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ABSTRACT n -_d 
6 “ i . 

Let G be a finite abelian group. We investigate those graphs 9 admitting G as a 
sharply l-transitive automorphism group and all of whose eigenvalues are rational. The 
study is made via the rational algebra @(G) of rational matrices with rational 
eigenvalues commuting with the regular matrix representation of G. In comparing the 
spectra obtainable for graphs in a(G) for various G’s, we relate subschemes of a 
related association scheme, subalgebras of 6?(C), and the lattice of subgroups of G. 
One conclusion is that if the order of G is fifth-power-free, any graph with rational 
eigenvalues admitting C has a cospectral mate admitting the abelian group of the 
same order with prime-order elementary divisors. 

1. INTRODUCTION 

Let G be a finite abelian group of order n represented by n X n permuta- 
tion matrices A, [A&h, k) = 1 if and only if gh = k]. The complex algebra 
C [ G] generated by these matrices is self-centralizing, and hence a graph 9 on 
n vertices admits G as a regular (sharply l-transitive) automorphism group if 
and only if its adjacency matrix A is in C[ G]. We are concerned here with 
such graphs all of whose eigenvalues are rational, and to that end we consider 
the algebra a(G) over the rational field of those matrices in C[G] with 
rational entries and rational eigenvalues. Notice the matrices in Q: [ G] may be 
simultaneously diagonalized, so this is indeed an algebra. We are primarily 
interested in this study in comparing the spectra realizable by graphs in Q(G) 
for various groups G. In particular we concentrate on the question of when 
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every graph in W(G) has a cospectral “mate” in 6?(H). When this happens 
we say H spectrally dominates G. We prove for example: 

THEOREM 1.1. lf n is fifih-power-j+ee, the abelian group with prime-order 
elementary divisors spectrally dominates every abelian group of order n. 

The general question of spectral domination appears intractible with the 
present techniques, and our results come by considering the embeddability of 
the algebra W(H) into W(G). These algebras are, in fact, association algebras 
(over the rational field), and the issue relates to the question of subschemes of 
the corresponding association scheme for Q(G) as well as to the issue of 
embedding the lattice of subgroups of H in that of G. All of these in turn 
relate to appropriate column tactical decompositions of the eigenmatrix for 
the scheme underlying e(G). 

The applications to graphs with rational eigenvalues reveal some special 
consequences of this spectral restriction. For example, we can show the 
following. 

THEOREM 1.2. If a graph 9 with rational eigenvalues admits the cyclic 
group of order n a.s a regular automorphism group, it admits any abelian 
group of order n. 

2. BACKGROUND 

In this section we review briefly the techniques developed in [1,2] for the 
study of g(G). Throughout, G denotes an abelian group of order n written 
additively. By a symmetric table for G we mean a function A: G X G + Z,), 
(the cyclic group whose order is the exponent of G) with (1) h(g, h) = h(h, g), 
(2) h(g,h,+h,)=X(g,h,)+h(g,h,), (3) X(g, h)=O for all h only for 
g = 0. Normally X will be the obvious function corresponding to the “natural” 
isomorphism of G with its character group. If { is a complex mth root of 
unity, the unitary matrix U with V(g, h) = (l/JK)[“(g~ ‘) is-a diagonalizing 
matrix for C[G]. One then observes the (Fourier) transform defined by for 

(2.1) 

is a linear isomorphism. Moreover 2 = nA’ (the transpose), so - interchanges 
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entries and eigenvalues. Denoting the Hadamard (componentwise) product of 
two matrices A and B by A* B, we have 

(2.2) 

This shows that &(G) is an algebra with respect to * also, a so called 
association algebra [3]. Let r( G ) be the number of cyclic subgroups of G, and 
let d(G, H) be the maximum d such that both G and H have elements of 
order d. Let us further put g for the subgroup generated by g, and use B for 
the tensor product. The following is established in [2]: 

THEOREM 2.1. The rational algebra &(G) is the association algebra of 
dimension r(G) for the association scheme with relation matrices 

Zfd(G, H)<2, then&(GX H)=&(G)@@(H)andtheeigenrnatricessatisfy 
E(G X H) = E(G)@E(H). 

