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ABSTRACT

Wood, Paul Ph.D., Purdue University, August 2016. Improving the Resilience of
Cyber-Physical Systems under Strategic Adversaries. Major Professor: Saurabh
Bagchi.

Renewable energy resources challenge traditional energy system operations by

substituting the stability and predictability of fossil fuel based generation with the

unreliability and uncertainty of wind and solar power. Rising demand for green en-

ergy drives grid operators to integrate sensors, smart meters, and distributed control

to compensate for this uncertainty and improve the operational efficiency of the grid.

Real-time negotiations enable producers and consumers to adjust power loads during

shortage periods, such as an unexpected outage or weather event, and to adapt to

time-varying energy needs. While such systems improve grid performance, practical

implementation challenges can derail the operation of these distributed cyber-physical

systems. Network disruptions introduce instability into control feedback systems, and

strategic adversaries can manipulate power markets for financial gain. This disserta-

tion analyzes the impact of these outages and adversaries on cyber-physical systems

and provides methods for improving resilience, with an emphasis on distributed en-

ergy systems.

First, a financial model of an interdependent energy market lays the groundwork

for profit-oriented attacks and defenses, and a game theoretic strategy optimizes at-

tack plans and defensive investments in energy systems with multiple independent

actors. Then attacks and defenses are translated from a theoretical context to a real-

time energy market via denial of service (DoS) outages and moving target defenses.

Analysis on two market mechanisms shows how adversaries can disrupt market op-

eration, destabilize negotiations, and extract profits by attacking network links and
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disrupting communication. Finally, a low-cost DoS defense technique demonstrates a

method that energy systems may use to defend against attacks.
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1. INTRODUCTION

New distributed cyber-physical systems improve and optimize grid-scale energy con-

sumption via wide-area communications. When they are attacked or disrupted, many

of these systems may fail or support adversarial profits. This thesis analyzes and im-

proves the reliability of such cyber-physical systems.

1.1 Motivation

Cyber-physical systems (CPS) are an emerging class of systems which integrate

physical control and observation over potentially wide areas via cyber networks. These

systems promise increased efficiency, interoperability, and ease-of-use of a variety of

domains, including smart grid (SG), by changing the time scale of highly interactive

processes such as price negotiation from hours or days to minutes or seconds. This

scale allows for finer-grained control and thus efficiency improvements, especially in

the domain of energy consumption. One area of CPS growth is the smart grid (SG).

Consumers and producers of electric power have increasingly become distributed,

especially in regions where rooftop solar panels are common place, and there is ample

financial benefit to introducing fine-grained, rapid control.

The expansion of CPS is not without risk, however, as processes that were once

slow and easily observed become fast and buried in complexity. Consequently, the re-

silience of physical systems when combined with traditional cyber vulnerabilities must

be well studied. Broadly, this dissertation examines CPS resilience when faced with

security threats and network faults and provides metrics and strategies for improving

the dependability of such systems.

To study CPS security, the electric power domain has been selected as it grounds

the dissertation in a realistic economic and technical environment. In the context of
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SG, large scale CPS is used to coordinate the production and consumption of electric

power, often via energy markets. These markets exist as a form of homeostatic

control [1] that optimizes power consumption and generation via incentive signals

(market prices).

Traditional power markets are comprised of relatively few market players. A few

large generation companies and distribution utilities negotiate prices well in advance

of power delivery because of physical generation constraints. Some generators respond

slowly to transients because of thermal inertia, and sufficient notice must be given

to allow for adequate power availability. This problem is exacerbated when renew-

able generation sources permeate the grid because of the inherent unpredictability of

natural energy sources such as wind. Presently most demand in the grid is inflexible–

prices are negotiated months in advance and regulated. For this reason, expensive

sources of standby generation are scheduled to maintain grid security, ready to deliver

power during system transients. New technologies and the growth of SG/CPS tran-

sition consumers from a static to dynamic market where power prices are constantly

negotiated. In such a system, standby generation is replaced by demand-response

(DR)–consumers provide less demand rather than generators providing more power.

