3,364 research outputs found

    Using priced options to solve the exposure problem in sequential auctions

    Get PDF
    We propose a priced options model for solving the exposure problem of bidders with valuation synergies participating in a sequence of online auctions. We consider a setting in which complementary-valued items are offered sequentially by different sellers, who have the choice of either selling their item directly or through a priced option. In our model, the seller fixes the exercise price for this option, and then sells it through a first-price auction. We analyze this model from a decision-theoretic perspective and we show, for a setting where the competition is formed by local bidders (which desire a single item), that using options can increase the expected profit for both sides. Furthermore, we derive the equations that provide minimum and maximum bounds between which the bids of the synergy buyer are expected to fall, in order for both sides of the market to have an incentive to use the options mechanism. Next, we perform an experimental analysis of a market in which multiple synergy buyers are active simultaneously. We show that, despite the extra competition, some synergy buyers may benefit, because sellers are forced to set their exercise prices for options at levels which encourage participation of all buyers.</jats:p

    Does Resorting to Online Dispute Resolution Promote Agreements? Experimental Evidence

    Get PDF
    This paper presents an experiment performed to test the properties of an innovativebargaining mechanism (called automated negotiation) used to resolve disputes arising fromInternet-based transactions. The main result shows that the settlement rule tends to chillbargaining as it creates incentives for individuals to misrepresent their true valuations, whichimplies that automated negotiation is not able to promote agreements. However, this perverseeffect depends strongly on the conflict situation. When the threat that a disagreement occurs ismore credible, the strategic effect is reduced since defendants are more interested inmaximizing the efficiency of a settlement than their own expected profit. The implications ofthese results are then used to discuss the potential role of public regulation and reputationmechanisms in Cyberspace: Online Dispute Resolution, Electronic Commerce, Bargaining, Arbitration,Experimental Economics

    Does Resorting to Online Dispute Resolution Promote Agreements? Experimental Evidence

    Get PDF
    This paper presents the results of an experiment performed to test the properties of an innovative bargaining mechanism (called automated negotiation) used to resolve disputes arising from Internet-based transactions. Automated negotiation is an online sealed-bid process in which an automated algorithm evaluates bids from the parties and settles the case if the offers are within a prescribed range. The observed individual behavior, based on 40 rounds of bargaining, is shown to be drastically affected by the design of automated negotiation. The settlement rule encourages disputants to behave strategically by adopting aggressive bargaining positions, which implies that the mechanism is not able to promote agreements and generate efficiency. This conclusion is consistent with the experimental results on arbitration and the well-known chilling effect: Automated negotiation tends to "chill" bargaining as it creates incentives for individuals to misrepresent their true valuations and discourage them to converge on their own. However, this perverse effect induced by the settlement rule depends strongly on the conflict situation. When the threat that a disagreement occurs is more credible, the strategic effect is reduced since defendants are more interested in maximizing the efficiency of a settlement than their own expected profit.Online Dispute Resolution, Arbitration, Experimental Economics, Electronic Commerce, Bargaining

    Auction-based Bandwidth Allocation Mechanisms for Wireless Future Internet

    Get PDF
    An important aspect of the Future Internet is the efficient utilization of (wireless) network resources. In order for the - demanding in terms of QoS - Future Internet services to be provided, the current trend is evolving towards an "integrated" wireless network access model that enables users to enjoy mobility, seamless access and high quality of service in an all-IP network on an "Anytime, Anywhere" basis. The term "integrated" is used to denote that the Future Internet wireless "last mile" is expected to comprise multiple heterogeneous geographically coexisting wireless networks, each having different capacity and coverage radius. The efficient management of the wireless access network resources is crucial due to their scarcity that renders wireless access a potential bottleneck for the provision of high quality services. In this paper we propose an auction mechanism for allocating the bandwidth of such a network so that efficiency is attained, i.e. social welfare is maximized. In particular, we propose an incentive-compatible, efficient auction-based mechanism of low computational complexity. We define a repeated game to address user utilities and incentives issues. Subsequently, we extend this mechanism so that it can also accommodate multicast sessions. We also analyze the computational complexity and message overhead of the proposed mechanism. We then show how user bids can be replaced from weights generated by the network and transform the auction to a cooperative mechanism capable of prioritizing certain classes of services and emulating DiffServ and time-of-day pricing schemes. The theoretical analysis is complemented by simulations that assess the proposed mechanisms properties and performance. We finally provide some concluding remarks and directions for future research

    Coalition Formation and Combinatorial Auctions; Applications to Self-organization and Self-management in Utility Computing

    Full text link
    In this paper we propose a two-stage protocol for resource management in a hierarchically organized cloud. The first stage exploits spatial locality for the formation of coalitions of supply agents; the second stage, a combinatorial auction, is based on a modified proxy-based clock algorithm and has two phases, a clock phase and a proxy phase. The clock phase supports price discovery; in the second phase a proxy conducts multiple rounds of a combinatorial auction for the package of services requested by each client. The protocol strikes a balance between low-cost services for cloud clients and a decent profit for the service providers. We also report the results of an empirical investigation of the combinatorial auction stage of the protocol.Comment: 14 page

    Energy sharing and trading in multi-operator heterogeneous network deployments

    Get PDF
    © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.With a view to the expected increased data traffic volume and energy consumption of the fifth generation networks, the use of renewable energy (RE) sources and infrastructure sharing have been embraced as energy and cost-saving technologies. Aiming at reducing cost and grid energy consumption, in the present paper, we study RE exchange (REE) possibilities in late-trend network deployments of energy harvesting (EH) macrocell and small cell base stations (EH-MBSs, EH-SBSs) that use an EH system, an energy storage system, and the smart grid as energy procurement sources. On this basis, we study a two-tier network composed of EH-MBSs that are passively shared among a set of mobile network operators (MNOs), and EH-SBSs that are provided to MNOs by an infrastructure provider (InP). Taking into consideration the infrastructure location and the variety of stakeholders involved in the network deployment, we propose as REE approaches 1) a cooperative RE sharing, based on bankruptcy theory, for the shared EH-MBSs and 2) a non-cooperative, aggregator-assisted RE trading, which uses double auctions to describe the REE acts among the InP provided EH-SBSs managed by different MNOs, after an initial internal REE among the ones managed by a single MNO. Our results display that our proposals outperform baseline approaches, providing a considerable reduction in SG energy utilization and costs, with satisfaction of the participant parties.Peer ReviewedPostprint (author's final draft

    Optimal Real-Time Bidding Strategies

    Full text link
    The ad-trading desks of media-buying agencies are increasingly relying on complex algorithms for purchasing advertising inventory. In particular, Real-Time Bidding (RTB) algorithms respond to many auctions -- usually Vickrey auctions -- throughout the day for buying ad-inventory with the aim of maximizing one or several key performance indicators (KPI). The optimization problems faced by companies building bidding strategies are new and interesting for the community of applied mathematicians. In this article, we introduce a stochastic optimal control model that addresses the question of the optimal bidding strategy in various realistic contexts: the maximization of the inventory bought with a given amount of cash in the framework of audience strategies, the maximization of the number of conversions/acquisitions with a given amount of cash, etc. In our model, the sequence of auctions is modeled by a Poisson process and the \textit{price to beat} for each auction is modeled by a random variable following almost any probability distribution. We show that the optimal bids are characterized by a Hamilton-Jacobi-Bellman equation, and that almost-closed form solutions can be found by using a fluid limit. Numerical examples are also carried out
    • 

    corecore