313 research outputs found

    New Frameworks for Offline and Streaming Coreset Constructions

    Full text link
    A coreset for a set of points is a small subset of weighted points that approximately preserves important properties of the original set. Specifically, if PP is a set of points, QQ is a set of queries, and f:P×QRf:P\times Q\to\mathbb{R} is a cost function, then a set SPS\subseteq P with weights w:P[0,)w:P\to[0,\infty) is an ϵ\epsilon-coreset for some parameter ϵ>0\epsilon>0 if sSw(s)f(s,q)\sum_{s\in S}w(s)f(s,q) is a (1+ϵ)(1+\epsilon) multiplicative approximation to pPf(p,q)\sum_{p\in P}f(p,q) for all qQq\in Q. Coresets are used to solve fundamental problems in machine learning under various big data models of computation. Many of the suggested coresets in the recent decade used, or could have used a general framework for constructing coresets whose size depends quadratically on what is known as total sensitivity tt. In this paper we improve this bound from O(t2)O(t^2) to O(tlogt)O(t\log t). Thus our results imply more space efficient solutions to a number of problems, including projective clustering, kk-line clustering, and subspace approximation. Moreover, we generalize the notion of sensitivity sampling for sup-sampling that supports non-multiplicative approximations, negative cost functions and more. The main technical result is a generic reduction to the sample complexity of learning a class of functions with bounded VC dimension. We show that obtaining an (ν,α)(\nu,\alpha)-sample for this class of functions with appropriate parameters ν\nu and α\alpha suffices to achieve space efficient ϵ\epsilon-coresets. Our result implies more efficient coreset constructions for a number of interesting problems in machine learning; we show applications to kk-median/kk-means, kk-line clustering, jj-subspace approximation, and the integer (j,k)(j,k)-projective clustering problem

    Improved Algorithms for Time Decay Streams

    Get PDF
    In the time-decay model for data streams, elements of an underlying data set arrive sequentially with the recently arrived elements being more important. A common approach for handling large data sets is to maintain a coreset, a succinct summary of the processed data that allows approximate recovery of a predetermined query. We provide a general framework that takes any offline-coreset and gives a time-decay coreset for polynomial time decay functions. We also consider the exponential time decay model for k-median clustering, where we provide a constant factor approximation algorithm that utilizes the online facility location algorithm. Our algorithm stores O(k log(h Delta)+h) points where h is the half-life of the decay function and Delta is the aspect ratio of the dataset. Our techniques extend to k-means clustering and M-estimators as well

    Training Gaussian Mixture Models at Scale via Coresets

    Get PDF
    How can we train a statistical mixture model on a massive data set? In this work we show how to construct coresets for mixtures of Gaussians. A coreset is a weighted subset of the data, which guarantees that models fitting the coreset also provide a good fit for the original data set. We show that, perhaps surprisingly, Gaussian mixtures admit coresets of size polynomial in dimension and the number of mixture components, while being independent of the data set size. Hence, one can harness computationally intensive algorithms to compute a good approximation on a significantly smaller data set. More importantly, such coresets can be efficiently constructed both in distributed and streaming settings and do not impose restrictions on the data generating process. Our results rely on a novel reduction of statistical estimation to problems in computational geometry and new combinatorial complexity results for mixtures of Gaussians. Empirical evaluation on several real-world datasets suggests that our coreset-based approach enables significant reduction in training-time with negligible approximation error

    Coresets Meet EDCS: Algorithms for Matching and Vertex Cover on Massive Graphs

    Full text link
    As massive graphs become more prevalent, there is a rapidly growing need for scalable algorithms that solve classical graph problems, such as maximum matching and minimum vertex cover, on large datasets. For massive inputs, several different computational models have been introduced, including the streaming model, the distributed communication model, and the massively parallel computation (MPC) model that is a common abstraction of MapReduce-style computation. In each model, algorithms are analyzed in terms of resources such as space used or rounds of communication needed, in addition to the more traditional approximation ratio. In this paper, we give a single unified approach that yields better approximation algorithms for matching and vertex cover in all these models. The highlights include: * The first one pass, significantly-better-than-2-approximation for matching in random arrival streams that uses subquadratic space, namely a (1.5+ϵ)(1.5+\epsilon)-approximation streaming algorithm that uses O(n1.5)O(n^{1.5}) space for constant ϵ>0\epsilon > 0. * The first 2-round, better-than-2-approximation for matching in the MPC model that uses subquadratic space per machine, namely a (1.5+ϵ)(1.5+\epsilon)-approximation algorithm with O(mn+n)O(\sqrt{mn} + n) memory per machine for constant ϵ>0\epsilon > 0. By building on our unified approach, we further develop parallel algorithms in the MPC model that give a (1+ϵ)(1 + \epsilon)-approximation to matching and an O(1)O(1)-approximation to vertex cover in only O(loglogn)O(\log\log{n}) MPC rounds and O(n/polylog(n))O(n/poly\log{(n)}) memory per machine. These results settle multiple open questions posed in the recent paper of Czumaj~et.al. [STOC 2018]

    Approximation and Streaming Algorithms for Projective Clustering via Random Projections

    Full text link
    Let PP be a set of nn points in Rd\mathbb{R}^d. In the projective clustering problem, given k,qk, q and norm ρ[1,]\rho \in [1,\infty], we have to compute a set F\mathcal{F} of kk qq-dimensional flats such that (pPd(p,F)ρ)1/ρ(\sum_{p\in P}d(p, \mathcal{F})^\rho)^{1/\rho} is minimized; here d(p,F)d(p, \mathcal{F}) represents the (Euclidean) distance of pp to the closest flat in F\mathcal{F}. We let fkq(P,ρ)f_k^q(P,\rho) denote the minimal value and interpret fkq(P,)f_k^q(P,\infty) to be maxrPd(r,F)\max_{r\in P}d(r, \mathcal{F}). When ρ=1,2\rho=1,2 and \infty and q=0q=0, the problem corresponds to the kk-median, kk-mean and the kk-center clustering problems respectively. For every 0<ϵ<10 < \epsilon < 1, SPS\subset P and ρ1\rho \ge 1, we show that the orthogonal projection of PP onto a randomly chosen flat of dimension O(((q+1)2log(1/ϵ)/ϵ3)logn)O(((q+1)^2\log(1/\epsilon)/\epsilon^3) \log n) will ϵ\epsilon-approximate f1q(S,ρ)f_1^q(S,\rho). This result combines the concepts of geometric coresets and subspace embeddings based on the Johnson-Lindenstrauss Lemma. As a consequence, an orthogonal projection of PP to an O(((q+1)2log((q+1)/ϵ)/ϵ3)logn)O(((q+1)^2 \log ((q+1)/\epsilon)/\epsilon^3) \log n) dimensional randomly chosen subspace ϵ\epsilon-approximates projective clusterings for every kk and ρ\rho simultaneously. Note that the dimension of this subspace is independent of the number of clusters~kk. Using this dimension reduction result, we obtain new approximation and streaming algorithms for projective clustering problems. For example, given a stream of nn points, we show how to compute an ϵ\epsilon-approximate projective clustering for every kk and ρ\rho simultaneously using only O((n+d)((q+1)2log((q+1)/ϵ))/ϵ3logn)O((n+d)((q+1)^2\log ((q+1)/\epsilon))/\epsilon^3 \log n) space. Compared to standard streaming algorithms with Ω(kd)\Omega(kd) space requirement, our approach is a significant improvement when the number of input points and their dimensions are of the same order of magnitude.Comment: Canadian Conference on Computational Geometry (CCCG 2015
    corecore