The shift to dynamic markets and demand-response improves resilience and ef-

ficiency by leveraging wide-area communication networks and potentially insecure

control devices to optimize load and generation. This dependence can undermine

the gains in efficiency when networks are disrupted through denial of service attacks,

insecure devices are taken offline, or compromised devices collude in the market. A

traditional system might have a backup generator available to respond to voltage or

frequency drops in the grid (independent of any communication network) and thus

survive most transient events. A dynamic system, however, may rely on communi-

cations to shed loads, and a DoS attack on the market during a transient can have

potentially severe consequences.

Furthermore, the explosive growth of rooftop solar in the Southwest United States

has been ratcheting up demand for SG technologies. When solar and wind generation
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operate in traditional power markets, the power distribution utility typically absorbs

the cost of solar’s uncertainty by raising power rates in the region. Generation short-

falls (e.g. caused by clouds) place high demand on expensive on-demand energy

sources. The consumer is generally shielded from the expensive energy price through

regulated markets. Recently, however, utilities like SRP [2] have begun to impose

penalties on homes with solar panels to recover parts of these rising costs. Smart

grid technologies such as demand response and real-time pricing systems that bridge

the gap between consumer loads and market prices can alleviate these penalties by

optimizing energy utilization via wide area controls. If this technology is successful,

it can support additional solar panel integration. The system may not be successful,

however, if the cyber components of the CPS introduce additional faults and insta-

bility that roll back the efficiency gains of the power markets. The remainder of this

dissertation analyzes and measures these risks and provides techniques to alleviate

some of them.

1.2 Contributions and Outline

This section summarizes the contributions and outline of this dissertation.

1.2.1 Energy CPS Models and Attack Strategies

The first contribution in Chapter 2 is a profit-oriented model for energy-based CPS

markets that supports modeling strategic adversaries. Prior work in real-time energy

markets does not consider the presence of adversaries who attempt to game the market

for additional profit. A new model is created that distinguishes between collective

social welfare and individual profits by introducing deregulated power markets with

multiple independent participants. Intertwined in this chapter is background material

that explains the underlying energy system on which this dissertation lies.

When the CPS model is viewed from an individual-player profit viewpoint, an

interdependent defensive game can be introduced to analyze strategies against at-
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tackers. This contribution is a game theoretic approach to optimizing defensive in-

vestments in the CPS when multiple defenders exist under a strategic adversary. With

limited budgets in hand, the attackers and defenders have an interest in optimizing

their strategies. Interdependent defensive games, however, exhibit strong positive

and negative externalities due to investments. This complexity is further exacerbated

by the competitor elimination problem–the owner of an asset may be different than

the most impacted party. In this contribution, an investment optimization game is

constructed and examined which accounts for these properties in attack and defense.

The game is further explored by introducing noise into model viewpoints and allowing

defensive collaboration or pooling of resources.

With these two pieces, a background and underlying profit model is established to

capture the profit motivations of strategic adversaries. Up to this point, the attacks

are more theoretical in nature–they exist at the energy-flow level. The next chapter

introduces technical market operations that utilize realistic communication interfaces

to negotiate energy flows and prices.

1.2.2 Energy CPS Operation

Chapter 3 maps the principles of market operation to realistic system implementa-

tions. The market players from Chapter 2 now exist in a market implementation that

models the actual negotiation processes between energy producers and consumers.

An existing market solution, dynamic market mechanism (DMM) [3], is analyzed in

a real-time communication environment. The response of DMM is dependent on the

state of the networking subsystem, and characteristics such as latency, jitter, and

dropped messages all have a negative influence on the system’s performance. It is

demonstrated that low-level network attacks can influence market pricing, and that

network disruptions can potentially crash the energy market.

A second model, a novel contribution created for this dissertation, is also included

in this chapter. A Nelder-Meade (NM) optimization technique is modified to support
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non-stationary objective functions such as time-varying energy demands. This modi-

fication enables NM to serve as the control system driving a real-time power market.

With this system, which is designed to operate on low-level distribution, can be used

to analyze the profits of network attacks on energy markets.

These communications models enable attack/defense studies at the network layer.