It will be useful to keep in mind that the algebra &(G) is the linear span 
not only of the relation matrices R_z but also of a corresponding family of 
orthogonal idempotents FC = (l/n)R,-, summing to Z [the common Frobenius 
covariants of e(G)] and that the T(G) X r(G) eigenmatrix E(G) expresses 
these bases in terms of each other. That is, 

From another poir$ of view, since R,- = a, E is the matrix of the transform - 
on &; and since A = nA (A = A’ in W), we have E2 = nZ for example. The 
rows of E give the spectra of the R,- [multiplicity in the 6th column being the 
rank of Fi, +( 161) (Euler’s function)]. 

Dually, the rows of (l/n)E reveal the entries of Fz, the 6th column entry 
being the coefficient of R;. 

The graphs in W(G) are essentially the (0,l) matrices here, and these are 
sums of relation matrices with spectrum given by the corresponding sum of 
the rows of E. 
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We require one more result from [2]. Let G be a p-group. The eigenmatrix 
E(G) is given by 

1 

464) if X(g,h)=O, 

E(& 6) = -@(lgl> 
p-1 

if A(g,h)fO, A(g,Ph)=O, 

0 otherwise. 

Finally, some additional notation. e(G) will denote the poset of cyclic 
subgroups of G and S(G) the lattice of all subgroups. For K E b(G) we use 
Kl ={g]A(g,k)=O for every ~EK}. If G is a pgroup, we use h* for the 
predecessor ph of h. 

3. SUBSCHEMES AND SUBALGEBRAS 

A subassociation-algebra of W(G) corresponds to a sub-association-scheme, 
which essentially is an appropriate partition of the relation matrices R,. In 
general let 5r={Xi,..., X,} be a partition of C(G), and let %,(a) = 
Pg,.x,B~IXi~~l and%r)={&ex, s F-]XiEa}.Thelinearspanof%(~)is 
a Hadamard product algebra, and the span of 9(r) is an ordinary product 
algebra. The orthogonal idempotents for the (ordinary) algebra generated by 
?K (n) are sums of the idempotents EC over the cells of an appropriate induced 
partition, ri, defined as follows. The cyclic subgroups g and k are in the 
same cell X,: of rr+ if and only if 

Z e/L,,-= ZZ e,,, 
Kt x, /lr x, 

for all X, E 7. We then put 

'Si,Y.j= IX e!,g (any gE XT). (3.1) 
I;r x, 

If 7~+ has t cells, the m X t matrix A = (hGi,xi) records the column sums of 
the blocks in the block decomposition of E given by the partition 7~ on the 
rows and 7~+ on the columns. If indeed the %(7~) define a subscheme, A will 
be its eigenmatrix and necessarily m = t (A is square). Surprisingly this is also 
sufficient. 
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THEOREM 3.1. Let 7~ = {X,, . . . , X,} be a partition of C?(G) with corre- 
sponding induced partition 7~+ = {XT,. . . ,XT } as above. Then the following 
are equivalent: 

(i) t = m, 
(ii) 7r=7r++, 
(iii) ‘9(r) defines a subscheme (with association algebra spanned by 

S(?r’ )). 

Proof. Consider the vector space V(r) of r( G>tuples [indexed by e(G)] 
which are constant on the cells of r. Then E maps V(m) into V(r’ ), 
dimensionV(r) = m, dimensionV( 7: ) = t, and thus m < t. Equality holds if 
and only if V(n) is mapped onto V( 7~~ ), which is then mapped again by E 
onto V(7r++)=V(7r), since E2 = nZ. (Note that in general here P++ is a 
refinement of r.) As to (iii), observe 

whence the span of 9,( 7~ ) is contained in the span of 9( P+ ), and t = m if and 
only if they are equal and so an association algebra. H 

As mentioned in the introduction, we wish to investigate spectral domina- 
tion from the point of view of algebra (and scheme) embeddings. Hence we 
proceed to investigate when the algebra corresponding to %(a) is, in fact, 
6?(H) for some abelian group H. 

