that if the order of G is fifth-power-free, any graph with rational eigenvalues admitting G has a cospectral mate admitting the abelian group of the same order with prime-order elementary divisors

    Representation and generation of plans using graph spectra

    Get PDF
    Numerical comparison of spaces with one another is often achieved with set scalar measures such as global and local integration, connectivity, etc., which capture a particular quality of the space but therefore lose much of the detail of its overall structure. More detailed methods such as graph edit distance are difficult to calculate, particularly for large plans. This paper proposes the use of the graph spectrum, or the ordered eigenvalues of a graph adjacency matrix, as a means to characterise the space as a whole. The result is a vector of high dimensionality that can be easily measured against others for detailed comparison. Several graph types are investigated, including boundary and axial representations, as are several methods for deriving the spectral vector. The effectiveness of these is evaluated using a genetic algorithm optimisation to generate plans to match a given spectrum, and evolution is seen to produce plans similar to the initial targets, even in very large search spaces. Results indicate that boundary graphs alone can capture the gross topological qualities of a space, but axial graphs are needed to indicate local relationships. Methods of scaling the spectra are investigated in relation to both global local changes to plan arrangement. For all graph types, the spectra were seen to capture local patterns of spatial arrangement even as global size is varied

    Representation and generation of plans using graph spectra

    Get PDF
    Numerical comparison of spaces with one another is often achieved with set scalar measures such as global and local integration, connectivity, etc., which capture a particular quality of the space but therefore lose much of the detail of its overall structure. More detailed methods such as graph edit distance are difficult to calculate, particularly for large plans. This paper proposes the use of the graph spectrum, or the ordered eigenvalues of a graph adjacency matrix, as a means to characterise the space as a whole. The result is a vector of high dimensionality that can be easily measured against others for detailed comparison. Several graph types are investigated, including boundary and axial representations, as are several methods for deriving the spectral vector. The effectiveness of these is evaluated using a genetic algorithm optimisation to generate plans to match a given spectrum, and evolution is seen to produce plans similar to the initial targets, even in very large search spaces. Results indicate that boundary graphs alone can capture the gross topological qualities of a space, but axial graphs are needed to indicate local relationships. Methods of scaling the spectra are investigated in relation to both global local changes to plan arrangement. For all graph types, the spectra were seen to capture local patterns of spatial arrangement even as global size is varied

    Metrics for Graph Comparison: A Practitioner's Guide

    Full text link
    Comparison of graph structure is a ubiquitous task in data analysis and machine learning, with diverse applications in fields such as neuroscience, cyber security, social network analysis, and bioinformatics, among others. Discovery and comparison of structures such as modular communities, rich clubs, hubs, and trees in data in these fields yields insight into the generative mechanisms and functional properties of the graph. Often, two graphs are compared via a pairwise distance measure, with a small distance indicating structural similarity and vice versa. Common choices include spectral distances (also known as λ\lambda distances) and distances based on node affinities. However, there has of yet been no comparative study of the efficacy of these distance measures in discerning between common graph topologies and different structural scales. In this work, we compare commonly used graph metrics and distance measures, and demonstrate their ability to discern between common topological features found in both random graph models and empirical datasets. We put forward a multi-scale picture of graph structure, in which the effect of global and local structure upon the distance measures is considered. We make recommendations on the applicability of different distance measures to empirical graph data problem based on this multi-scale view. Finally, we introduce the Python library NetComp which implements the graph distances used in this work
    • 

    corecore