This bridges the gap between the more theoretical attack/defense models in Chapter 2

with the practical implementation in this chapter. The next chapter evaluates the

combination of attack/defense strategies on practical market mechanisms.

1.2.3 CPS Attacks and Market Manipulations

In Chapter 4, the energy CPS operations are attacked and evaluated by two

different attack strategies. In the first strategy, the attacks from Chapter 2 are applied

to the Nelder-Meade based market model from Chapter 3. The attack targets in the

theoretical model are mapped to DoS/outages on specific network links in the market

mechanism. The profit and defense strategies are evaluated, and it is shown how the

strategy can increase attacker’s incentive in a realistic system implementation.

An additional, heuristic-based attack is included in Chapter 5. An adversary

launches DoS attacks in an attempt to manipulate market prices while buying and

selling energy from a storage device. It is shown that an adversary with access

to a storage device can extract additional profits by launching such attacks. Some

defensive techniques are introduced in this chapter as a method to improve resilience.

The next chapter introduces a low-cost distributed denial-of-service (DDoS) de-

fense mechanism that can facilitate economical defense of CPS systems.

1.2.4 Low Cost DDoS Defense

Chapter 6 presents Denial of Service Elusion (DoSE) as an inexpensive method for

mitigating network layer attacks by utilizing cloud infrastructure and content delivery

networks to protect services from disruption. DoSE uses these services to create a
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relay network between the client and the protected service that evades attack by

selectively releasing IP address information. DoSE incorporates client reputation as

a function of prior behavior to stop attackers along with a feedback controller to limit

costs. We evaluate DoSE by modeling relays, clients, and attackers in an agent-based

MATLAB simulator. The results show DoSE can mitigate a single-insider attack on

1,000 legitimate clients in 3.9 minutes while satisfying an average of 88.2% of requests

during the attack.

This defense technique facilitates the economical defense of CPS from DoS attacks.

Chapter 7 concludes the dissertation and provide directions for future work. Addi-

tional material in Appendix A describes the simulation frameworks used throughout

the dissertation.

1.3 Work Publication

This section covers previous, current, and planned publications supporting this

dissertation.

CPS – Completed Works:

• Interdependent Defensive Games in CPS

Paul Wood, Saurabh Bagchi and Alefiya Hussain – Presented March 23rd, AAAI

2015 Spring Symposium, Applied Computational Game Theory, 2015

• Optimizing Defensive Investments in Energy-Based Cyber-Physical

Systems

Paul Wood, Saurabh Bagchi and Alefiya Hussain — 20th IEEE Workshop on

Dependable Parallel, Distributed and Network-Centric Systems (DPDNS15),

2015

• Defending Against Strategic Adversaries in Dynamic Pricing Markets

for Smart Grids
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Paul Wood, Saurabh Bagchi, and Alefiya Hussain — 8th International Confer-

ence on Communication Systems & Networks (COMSNETS16), 2016

• Denial of Service Elusion (DoSE): Keeping Clients Connected for Less

Paul Wood, Christopher Gutierrez, and Saurabh Bagchi — 34th International

Symposium on Reliable Distributed Systems (SRDS15), 2015

CPS – Works Under Review:

• A Framework for Evaluating the Resilience of Dynamic Real-Time

Market Mechanisms

Paul Wood, Dylan Shiltz, Thomas R. Nudell, Alefiya Hussain, Anuradha M.

Annaswamy — (Under Review) IEEE Transactions on Smart Grid, Submitted

October, 2015

• Attacks and Defense for Real-Time Price Signals in Smart Grids

Paul Wood, Saurabh Bagchi, Alefiya Hussain — (Under Review) IEEE Con-

ference on Communications and Network Security, October 2016, Submitted

April, 2016

Related Completed Works:

• Synthesizing and Specifying Architectures for System of Systems

Kenley, C. R., Dannenhoffer, T. M., Wood, P. C., & DeLaurentis, D. A. (2014,

July). In INCOSE International Symposium (Vol. 24, No. 1, pp. 94-107).
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2. ENERGY-BASED CPS MODELS AND HIGH-LEVEL

ATTACK STRATEGIES

This chapter covers power flow economics, vulnerabilities, and attack/defense strate-

gies in energy-based cyber-physical systems. The chapter first addresses the eco-

nomics behind deregulated power markets as a method for identifying valuable CPS

targets. A strategic adversary is then created in the latter half of the chapter to

capitalize on those targets. Much of the work in this chapter was presented at the

Association for the Advancement of Artificial Intelligence (AAAI) Spring Symposium

in March 2015 and published in DPDNS’15 [4].

