26,601 research outputs found

    Multi-Entity Dependence Learning with Rich Context via Conditional Variational Auto-encoder

    Full text link
    Multi-Entity Dependence Learning (MEDL) explores conditional correlations among multiple entities. The availability of rich contextual information requires a nimble learning scheme that tightly integrates with deep neural networks and has the ability to capture correlation structures among exponentially many outcomes. We propose MEDL_CVAE, which encodes a conditional multivariate distribution as a generating process. As a result, the variational lower bound of the joint likelihood can be optimized via a conditional variational auto-encoder and trained end-to-end on GPUs. Our MEDL_CVAE was motivated by two real-world applications in computational sustainability: one studies the spatial correlation among multiple bird species using the eBird data and the other models multi-dimensional landscape composition and human footprint in the Amazon rainforest with satellite images. We show that MEDL_CVAE captures rich dependency structures, scales better than previous methods, and further improves on the joint likelihood taking advantage of very large datasets that are beyond the capacity of previous methods.Comment: The first two authors contribute equall

    Learning to Address Health Inequality in the United States with a Bayesian Decision Network

    Full text link
    Life-expectancy is a complex outcome driven by genetic, socio-demographic, environmental and geographic factors. Increasing socio-economic and health disparities in the United States are propagating the longevity-gap, making it a cause for concern. Earlier studies have probed individual factors but an integrated picture to reveal quantifiable actions has been missing. There is a growing concern about a further widening of healthcare inequality caused by Artificial Intelligence (AI) due to differential access to AI-driven services. Hence, it is imperative to explore and exploit the potential of AI for illuminating biases and enabling transparent policy decisions for positive social and health impact. In this work, we reveal actionable interventions for decreasing the longevity-gap in the United States by analyzing a County-level data resource containing healthcare, socio-economic, behavioral, education and demographic features. We learn an ensemble-averaged structure, draw inferences using the joint probability distribution and extend it to a Bayesian Decision Network for identifying policy actions. We draw quantitative estimates for the impact of diversity, preventive-care quality and stable-families within the unified framework of our decision network. Finally, we make this analysis and dashboard available as an interactive web-application for enabling users and policy-makers to validate our reported findings and to explore the impact of ones beyond reported in this work.Comment: 8 pages, 4 figures, 1 table (excluding the supplementary material), accepted for publication in AAAI 201

    Application of new probabilistic graphical models in the genetic regulatory networks studies

    Get PDF
    This paper introduces two new probabilistic graphical models for reconstruction of genetic regulatory networks using DNA microarray data. One is an Independence Graph (IG) model with either a forward or a backward search algorithm and the other one is a Gaussian Network (GN) model with a novel greedy search method. The performances of both models were evaluated on four MAPK pathways in yeast and three simulated data sets. Generally, an IG model provides a sparse graph but a GN model produces a dense graph where more information about gene-gene interactions is preserved. Additionally, we found two key limitations in the prediction of genetic regulatory networks using DNA microarray data, the first is the sufficiency of sample size and the second is the complexity of network structures may not be captured without additional data at the protein level. Those limitations are present in all prediction methods which used only DNA microarray data.Comment: 38 pages, 3 figure

    The IBMAP approach for Markov networks structure learning

    Get PDF
    In this work we consider the problem of learning the structure of Markov networks from data. We present an approach for tackling this problem called IBMAP, together with an efficient instantiation of the approach: the IBMAP-HC algorithm, designed for avoiding important limitations of existing independence-based algorithms. These algorithms proceed by performing statistical independence tests on data, trusting completely the outcome of each test. In practice tests may be incorrect, resulting in potential cascading errors and the consequent reduction in the quality of the structures learned. IBMAP contemplates this uncertainty in the outcome of the tests through a probabilistic maximum-a-posteriori approach. The approach is instantiated in the IBMAP-HC algorithm, a structure selection strategy that performs a polynomial heuristic local search in the space of possible structures. We present an extensive empirical evaluation on synthetic and real data, showing that our algorithm outperforms significantly the current independence-based algorithms, in terms of data efficiency and quality of learned structures, with equivalent computational complexities. We also show the performance of IBMAP-HC in a real-world application of knowledge discovery: EDAs, which are evolutionary algorithms that use structure learning on each generation for modeling the distribution of populations. The experiments show that when IBMAP-HC is used to learn the structure, EDAs improve the convergence to the optimum

    Online Causal Structure Learning in the Presence of Latent Variables

    Full text link
    We present two online causal structure learning algorithms which can track changes in a causal structure and process data in a dynamic real-time manner. Standard causal structure learning algorithms assume that causal structure does not change during the data collection process, but in real-world scenarios, it does often change. Therefore, it is inappropriate to handle such changes with existing batch-learning approaches, and instead, a structure should be learned in an online manner. The online causal structure learning algorithms we present here can revise correlation values without reprocessing the entire dataset and use an existing model to avoid relearning the causal links in the prior model, which still fit data. Proposed algorithms are tested on synthetic and real-world datasets, the latter being a seasonally adjusted commodity price index dataset for the U.S. The online causal structure learning algorithms outperformed standard FCI by a large margin in learning the changed causal structure correctly and efficiently when latent variables were present.Comment: 16 pages, 9 figures, 2 table
    corecore