12,543 research outputs found

    Separation of pulsar signals from noise with supervised machine learning algorithms

    Full text link
    We evaluate the performance of four different machine learning (ML) algorithms: an Artificial Neural Network Multi-Layer Perceptron (ANN MLP ), Adaboost, Gradient Boosting Classifier (GBC), XGBoost, for the separation of pulsars from radio frequency interference (RFI) and other sources of noise, using a dataset obtained from the post-processing of a pulsar search pi peline. This dataset was previously used for cross-validation of the SPINN-based machine learning engine, used for the reprocessing of HTRU-S survey data arXiv:1406.3627. We have used Synthetic Minority Over-sampling Technique (SMOTE) to deal with high class imbalance in the dataset. We report a variety of quality scores from all four of these algorithms on both the non-SMOTE and SMOTE datasets. For all the above ML methods, we report high accuracy and G-mean in both the non-SMOTE and SMOTE cases. We study the feature importances using Adaboost, GBC, and XGBoost and also from the minimum Redundancy Maximum Relevance approach to report algorithm-agnostic feature ranking. From these methods, we find that the signal to noise of the folded profile to be the best feature. We find that all the ML algorithms report FPRs about an order of magnitude lower than the corresponding FPRs obtained in arXiv:1406.3627, for the same recall value.Comment: 14 pages, 2 figures. Accepted for publication in Astronomy and Computin

    Random Forest as a tumour genetic marker extractor

    Get PDF
    Identifying tumour genetic markers is an essential task for biomedicine. In this thesis, we analyse a dataset of chromosomal rearrangements of cancer samples and present a methodology for extracting genetic markers from this dataset by using a Random Forest as a feature selection tool

    Learning to Estimate Driver Drowsiness from Car Acceleration Sensors using Weakly Labeled Data

    Full text link
    This paper addresses the learning task of estimating driver drowsiness from the signals of car acceleration sensors. Since even drivers themselves cannot perceive their own drowsiness in a timely manner unless they use burdensome invasive sensors, obtaining labeled training data for each timestamp is not a realistic goal. To deal with this difficulty, we formulate the task as a weakly supervised learning. We only need to add labels for each complete trip, not for every timestamp independently. By assuming that some aspects of driver drowsiness increase over time due to tiredness, we formulate an algorithm that can learn from such weakly labeled data. We derive a scalable stochastic optimization method as a way of implementing the algorithm. Numerical experiments on real driving datasets demonstrate the advantages of our algorithm against baseline methods.Comment: Accepted by ICASSP202

    A Framework for Evaluating Land Use and Land Cover Classification Using Convolutional Neural Networks

    Get PDF
    Analyzing land use and land cover (LULC) using remote sensing (RS) imagery is essential for many environmental and social applications. The increase in availability of RS data has led to the development of new techniques for digital pattern classification. Very recently, deep learning (DL) models have emerged as a powerful solution to approach many machine learning (ML) problems. In particular, convolutional neural networks (CNNs) are currently the state of the art for many image classification tasks. While there exist several promising proposals on the application of CNNs to LULC classification, the validation framework proposed for the comparison of different methods could be improved with the use of a standard validation procedure for ML based on cross-validation and its subsequent statistical analysis. In this paper, we propose a general CNN, with a fixed architecture and parametrization, to achieve high accuracy on LULC classification over RS data from different sources such as radar and hyperspectral. We also present a methodology to perform a rigorous experimental comparison between our proposed DL method and other ML algorithms such as support vector machines, random forests, and k-nearest-neighbors. The analysis carried out demonstrates that the CNN outperforms the rest of techniques, achieving a high level of performance for all the datasets studied, regardless of their different characteristics.Ministerio de Economía y Competitividad TIN2014-55894-C2-1-RMinisterio de Economía y Competitividad TIN2017-88209-C2-2-
    corecore