2.1 A Profit-Oriented Model for Energy CPS

2.1.1 Introduction

Industrial control systems are becoming more interconnected throughout all do-

mains and across corporations. Resources processed thousands of miles from their

consumption points may traverse multiple independent companies before arriving

at customers who are relying on them to operate, and these systems are gaining a

large cyber footprint as automation and efficiency improvements drive a demand for

internetworked components. This increased footprint creates more opportunity for

malicious actors to penetrate and manipulate CPS’s, especially when connected via

the Internet. Successful attacks are becoming more visible [5], as demonstrated by

Stuxnet [6] and shown in a recent ICS-CERT [7]. Corporations and industry needs

an analysis framework and decision support tool to aid in understanding intentional

attacks on interdependent CPS, their propagation through interconnected systems,

and the impact they have on profitability when financially independent but intercon-
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nected companies face attacks. With such a framework, defensive strategies can be

formulated for improving system security and minimizing the impact of intentional

attacks.

Understanding and measuring the complex interactions that occur in interdepen-

dent cyber-physical systems and creating an optimal response to attacks is a crucial

step toward the goal of optimizing system profitability in the face of rising security

threats. In a CPS with cross-domain interlinks, such as the natural gas pipeline and

electric power generation systems, identifying high risk components and making good

design choices is no longer a trivial or self-contained task. The large network of feed-

back created by corporate profit optimization complicates risk assessments, especially

when multiple companies are competing for revenues and relying on the same input

resources. Enron demonstrated in the 2000 California Power Crisis [8] that carefully

placed outages can net huge profits, and understanding where and how potential at-

tackers can profit is crucial to defending an interconnected CPS. The hypothesis is

that attackers who have profit-seeking motivations will attack a different set of targets

than one who seeks to simply disrupt the system.

The work presented in this section captures and models the interactions of inde-

pendent CPS and analyzes the impact of cyber manipulations and induced outages

on energy-based CPS components from the perspective of the overall system’s and

individual companies operational revenue. This lays the foundation for a utility func-

tion for subsequent sections. Using this function, experimental analysis necessitates

an independent actor model, motivates profit-based objectives, and evaluates several

security strategies.

To perform impact analyses, a model is created which abstracts the low-level de-

tails of components in the CPS into high level flow graphs that capture the interde-

pendent interactions in the CPS. The graph models the high level inputs, components,

and outputs that each CPS operator utilizes for profit maximization. The natural

gas–electric interdependent CPS motivates a translation framework for converting

perturbations in the physical system to changes in efficiency, capacity, and cost in the
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graph. These parameters, with the addition of revenue and demand, formulate an

optimization problem that minimizes the sum of costs, for both the individual play-

ers and separately the entire system. With this optimization, impacts are analyzed

by comparing the costs of contingencies when failures or attacks cause capacities or

efficiencies to change in the system.

In this chapter, the capacity, transmission costs, and revenues are modeled empir-

ically from data collected from the United States Energy Information Administration

(EIA). A model of 6 US states’ natural gas and electric power systems is used to

shows three key results. The first is that the independence of CPS operators creates

suboptimal risk assessments when performed in isolation. The second is that choos-

ing between profit maximization and shortage minimization results in two different

defensive strategies, justifying the need for economic incentive inclusion in defense

optimizations. In the final result, some security strategies are considered to deter-

mine whether or not greedy attack/defense strategies based upon easily observable

features of the system are optimal. The experiment shows that there is no strong

correlation between two graph-observable parameters and the financial impact on

the system which motivates the need for game theoretic approaches to optimizing

defensive strategies.

