5,781 research outputs found

    Optimality program in segment and string graphs

    Full text link
    Planar graphs are known to allow subexponential algorithms running in time 2O(n)2^{O(\sqrt n)} or 2O(nlogn)2^{O(\sqrt n \log n)} for most of the paradigmatic problems, while the brute-force time 2Θ(n)2^{\Theta(n)} is very likely to be asymptotically best on general graphs. Intrigued by an algorithm packing curves in 2O(n2/3logn)2^{O(n^{2/3}\log n)} by Fox and Pach [SODA'11], we investigate which problems have subexponential algorithms on the intersection graphs of curves (string graphs) or segments (segment intersection graphs) and which problems have no such algorithms under the ETH (Exponential Time Hypothesis). Among our results, we show that, quite surprisingly, 3-Coloring can also be solved in time 2O(n2/3logO(1)n)2^{O(n^{2/3}\log^{O(1)}n)} on string graphs while an algorithm running in time 2o(n)2^{o(n)} for 4-Coloring even on axis-parallel segments (of unbounded length) would disprove the ETH. For 4-Coloring of unit segments, we show a weaker ETH lower bound of 2o(n2/3)2^{o(n^{2/3})} which exploits the celebrated Erd\H{o}s-Szekeres theorem. The subexponential running time also carries over to Min Feedback Vertex Set but not to Min Dominating Set and Min Independent Dominating Set.Comment: 19 pages, 15 figure

    Problems in extremal graph theory

    Get PDF
    We consider a variety of problems in extremal graph and set theory. The {\em chromatic number} of GG, χ(G)\chi(G), is the smallest integer kk such that GG is kk-colorable. The {\it square} of GG, written G2G^2, is the supergraph of GG in which also vertices within distance 2 of each other in GG are adjacent. A graph HH is a {\it minor} of GG if HH can be obtained from a subgraph of GG by contracting edges. We show that the upper bound for χ(G2)\chi(G^2) conjectured by Wegner (1977) for planar graphs holds when GG is a K4K_4-minor-free graph. We also show that χ(G2)\chi(G^2) is equal to the bound only when G2G^2 contains a complete graph of that order. One of the central problems of extremal hypergraph theory is finding the maximum number of edges in a hypergraph that does not contain a specific forbidden structure. We consider as a forbidden structure a fixed number of members that have empty common intersection as well as small union. We obtain a sharp upper bound on the size of uniform hypergraphs that do not contain this structure, when the number of vertices is sufficiently large. Our result is strong enough to imply the same sharp upper bound for several other interesting forbidden structures such as the so-called strong simplices and clusters. The {\em nn-dimensional hypercube}, QnQ_n, is the graph whose vertex set is {0,1}n\{0,1\}^n and whose edge set consists of the vertex pairs differing in exactly one coordinate. The generalized Tur\'an problem asks for the maximum number of edges in a subgraph of a graph GG that does not contain a forbidden subgraph HH. We consider the Tur\'an problem where GG is QnQ_n and HH is a cycle of length 4k+24k+2 with k3k\geq 3. Confirming a conjecture of Erd{\H o}s (1984), we show that the ratio of the size of such a subgraph of QnQ_n over the number of edges of QnQ_n is o(1)o(1), i.e. in the limit this ratio approaches 0 as nn approaches infinity

    Solving Hard Computational Problems Efficiently: Asymptotic Parametric Complexity 3-Coloring Algorithm

    Get PDF
    Many practical problems in almost all scientific and technological disciplines have been classified as computationally hard (NP-hard or even NP-complete). In life sciences, combinatorial optimization problems frequently arise in molecular biology, e.g., genome sequencing; global alignment of multiple genomes; identifying siblings or discovery of dysregulated pathways.In almost all of these problems, there is the need for proving a hypothesis about certain property of an object that can be present only when it adopts some particular admissible structure (an NP-certificate) or be absent (no admissible structure), however, none of the standard approaches can discard the hypothesis when no solution can be found, since none can provide a proof that there is no admissible structure. This article presents an algorithm that introduces a novel type of solution method to "efficiently" solve the graph 3-coloring problem; an NP-complete problem. The proposed method provides certificates (proofs) in both cases: present or absent, so it is possible to accept or reject the hypothesis on the basis of a rigorous proof. It provides exact solutions and is polynomial-time (i.e., efficient) however parametric. The only requirement is sufficient computational power, which is controlled by the parameter αN\alpha\in\mathbb{N}. Nevertheless, here it is proved that the probability of requiring a value of α>k\alpha>k to obtain a solution for a random graph decreases exponentially: P(α>k)2(k+1)P(\alpha>k) \leq 2^{-(k+1)}, making tractable almost all problem instances. Thorough experimental analyses were performed. The algorithm was tested on random graphs, planar graphs and 4-regular planar graphs. The obtained experimental results are in accordance with the theoretical expected results.Comment: Working pape

    Are there any good digraph width measures?

    Full text link
    Several different measures for digraph width have appeared in the last few years. However, none of them shares all the "nice" properties of treewidth: First, being \emph{algorithmically useful} i.e. admitting polynomial-time algorithms for all \MS1-definable problems on digraphs of bounded width. And, second, having nice \emph{structural properties} i.e. being monotone under taking subdigraphs and some form of arc contractions. As for the former, (undirected) \MS1 seems to be the least common denominator of all reasonably expressive logical languages on digraphs that can speak about the edge/arc relation on the vertex set.The latter property is a necessary condition for a width measure to be characterizable by some version of the cops-and-robber game characterizing the ordinary treewidth. Our main result is that \emph{any reasonable} algorithmically useful and structurally nice digraph measure cannot be substantially different from the treewidth of the underlying undirected graph. Moreover, we introduce \emph{directed topological minors} and argue that they are the weakest useful notion of minors for digraphs
    corecore