4. EMBEDDING AND COLLAPSING 

We begin with some remarks concerning embeddings of the lattice s(H) 
of subgroups of the abelian group H into s(G). These lattices are well known 
[4] to be products of corresponding lattices for the Sylow subgroups. Further, 
if T: S(H) + S(G) is a lattice embedding where G and H are of the same 
order, then the condition IT( K)I = 1 K 1 for ail K E S(H) (i.e., T is size 
preserving) is equivalent to T sending Sylow p-subgroups to Sylow p-sub- 
groups. There are lattice embeddings not of this sort, but we shall be 
concerned only with size preserving maps. Before proceeding to clarify the 
relevance of this, we establish a lemma. Note that for p-groups of the same 
order any lattice embedding is size-preserving. 
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LEMMA 4.1. Let G and H be finite abelian p-groups of the saw order, 
and T: S(H) ---f S(G) b e a lattice embedding. For any g E G there is a unique 
k~ C?(H) such that g <T(h) and jj+T(h’*). 

Proof. If U(h)={glgGT(h)}, then vg,~~i$=T(h) and Zc,,,c, 

@$lIgl)=IT(k)j= I%N ow if P(h)= U(h)- U(h*), the lemma claims {P(h)/ 
h E e(G)} is a partition of e(G). Disjointness is clear. Now 

Hence UP(h) = C?(G). n 

Now for abelian G and H of the same order we say that G collapses to H if 
and only if there is a partition P of l?(G) such that rr = v++ and the collapsed 
matrix A(3.1) is E(H). We refer to such a partition r as a collapsing partition. 

THEOREM 4.2. Let G and H be finite abelian groups of the same order. 
Then there is a one-to-one correspondence between any two of the following 
sets: 

(i) the association-algebra embeddings of&(H) into a(G), 
(ii) the size-preserving lattice embeddings of S( H) into S(G), 
(iii) the collapsing partitions of G to H. 

Proof. If 7: &(H) + 6?(G) is an algebra embedding, we see that for any 
K<H, if AK=EgEK g, A then r(AK) is a (0,l) matrix and A%= IRIA,, so 
7(AK)=ATCKj for some subgroup T(K)<G with IT(K II</. The map- 
ping T: S(H) + S(G) thus defined is clearly l-l and size-preserving. From 
A K, *AK~ = AK,o~, we have ATcK,) *ArcK2) = AT(K,)nT(K,) = AT(K,nK,). 
Hence T is meet-preserving. That AK,AK, = I K,fN,I AK,K, gives the corre- 
sponding result for joins, and T is a lattice embedding. Conversely, let 
T: S(H) - S(G) b e a size-preserving lattice embedding. We assume here that 
G and H are p-groups, which is sufficient from our earlier remarks. We define 
a linear transformation 7: &?(H)-&(G) by ~(Ai)=Ar(h). Now for any 
K =Z H we claim r(AK) = A,(,,. Note that in fact R,= Al- A,, so A, = 
Z,,,R, and thus 7(AK) = EisK7(Ri) = 8,,K(A,C;*,) = Bgaa,-R, for suit- 

able a,EQ. If a,-#0 then R,QA,~,;~=A,,,, so gET(h)GT(K) and 



RATIONAL SPECTRA OF GRAPHS 57 

a,-= 1. If g G T(K), then by Lemma 4.1, a,- = 1. This establishes the claim, 
and the remaining details are straightforward. The correspondence between 
collapsing partitions v is covered by Theorem 3.1. n 

COROLLARY 4.3. Any abelian group of order n collapses to the cyclic 
group Z,. In particular Z, is spectrally dominated by any abelian group of 
order n. 

This corollary is clear, since s( Z,r ) is a chain. Actually more than spectral 
domination occurs here. For any graph in &( Z,) there is an isomorphic graph 
in 6?(G). That is, 

THEOREM 4.4. If a graph 4 with rational eigenvalues admits the cyclic 
group Z, as a regular Singer group, then g admits every abelian group G of 
order n. 

