42 research outputs found

    Resonance and Nonlinear Seismo-Acoustic Land Mine Detection

    Get PDF

    Landmine detection with a standoff acoustic/laser technique

    Get PDF
    Thesis (S.M.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2008.Includes bibliographical references (p. 54-56).Landmines and mine-like traps are effective weapons that are difficult to detect and discriminate from a safe distance. The ability to detect landmines in their host environment at a distance and to discriminate them from other objects would be valuable for countering the landmine threat. This paper explores a standoff acoustic/laser technique to discriminate landmines from other forms of man-made objects (clutter) in an urban environment. A novel approach currently under investigation by MIT Lincoln Labs, University of Mississippi, and other groups employs a non-contact acoustic/laser technique to detect landmines from a safe standoff range. This technique uses a sound source to excite vibrations in targets with an acoustic wave. These vibrations are in turn measured remotely with a Laser Doppler Vibrometer (LDV). In this thesis, the vibration responses of landmine variants are measured, analyzed, and compared to those of common urban objects likely to be found on a landmine field or roadside. The Fourier Transform of the vibration of the target as measured by the LDV is used to generate a target vibration spectrum. Target vibration spectra in response to a sound source were experimentally measured for 59 trials, 28 of which were of simulated landmine variants and the remaining trials were of urban clutter objects. Using an algorithm adapted from a methodology for mass spectral analysis, parameters of the target signatures are estimated; then individual target signatures are classified using a Support Vector Machine (SVM) with a training set composed of parameters from the remaining members of the total population. The best results obtained from this methodology had a 71% probability of detection and a 3% false alarm rate corresponding to 20 of 28 of the simulated landmine variants correctly identified and a single clutter object misidentified as a landmine variant.by John Houston Doherty.S.M

    The Journal of ERW and Mine Action Issue 17.2 (2013)

    Get PDF
    Unplanned Explosions | Asia and the Pacific | Underwater Clearanc

    Modelling, Simulation and Data Analysis in Acoustical Problems

    Get PDF
    Modelling and simulation in acoustics is currently gaining importance. In fact, with the development and improvement of innovative computational techniques and with the growing need for predictive models, an impressive boost has been observed in several research and application areas, such as noise control, indoor acoustics, and industrial applications. This led us to the proposal of a special issue about “Modelling, Simulation and Data Analysis in Acoustical Problems”, as we believe in the importance of these topics in modern acoustics’ studies. In total, 81 papers were submitted and 33 of them were published, with an acceptance rate of 37.5%. According to the number of papers submitted, it can be affirmed that this is a trending topic in the scientific and academic community and this special issue will try to provide a future reference for the research that will be developed in coming years

    Design of human surrogates for the study of biomechanical injury: a review

    Get PDF
    Human surrogates are representations of living human structures employed to replicate “real-life” injurious scenarios in artificial environments. They are used primarily to evaluate personal protective equipment (PPE) or integrated safety systems (e.g., seat belts) in a wide range of industry sectors (e.g., automotive, military, security service, and sports equipment). Surrogates are commonly considered in five major categories relative to their form and functionality: human volunteers, postmortem human surrogates, animal surrogates, anthropomorphic test devices, and computational models. Each surrogate has its relative merits. Surrogates have been extensively employed in scenarios concerning “life-threatening” impacts (e.g., penetrating bullets or automotive accidents). However, more frequently occurring nonlethal injuries (e.g., fractures, tears, lacerations, contusions) often result in full or partial debilitation in contexts where optimal human performance is crucial (e.g., military, sports). Detailed study of these injuries requires human surrogates with superior biofidelity to those currently available if PPE designs are to improve. The opportunities afforded by new technologies, materials, instrumentation, and processing capabilities should be exploited to develop a new generation of more sophisticated human surrogates. This paper presents a review of the current state of the art in human surrogate construction, highlighting weaknesses and opportunities, to promote research into improved surrogates for PPE development

    Sequential grouping constraints on across-channel auditory processing

    Get PDF
    corecore