453 research outputs found

    Game Theory for Secure Critical Interdependent Gas-Power-Water Infrastructure

    Full text link
    A city's critical infrastructure such as gas, water, and power systems, are largely interdependent since they share energy, computing, and communication resources. This, in turn, makes it challenging to endow them with fool-proof security solutions. In this paper, a unified model for interdependent gas-power-water infrastructure is presented and the security of this model is studied using a novel game-theoretic framework. In particular, a zero-sum noncooperative game is formulated between a malicious attacker who seeks to simultaneously alter the states of the gas-power-water critical infrastructure to increase the power generation cost and a defender who allocates communication resources over its attack detection filters in local areas to monitor the infrastructure. At the mixed strategy Nash equilibrium of this game, numerical results show that the expected power generation cost deviation is 35\% lower than the one resulting from an equal allocation of resources over the local filters. The results also show that, at equilibrium, the interdependence of the power system on the natural gas and water systems can motivate the attacker to target the states of the water and natural gas systems to change the operational states of the power grid. Conversely, the defender allocates a portion of its resources to the water and natural gas states of the interdependent system to protect the grid from state deviations.Comment: 7 pages, in proceedings of Resilience Week 201

    Reinforcement Learning and Game Theory for Smart Grid Security

    Get PDF
    This dissertation focuses on one of the most critical and complicated challenges facing electric power transmission and distribution systems which is their vulnerability against failure and attacks. Large scale power outages in Australia (2016), Ukraine (2015), India (2013), Nigeria (2018), and the United States (2011, 2003) have demonstrated the vulnerability of power grids to cyber and physical attacks and failures. These incidents clearly indicate the necessity of extensive research efforts to protect the power system from external intrusion and to reduce the damages from post-attack effects. We analyze the vulnerability of smart power grids to cyber and physical attacks and failures, design different gametheoretic approaches to identify the critical components vulnerable to attack and propose their associated defense strategy, and utilizes machine learning techniques to solve the game-theoretic problems in adversarial and collaborative adversarial power grid environment. Our contributions can be divided into three major parts:Vulnerability identification: Power grid outages have disastrous impacts on almost every aspect of modern life. Despite their inevitability, the effects of failures on power grids’ performance can be limited if the system operator can predict and identify the vulnerable elements of power grids. To enable these capabilities we study machine learning algorithms to identify critical power system elements adopting a cascaded failure simulator as a threat and attack model. We use generation loss, time to reach a certain percentage of line outage/generation loss, number of line outages, etc. as evaluation metrics to evaluate the consequences of threat and attacks on the smart power grid.Adversarial gaming in power system: With the advancement of the technologies, the smart attackers are deploying different techniques to supersede the existing protection scheme. In order to defend the power grid from these smart attackers, we introduce an adversarial gaming environment using machine learning techniques which is capable of replicating the complex interaction between the attacker and the power system operators. The numerical results show that a learned defender successfully narrows down the attackers’ attack window and reduce damages. The results also show that considering some crucial factors, the players can independently execute actions without detailed information about each other.Deep learning for adversarial gaming: The learning and gaming techniques to identify vulnerable components in the power grid become computationally expensive for large scale power systems. The power system operator needs to have the advanced skills to deal with the large dimensionality of the problem. In order to aid the power system operator in finding and analyzing vulnerability for large scale power systems, we study a deep learning technique for adversary game which is capable of dealing with high dimensional power system state space with less computational time and increased computational efficiency. Overall, the results provided in this dissertation advance power grids’ resilience and security by providing a better understanding of the systems’ vulnerability and by developing efficient algorithms to identify vulnerable components and appropriate defensive strategies to reduce the damages of the attack

    Improving the resilience of cyber-physical systems under strategic adversaries

    Get PDF
    Renewable energy resources challenge traditional energy system operations by substituting the stability and predictability of fossil fuel based generation with the unreliability and uncertainty of wind and solar power. Rising demand for green energy drives grid operators to integrate sensors, smart meters, and distributed control to compensate for this uncertainty and improve the operational efficiency of the grid. Real-time negotiations enable producers and consumers to adjust power loads during shortage periods, such as an unexpected outage or weather event, and to adapt to time-varying energy needs. While such systems improve grid performance, practical implementation challenges can derail the operation of these distributed cyber-physical systems. Network disruptions introduce instability into control feedback systems, and strategic adversaries can manipulate power markets for financial gain. This dissertation analyzes the impact of these outages and adversaries on cyber-physical systems and provides methods for improving resilience, with an emphasis on distributed energy systems. First, a financial model of an interdependent energy market lays the groundwork for profit-oriented attacks and defenses, and a game theoretic strategy optimizes attack plans and defensive investments in energy systems with multiple independent actors. Then attacks and defenses are translated from a theoretical context to a real-time energy market via denial of service (DoS) outages and moving target defenses. Analysis on two market mechanisms shows how adversaries can disrupt market operation, destabilize negotiations, and extract profits by attacking network links and disrupting communication. Finally, a low-cost DoS defense technique demonstrates a method that energy systems may use to defend against attacks

