12,690 research outputs found

    Cities and climate change: Strategic options for philanthropic support

    Full text link
    Now, more than ever, cities are at the front lines of U.S. climate action. As national action stalls, there is still a daunting amount to be done in reducing human-generated climate emissions. Fortunately, this report comes in the wake of a groundswell of initiatives to engage on climate change by cities, countries, and states across the U.S. Several important and thorough reports on the types of mitigation actions cities can take have recently been released. We already have examples of cities taking significant leadership roles in reducing their own climate emissions, from New York and Boston to Austin, Boulder, and Los Angeles - yet U.S. climate emissions continue to rise, and cities have an outsized role to play. The purpose of this project is to review current U.S. city climate activities in order to identify areas where additional investment by foundations could help accelerate city action to reduce urban greenhouse gas emissions. The focus of the inquiry is on aggressive actions cities can take that significantly increase their “level of ambition” to achieve emissions reductions on an accelerated timetable. City strategies on climate adaptation are not encompassed in this project. [TRUNCATED

    Investing in America\u27s Surface Transportation Infrastructure: The Need for a Multi-Year Reauthorization Bill: Hearing Before the S. Comm. on Env\u27t & Pub. Works, 116th Cong., July 10, 2019

    Get PDF
    The Fourth National Climate Assessment, released in November 2018, described the serious impacts of climate change already being felt throughout the U.S., and made clear that the risks to communities all across the country are growing rapidly. These findings, along with those in the 2018 Intergovernmental Panel on Climate Change (IPCC) report should serve as an immediate call to action. Even if we manage to limit planetary warming to just 2 degrees Celsius, the world will still face increased chances of economic and social upheaval from more severe flooding, droughts, heatwaves, and other climate impacts as well as devastating environmental consequences, the IPCC report warns. The consensus from leading scientific research academies within the United States and internationally is clear: multiple lines of evidence indicate, and have indicated for years, that our atmosphere is warming, sea levels are rising, the magnitude and frequency of certain extreme weather events is increasing, and that human activity is the primary driver of climate change. As described in the IPCC Special Report, the consensus is that countries around the world must rapidly decarbonize their economies, cutting greenhouse gas emissions in half by 2030 and to near zero by 2050. The U.S. Department of Defense, and leaders within the defense and national security communities, have also recognized climate change as a “national security issue” that requires adapting military operations and planning to ensure readiness. Despite our understanding of the consequences we will face and the urgency to act, U.S. GHG emissions from fossil fuel combustion increased by 2.7 percent in 2018, according the Rhodium Group. Clearly more action is needed. While we all recognize the importance of transportation in our daily lives and for our economy, it is also important to recognize that the transportation sector is the largest contributor of GHG emissions in the United States, and is already facing significant impacts from climate change. There is an urgent need, therefore, to transition to a low-carbon and more resilient transportation system. Such a transition would not only reduce emissions and fight climate change, it also would bring additional important benefits, including protecting public health by reducing conventional air pollution, providing more mobility options, and driving innovation and economic growth through policy action and through public and private investment

    Strengthening Urban Resilience: Understanding the Interdependencies of Outer Space and Strategic Planning for Sustainable Smart Environments

    Get PDF
    The conventional approach to urban planning has predominantly focused on horizontal dimensions, disregarding the potential risks originating from outer space. This paper aims to initiate a discourse on the vertical dimension of cities, which is influenced by outer space, as an essential element of strategic urban planning. Through an examination of a highly disruptive incident in outer space involving a collision between the Iridium 33 and Cosmos 2251 satellites, this article elucidates the intricate interdependencies between urban areas and outer space infrastructure and services. Leveraging the principles of critical infrastructure protection, which bridge the urban and outer space domains, and employing simulation methods and software, this study articulates the intricate governance complexities of urban security and presents viable solutions for its enhancement. Consequently, the study contributes to the ongoing deliberations regarding the spatial integration of security practices by providing scholarly discourse on urban governance with potential strategies for cultivating sustainable smart cities. In essence, the intrinsic resilience of urban areas heavily relies on the interconnections between cities and outer space, necessitating urban strategists to acknowledge and comprehend these intricate interdependencies. To ensure sustainable urban development, it is imperative to fortify smart cities’ resilience against space debris through the implementation of more stringent regulations