Proof. What actually happens here is that the embedding of @(Z,) in 
W(G) can be accomplished with a fixed permutation similarity X -+ P’XP. 
The cyclic scheme underlying a( Z,) associates (relates) g and h according to 
the order of g - h. Hence it suffices to prove that for any abelian group G of 
order n there is a bijection, f: Z, + G, such that f(x)- f(y) determines the 
order of x - y. [Then for any graph in @(Z,) one obtains an isomorphic 
graph in W(G) by joining f(x) and f(y) if and only if x is joined to y.] 
Furthermore, from Theorem 2.1 we may restrict ourselves to p-groups. For 
n = p’ we proceed by induction on r, r = 1 being clear. For n = P ‘+ ‘, let f be 
the bijection from the subgroup fi in Z, onto a subgroup H of G of index p. 
The elements of A,, have a unique representation in the form k + lp, where 
O<k<p-1 andO<l<Pk- 1. If g + H generates the quotient G/H, the 
elements of G have a unique representation in the form kg + h where 
O<k<p-1 and hEH. Put!: Z,-G by 

&k+lp>=kg+f(lp). 

This is easily a bijection, and if f(z)- f(y) = lg + h, either 1 # 0, whence 
x-y is a generator of Z,, or l=O and &‘(x)--j‘(y)= f(x’)- f(y’) for 
x’, y’~ fi with x - y’= x’- y’, and thus by induction the order of x - y is 
determined. a 

In order to obtain our main result on collapsing (and consequent spectral 
domination) in the next section, we need the following technical equivalent of 
collapsing. As we need only one direction of the equivalence, we state and 
prove only that. 



58 W. G. BRIDGES AND R. A. MENA 

THEOREM 4.5. Let G and H be p-groups of the same order. Let 7~ and @ 
be partitions of C?( G), each with T(H) classes: 7~ = {X,1 6~ c?(H)}, @ = { Y,;J 
h E 6?(H)}. Suppose the following hold: 

(i) For each k~ l?(H), 2,,,1+(g) = +( h>. 

(ii) Zf h, keC?(H) and X(h, k)=O, then h(g,f)=O for any g~X,and 
fE Yk; 

(iii) Zf h, k~ E?(H) and there is some f~ Y,- with h(f, g) = 0 for all 
VEX, then X(h, k)=O. 

Then G collapses to H (with 71 as a collapsing partition and @ = r+ ). 

Proof. we construct an embedding of s(H) into s(G) in stages. Start by 
defining T,(h) = V it x,g for h E e(H). We show T,(p) < T,(h). Suppose 
not; then there exists g E Xi* such that g 9 T,(k). Then there exists f such 

that f< T,(k)l but X( f, g) # 0. But then h( f, 1) = 0 for every in Xi, so if 
f~ Yk; by (iii), X( h, k) = 0, so h( h*, k) = 0 so by (ii), h( f, g) = 0, a contradic- 
tion. 

Next, for AE X(H), define T(A) = V hcATO(h). We have shown above 
that T( 6) = T (h>. Note that by (ii) and (iii) if & Yk; then T( h> < f 1 if and - -0 
only if X(h, k) = 0. 

We proceed to show T is the desired embedding. Clearly if k< A then 
T(k) < T(A). Conversely, suppose T( h, G T(A). Then for any k< Al, f~ Yk; 

we have T(A)<J‘l, so T(h)<J‘l, so X(h,k)=O, so Al<Kl, so k<A. 
Theneasily,forA,BEcC(H),A~BifandonlyifT(A)~T(B).Inparticular 
IAl =IT(A)I. Next we show that g < T(A) if and only if gE X,; for some 
h < A. The sufficiency is clear. Assume g < T(A). Then by (i), 

so the two sets must be equal. That T preserves intersections follows easily. 
AlsoclearisthatT(AvB2~T(A)vT(B).Letg~T(AvB).ThengEX,;for 
som_e h<AvB, sp k<h,v& for som_e h,<_A,_h,<B. Let f[T(h,)v 
T(h,)]l. Then if fE_Y;, we have h(h,k)=h(h,, k)=O, so h,vh,<i+, so 
h(h,k)=O, so X(g, f)=O, so g<T(h,)vT(h,)<T(A)vT(B), and we are 
finished. n 

5. APPLICATIONS AND EXAMPLES 

In this section we apply the previous development and in particular 
Theorem 4.5 to establish the theorem mentioned in the introduction. 
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THEOREM 5.1. lf n is fifth-power-free, the abelian group with prime-order 
elementary divisors spectrally dominates every abelian group of order n. 