    Improving the Cybersecurity of Cyber-Physical Systems Through Behavioral Game Theory and Model Checking in Practice and in Education

    Get PDF
    This dissertation presents automated methods based on behavioral game theory and model checking to improve the cybersecurity of cyber-physical systems (CPSs) and advocates teaching certain foundational principles of these methods to cybersecurity students. First, it encodes behavioral game theory\u27s concept of level-k reasoning into an integer linear program that models a newly defined security Colonel Blotto game. This approach is designed to achieve an efficient allocation of scarce protection resources by anticipating attack allocations. A human subjects experiment based on a CPS infrastructure demonstrates its effectiveness. Next, it rigorously defines the term adversarial thinking, one of cybersecurity educations most important and elusive learning objectives, but for which no proper definition exists. It spells out what it means to think like a hacker by examining the characteristic thought processes of hackers through the lens of Sternberg\u27s triarchic theory of intelligence. Next, a classroom experiment demonstrates that teaching basic game theory concepts to cybersecurity students significantly improves their strategic reasoning abilities. Finally, this dissertation applies the SPIN model checker to an electric power protection system and demonstrates a straightforward and effective technique for rigorously characterizing the degree of fault tolerance of complex CPSs, a key step in improving their defensive posture

    Cyber Defense Remediation in Energy Delivery Systems

    Get PDF
    The integration of Information Technology (IT) and Operational Technology (OT) in Cyber-Physical Systems (CPS) has resulted in increased efficiency and facilitated real-time information acquisition, processing, and decision making. However, the increase in automation technology and the use of the internet for connecting, remote controlling, and supervising systems and facilities has also increased the likelihood of cybersecurity threats that can impact safety of humans and property. There is a need to assess cybersecurity risks in the power grid, nuclear plants, chemical factories, etc. to gain insight into the likelihood of safety hazards. Quantitative cybersecurity risk assessment will lead to informed cyber defense remediation and will ensure the presence of a mitigation plan to prevent safety hazards. In this dissertation, using Energy Delivery Systems (EDS) as a use case to contextualize a CPS, we address key research challenges in managing cyber risk for cyber defense remediation. First, we developed a platform for modeling and analyzing the effect of cyber threats and random system faults on EDS\u27s safety that could lead to catastrophic damages. We developed a data-driven attack graph and fault graph-based model to characterize the exploitability and impact of threats in EDS. We created an operational impact assessment to quantify the damages. Finally, we developed a strategic response decision capability that presents optimal mitigation actions and policies that balance the tradeoff between operational resilience (tactical risk) and strategic risk. Next, we addressed the challenge of management of tactical risk based on a prioritized cyber defense remediation plan. A prioritized cyber defense remediation plan is critical for effective risk management in EDS. Due to EDS\u27s complexity in terms of the heterogeneous nature of blending IT and OT and Industrial Control System (ICS), scale, and critical processes tasks, prioritized remediation should be applied gradually to protect critical assets. We proposed a methodology for prioritizing cyber risk remediation plans by detecting and evaluating critical EDS nodes\u27 paths. We conducted evaluation of critical nodes characteristics based on nodes\u27 architectural positions, measure of centrality based on nodes\u27 connectivity and frequency of network traffic, as well as the controlled amount of electrical power. The model also examines the relationship between cost models of budget allocation for removing vulnerabilities on critical nodes and their impact on gradual readiness. The proposed cost models were empirically validated in an existing network ICS test-bed computing nodes criticality. Two cost models were examined, and although varied, we concluded the lack of correlation between types of cost models to most damageable attack path and critical nodes readiness. Finally, we proposed a time-varying dynamical model for the cyber defense remediation in EDS. We utilize the stochastic evolutionary game model to simulate the dynamic adversary of cyber-attack-defense. We leveraged the Logit Quantal Response Dynamics (LQRD) model to quantify real-world players\u27 cognitive differences. We proposed the optimal decision making approach by calculating the stable evolutionary equilibrium and balancing defense costs and benefits. Case studies on EDS indicate that the proposed method can help the defender predict possible attack action, select the related optimal defense strategy over time, and gain the maximum defense payoffs. We also leveraged software-defined networking (SDN) in EDS for dynamical cyber defense remediation. We presented an approach to aid the selection security controls dynamically in an SDN-enabled EDS and achieve tradeoffs between providing security and Quality of Service (QoS). We modeled the security costs based on end-to-end packet delay and throughput. We proposed a non-dominated sorting based multi-objective optimization framework which can be implemented within an SDN controller to address the joint problem of optimizing between security and QoS parameters by alleviating time complexity at O(MN2). The M is the number of objective functions, and N is the population for each generation, respectively. We presented simulation results that illustrate how data availability and data integrity can be achieved while maintaining QoS constraints
    • …
    corecore