    Complexity Aided Design: the FuturICT Technological Innovation Paradigm

    Full text link
    "In the next century, planet earth will don an electronic skin. It will use the Internet as a scaffold to support and transmit its sensations. This skin is already being stitched together. It consists of millions of embedded electronic measuring devices: thermostats, pressure gauges, pollution detectors, cameras, microphones, glucose sensors, EKGs, electroencephalographs. These will probe and monitor cities and endangered species, the atmosphere, our ships, highways and fleets of trucks, our conversations, our bodies--even our dreams ....What will the earth's new skin permit us to feel? How will we use its surges of sensation? For several years--maybe for a decade--there will be no central nervous system to manage this vast signaling network. Certainly there will be no central intelligence...some qualities of self-awareness will emerge once the Net is sensually enhanced. Sensuality is only one force pushing the Net toward intelligence". These statements are quoted by an interview by Cherry Murray, Dean of the Harvard School of Engineering and Applied Sciences and Professor of Physics. It is interesting to outline the timeliness and highly predicting power of these statements. In particular, we would like to point to the relevance of the question "What will the earth's new skin permit us to feel?" to the work we are going to discuss in this paper. There are many additional compelling questions, as for example: "How can the electronic earth's skin be made more resilient?"; "How can the earth's electronic skin be improved to better satisfy the need of our society?";"What can the science of complex systems contribute to this endeavour?

    Complexity aided design: The FuturICT technological innovation paradigm

    Get PDF
    "In the next century, planet earth will don an electronic skin. It will use the Internet as a scaffold to support and transmit its sensations. This skin is already being stitched together. It consists of millions of embedded electronic measuring devices: thermostats, pressure gauges, pollution detectors, cameras, microphones, glucose sensors, EKGs, electroencephalographs. These will probe and monitor cities and endangered species, the atmosphere, our ships, highways and fleets of trucks, our conversations, our bodies-even our dreams ....What will the earth's new skin permit us to feel? How will we use its surges of sensation? For several years-maybe for a decade-there will be no central nervous system to manage this vast signaling network. Certainly there will be no central intelligence...some qualities of self-awareness will emerge once the Net is sensually enhanced. Sensuality is only one force pushing the Net toward intelligence”. These statements are quoted by an interview by Cherry Murray, Dean of the Harvard School of Engineering and Applied Sciences and Professor of Physics. It is interesting to outline the timeliness and highly predicting power of these statements. In particular, we would like to point to the relevance of the question "What will the earth's new skin permit us to feel?” to the work we are going to discuss in this paper. There are many additional compelling questions, as for example: "How can the electronic earth's skin be made more resilient?”; "How can the earth's electronic skin be improved to better satisfy the need of our society?”;"What can the science of complex systems contribute to this endeavour?” Graphical abstrac

    Resilience assessment and planning in power distribution systems:Past and future considerations

    Full text link
    Over the past decade, extreme weather events have significantly increased worldwide, leading to widespread power outages and blackouts. As these threats continue to challenge power distribution systems, the importance of mitigating the impacts of extreme weather events has become paramount. Consequently, resilience has become crucial for designing and operating power distribution systems. This work comprehensively explores the current landscape of resilience evaluation and metrics within the power distribution system domain, reviewing existing methods and identifying key attributes that define effective resilience metrics. The challenges encountered during the formulation, development, and calculation of these metrics are also addressed. Additionally, this review acknowledges the intricate interdependencies between power distribution systems and critical infrastructures, including information and communication technology, transportation, water distribution, and natural gas networks. It is important to understand these interdependencies and their impact on power distribution system resilience. Moreover, this work provides an in-depth analysis of existing research on planning solutions to enhance distribution system resilience and support power distribution system operators and planners in developing effective mitigation strategies. These strategies are crucial for minimizing the adverse impacts of extreme weather events and fostering overall resilience within power distribution systems.Comment: 27 pages, 7 figures, submitted for review to Renewable and Sustainable Energy Review
    • …
    corecore