The theorem follows from the following three collapsing results (together 
with Corollary 4.3) where we use Theorem 4.5 with r= a. We prove only 
the first one, the proofs of the other two being similar. 

THEOREM 5.2. Let p be a prime. 

(i) For n 2 1, Zif’ collapses to Z,,Z XZi-‘. 
(ii) Z z collapses to Z p2 X Z p2. 

(iii) B,s XB, XZ, collapses to ZP3 XZ,. 

Proof of (i). The nonzero cyclic subgroups of Zi+’ are given by the 
n + l-tuples (a,, a,, . . . , a,) with ai E Z, and leading nonzero term 1. The 
nonzero cyclic subgroup of Z pi X Z F- ’ are given by (1, a2,. , , , a “), 

(P, a 2,. ..,a,,), where a2,. ..,a,E Z and (0,a 
“i-1 leading nonzero term 1. For Z,Z XZ, 

2,...,a,,) with aiEZp and 
let h be standard: X((x, a2,...,an), 

(Y, b,,..., b,))=xy+p(a,b,+ ... +a,b,,)modp2,andforZ;+1, 

V(a,, a l,...,an),(bo, b,,..., b,)) = a,b, + a,b, + a,b, + . . . + a,b,, mod p. 

We shall use [h] for Xc. Let 

[(l,a,,... ,a,)] = {(l,al,a2,...,an)lal~~~}, 

[( p,a,,...,a,)] = {(0,La2,...,a.)}, 

[CO, a 2,...,a,)] = {(0,0,a2,...,an)}. 

The verification of conditions (i), (ii), and (iii) is straightforward. 

We continue with some negative results. 

REMARK 5.3. Let p be a prime. Then Z pi X z, X Z, never collapses to 
Z pi X Z pi. The nature of the difficulty is the cyclic subgroup (p, O,O), which 
by Lemma 4.1 has to be in the image of any embedding: it is covered by too 
many elements, and no comparable element exists in e(Z pi X Zp2). 

REMARK 5.4. Although Z, X B 2 X Z 2 does not collapse to B 4 X Z 4, one 
can nevertheless prove, by exhaustion of cases, that the former group does 
spectrally dominate the latter-which in turn does not dominate Z s X Z,, 
since the following bipartite graph with spectrum 5, - 5,3, - 3,1@), - l@) is in 
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&(Z8 XZ,) but has no cospectral mate in @(Z’, X2’,): 

i 1 O l@ 
1 0 

1 1 0 1 0 1 0 1 
1 1 1 0 1 0 1 0 
0 1 1 1 0 1 0 1 
1 0 1 1 1 0 1 0 
0 1 0 1 1 1 0 1 
1 0 1 0 1 1 1 0 
0 1 0 1 0 1 1 1 
1 0 1 0 1 0 1 1 

More surprising is the fact that the elementary p-group does not in general 
collapse to any other group of the same order. 

REMARK 5.5. ZE does not collapse to Z,. ’ One indeed proves that there is 
no lattice embedding, but the proof is rather technical, so we omit it. 

REMARK 5.6. As the case of n = 16 seems to indicate, it may be conjec- 
tured that for two groups of order p’, G, and H, if the elementary divisors of 
G are a finer partition than the elementary divisors of H, then G dominates H. 

This would of course imply that the elementary group dominates any other 
group. 

Finally, a conjecture of a more general sort is 

CONJECTURE. Let 7~ be a partition of P(G); then 7~~’ + = 7~~. 
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