2.1.2 Background

In this section, the relevant concepts required to understand the design of the

impact analysis technique are introduced. The interdependence between the natural

gas and electric system are discussed along with the malicious attacker’s motivations.

Natural Gas System

Natural gas (NG) is a popular fuel used in heating, lighting, electric power genera-

tion, and transportation. Its production points are often far away from load locations,

so a system of transmission pipelines bridges this gap. The pipelines, which rely on
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gas-fired compressors, operate as a lossy but self-contained network. Gas companies

seek to optimize delivery by minimizing extraction and pipeline costs by selecting the

least-loss paths. Figure 2.1 captures the high level NG infrastructure, where gas flows

from production wells through a transmission and distribution system and to the end

users.

Production Transmission Distribution Load

NG Fired
Generator

Oil and 
Gas Fields

Storage Fields

Imports

Exports

Fig. 2.1. High level layout of the natural gas infrastructure.

Electric Power System

The electric power system or grid is composed of generators, transmission and

distribution components, and consumer loads. Each generation source has a different

capital and operational cost which is tied to geographical features and climate, fuel

type and availability, and emission control designs. A set of generators, tied in to

the transmission system, responds to the instantaneous demand created by the loads

and attempts to provide the lowest cost power possible based on the transmission

system’s capacity and each generators operational cost. For this reason, bulk power

may be transmitted over long distances away from cheap generation sources toward

concentrations of loads. Figure 2.2 captures the high level electric infrastructure

where power is generated, transmitted, and distributed to the load.
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Generation Transmission Distribution Load

NG Fired
Generator

Solar

Coal Fired
Generator

Fig. 2.2. High level layout of the electric infrastructure.

Natural Gas - Electric Interdependence

The electric power system relies heavily on natural gas-fired generators due to

their low environmental impact and agility in adjusting output power. Nuclear and

coal-fired sources often have day-long response times to transients, while NG-electric

generators can be activated within minutes. Because of the cost of fuels, natural

gas generators typically serve the grid’s transient needs and respond to unexpected

outages experienced by other generation sources while coal and nuclear sources run

at a constant output. For these reasons, faults that the electric system experiences

are often translated into demand spikes in the gas network. Additionally, outages in

the gas network can severely hamper the electric power system’s ability to respond

to events that it experiences [9]. This growing interdependence creates a complex

problem where impact analysis must span multiple CPS operators.

Attacker Motives

While some attacker motives are political, the work in this chapter focuses on

the financial motivations that an attacker has. Enron showed that outages can cause

supply shortages and thus spikes in prices that benefit power producers on the spot-

market–those selling power at on-demand rates benefit from supply loss. An easy
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avenue for profit is to speculate on the futures market for power delivery. An attacker

could purchase low-priced futures, cause a disruption, and then sell them in the

starved market for a profit. Another alternative is to short-sell stocks from public

power utilities and subject them to some outages to reduce profits and lower stock

values. While the executives of Enron faced federal prosecution, cyber attackers and

cyber forensics face more geopolitical barriers to be a proper deterrent of attacks.

Therefore, companies must make smart investments to defend their CPS’s.

CPS designers must consider security from two perspectives. The first is economic

incentives (EI) and the second is resiliency control (RC). The important distinction

between the two categories is the method by which a defender needs to predict failure.

An uninformed RC failure may occur randomly, based on a probability distribution

driven by physics and the environment, however an economically incentivized attack

will focus specifically on the most financially impactful components in the system.

This motivates the creation of a utility function that has a basis in revenues and costs

as opposed to an approach which only evaluates shortages or random failures. Since

resiliency control impacts can be forecasted, they are not the focus of this chapter.

System Security

The security of CPS revolves around a set of defensive and resiliency investments.

The core defenses are techniques such as encryption, intrusion detection, and malware

detection while core resiliency techniques focus on redundant, fault tolerant equip-

ment and spare capacity. Once a security strategy is developed, with the support of

an impact function, system architects can incorporate a realistic risk when deciding

which technologies to deploy and to what systems.
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2.1.3 Related Work

Utility System Modeling and Security

Minimizing costs in electric and gas utilities is not a new problem, and several

solutions have been created and utilized to solve these optimizations. They are not

suitable, however, for multi-player games. These techniques model each utility system

and produce device-level operational scheduling (unit commitment) aimed at mini-

mizing cost by using varying optimization techniques such as mixed integer linear

programming (MILP). When network conditions such as a minimum power delivery

rate are added to the unit commitment model, a security constrained unit commit-

ment (SCUC) is created [10] which improves system operation during failures. These

optimization problems are useful for planning the day-to-day operation of each utility,

and the SCUC has been extended to include a natural gas-electric combined optimiza-

tion [11–14]. While these techniques produce an optimal unit schedule, they do not

optimize the multi-player objective function as done in this dissertation. Instead they

consider the system as a monolithic (single player) entity for optimization purposes.

Market processes such as those utilized by New York Independent System Operator

(NYISO) allow power producers to bid into power markets. The model does not

consider profit, however, as the system attempts only to minimize cost not maximize

profit.

Graphical Approaches to Security

Graphs have been used extensively in solving cyber security problems, but most

approaches do not consider the continuous attacker objectives seen in attacks on

the power utility CPS. Most of this related work focuses on protecting a particular

component of a system where an attacker either has control or does not [15, 16] and

identifying at-risk components for protection using this assumption. Graph-based

metrics are often applied to power system problems [17], but the utility in identifying
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vulnerable targets by using static vertex or edge properties may be misleading [18].

In this work, dynamic and interdependent properties are considered in attack and

defense (i.e. actual impact instead of estimated). While the existing approaches are

useful for modeling the defense of particular components or observing how an attack

may progress across different cyber components [19], the problem of developing a

security strategy has not been adequately addressed for interdependent CPS.

Game Theory in CPS

Once an impact understanding is developed or assumed, game theory approaches

can be utilized to improve defensive decisions. Several recent techniques [20–24] have

been evaluated for defense application in the power grid. These approaches provide

a good framework for using game theory to solve problems in CPS security, and this

work aims to improve on the utility functions available. Little work has been done

in utilizing game theoretic approaches to evaluate the combined interdependencies

of gas and electric networks, however. More research is needed to understand how

to best defend interdependent CPS networks against an attacker especially when the

defensive objectives of each player is different.

Interdependent security games, as surveyed in [25, 26], optimize and study the

process by which defenders invest resources to mitigate and minimize risk from cy-

ber attacks. This class of games involves multiple defenders in the face of attacks,

excluding single defender-attacker games, and focus on the defensive investment strat-

egy [27,28]. Specific games are targeted toward networked control systems [29], how-

ever these models focus on the contagion [26, 30] aspect of security rather than the

market-level interdependence that this model consideres.

The financial impacts of attacks have been studied in [30]. A model is created

which has the property that defensive investments generally reduce the ability of

the attacker to sustain attacks. However, the interdependence effect only modeled
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positive externalities and does not include the negative externalities modeled in this

section.

2.1.4 Overview

The section provides an overview of the interacting forces in interdependent CPS’s

and how they will be captured in a model. The actors in the system are defined along

with their independent objectives, and the threat model and device level impacts are

outlined.

The Actors and Objectives

The interdependent CPS in the natural gas-electric scenario is comprised of several

gas and electric entities. Gas is extracted by drilling companies, transported by

pipeline operations, and distributed to customers, and similar actors exist on the

electric side. Each group of actors has its own customer base, which may be another

actor in the system or direct consumers, and tries to maximize its profits as a cost

optimization objective.

Actor’s Resources and System Model

Each actor owns a set of components that are interconnected with the larger CPS.

These components perform one of four functions, and the first is production which

introduces resources from external, unmodeled sources into the CPS. The second is

consumption of a resource in the system, which acts as load. The third component

is the transportation or transmission function such as a power line or gas pipeline.

The final function is a transformational operation which converts a resource from one

form to another. These components are interconnected and divided among actors to

create a model of the CPS.
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Threat Model and Impact Analysis

The attack motivations categorized as economic incentives (EI) and resiliency

control (RC) drive distinct classes of failures. Under the RC umbrella, mechanical

degradation, random occurrences, and unplanned events act to perturb the actor’s

resources. A NG pipeline compressor may fail due to a worn bearing for example.

Under the EI umbrella, physical and cyber attacks actively seek to disrupt hardware in

the system with a specific agenda. The occurrence of failures under EI is systematic,

informed, and potentially widespread. In both cases, however, the actual mechanics

of an attack or failure translate into parameters in the system model. An equipment

piece that fails causes reduced capacity or increased loss in the system which maps

to suboptimal flows and reduced profits.

Given the system model and no perturbation, the most profitable flows can be

established by the actors. An attack can then reduce the capacity or increase the loss

of a component in the system model, resulting in a new profit. The impact analysis

then is the difference in profits for these two models.

2.1.5 Approach

In this section, the system model and optimization problem is formally described.

The resources are normalized to allow inter-domain comparison and evaluation. A

graph structure is defined that maps the core parameters of each component in the sys-

tem to a graph vertex or edge parameter. An optimization problem is then formulated

for solving single and multi-objective system models based upon this formulation.

Nodes

Nodes or vertices in the graph serve either as hubs, sources, or sinks, and these

components provide the interface with non-modeled processes.
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Hubs The hubs in the graph represent zero-sum routing components in the system

such as electric buses or gas distribution headers. The hubs capture points in the

system where alternate transmission paths or sources can be selected and enable the

splitting and combining of flows. Hubs also serve as geographic anchors and act as

abstraction points where detail is removed from the underlying system. A distribution

system which has both load and generation can be modeled as a hub with an in and

out flow to capture all of the low level electric bus impacts, for example. The hub’s

geographic property is used to calculate distance-based transmission losses.

Sources and Sinks Some nodes act as sink or source points in the system, and

these nodes are the interface between components not in the model. The various

sources of energy (gas wells, flowing water, coal mines) are the input sources to the

model and represent components that have a capacity and fixed unit flow cost. The

sinks in the system are loads or consumers of energy, and these nodes absorb flow

and generate revenue for the system and it is where the model terminates.

Edges

The links between most nodes model resource transportation components such

as gas pipelines or electric transmission lines. These edges have some capacity and

resource loss due to inefficiencies such as resistance. In the case of an electric trans-

mission, the line losses result in less energy at the output than was provided at the

input as a function of flow. Similarly, gas loses pressure in transmission as it flows.

Thus each edge has four associated parameters: capacity c(u, v), flow f(u, v), cost

per unit flow a(u, v), and loss l(u, v). Flow is the output of the optimization, and

cost is associated with edges connecting sources and sinks. For most edges, there is

only a capacity and loss parameter.

Electric Transmission Model Each high voltage transmission line has a designed

capacity that maps to c(u, v). The transmission line losses are a function of line length,
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voltage, and electric current flow and the magnitude of loss can be estimated [31] as

a ratio of percent per distance. A transmission edge connecting node u and v has a

loss per unit flow defined as l(u, v) = lossrate(u, v)× dist(u, v).

Fluid Transmission Model Similarly, by Bernoulli’s principle, the pressure in a

gas pipeline will be reduced as it flows requiring compressor stations to boost pressure.

As in the power case, this cost can be calculated as a distance dependent loss. The

capacity of the pipeline is also a known design parameter and is planned based on

long term demand forecasts made by the gas utilities.

Transformation Edges The remaining transformation edges convert the energy

in the CPS from one type to another. This transformation is identical to transmis-

sion with the caveat that efficiencies are much lower. In the gas-electric example, a

transformation edge converts natural gas into electric power with typical efficiencies

below 65%. l(u, v) = Conversion Efficiency.

Cost, Revenues, and Expenses

Certain links in the system have specific costs or revenues associated with them.

The operational costs for each type of power generation plant contributes to the

expenses while the consumers of energy provide revenue. These money flows are

captured by a positive or negative value of cost a(u, v). An additional function,

demand d(v), dictates how much a energy a consumer is willing to purchase or supplier

is willing to sell. The set L (loads) contains all of the vertices v for which d(v) > 0,

and are sinks. Additionally each source has the property d(v) < 0 and comprises set

G (generators).

Resource Normalization Resource unit conversions are required to normalize

pricing information based on different quantities–gas is often priced in a volume while

electricity is priced per joule or watt-hour. A system-wide view requires a normalized
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unit of measure for all of the components in the system. In the case of energy based

systems, i.e. power and gas utilities, the standard SI unit of joule is be used and

converted to megawatts (MW), but other units can be used for other systems.

Utility Function

The components are combined into a flow graph representation, as shown in Figure

2.3. Linear programming and minimum-cost flow algorithms are then used to analyze

the system. The utility function for the entire system is defined as follows. Each edge

in the graph has a capacity c(u, v) and cost a(u, v) defined by the owning actor as

a property of the physical system. The vertices V contain all of the distribution

headers or power buses, plus any sink or source nodes. The following constraints are

established and then linear programming is used to optimize the flow solution.

Utility = min
∑

(u,v)∈E

a(u, v) · f(u, v) (2.1)

Subject to constraints:

0 ≤ f(u, v) ≤ c(u, v) (2.2)

d(v) ≤
∑
u∈V

c(u, v)for all v ∈ L (2.3)

s(v) ≥
∑
u∈V

c(v, u)for all v ∈ G (2.4)

∑
u∈V

f(u, v) ≤ d(v) for all v ∈ L (2.5)

∑
v∈V

f(u, v) ≤ s(u) for all u ∈ G (2.6)

∑
w∈V

f(u,w)

1− l(u,w)
=
∑
w∈V

f(w, u) ∀ u (2.7)

The first equation 2.1 measures the cost across all edges in the system, and its

minimization optimizes system-wide profits. Equations 2.3 and 2.4 constrain the
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Fig. 2.3. Flow graph of the combined natural gas and electric infrastructure.

potential demand values to ones that satisfy the input or output capacity of the

node, and equation 2.2 ensures the flow solutions are less than the edge capacity.

Equation 2.5 and 2.6 prevent over-selling to a load or over-production from a source.

Equation 2.7 is the conservation of energy at the intermediate hubs. The division by

1− l(u,w) on the left hand term captures the impact of transmission losses. The sum

of the inputs to a node will be larger than the outputs to account for the fact that

some of the input energy is lost in transit to the hub. The net cost of these losses is

dependent on the source cost, and placing the losses here ensures the optimal flow of

energy and causes the hubs to have a non-zero sum.
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Utility for Multiple Actors

The notion of multiple actors arises as a function of asset ownership and financially

competing entities. Each asset (edge) is owned by an actor (each edge has one owner),

and these owners are acting in a competitive market. The actors are autonomous

entities and will not cooperate or form cartels for profit maximization. Instead, a

cartel of individual actors will be modeled as a single actor.

Estimating the utilities in the presence of multiple actors entails a large body

of economic works that estimate supply and demand pricing in open markets. The

complexities of such assessments are not necessary for an accurate model of utility

provided certain assumptions are made. The first assumption is that if the graph

structure remains the same, then the addition of new actors or changes in owner-

ship do not change the optimal flows in the system. The rationale is that, given a

ground truth set of costs and losses, a competitive i.e. non-collusive set of actors will

eventually settle on the most cost-effective flow, since the lowest cost option provides

maximal profit system-wide (the system will enter a coalition-proof Nash equilib-

rium). The second, derivative assumption is that since the system’s sink and source

flows and prices are fixed, the net system profit is independent of asset ownership.

The sum of the individual actors profits equals the original system profit after any

changes in ownership. The rationale is that while some profit distributions may not

be entirely credible, it relaxes profit distribution from a negotiation problem to an as-

signment problem. The final assumption is that costs in the system include required

minimum profits for operation.

The problem for determining the utility in a multiple actor scenario is now viewed

as a fair profit assignment algorithm. The fairness piece comes into play by observing

what an actor can charge at each point in the system. Notionally this is done by

raising prices until the buyer goes somewhere else. Practically this is measured by

constricting the flow out of each actor, independently, and observing how much more

the system as a whole is paying to supplement that reduction (the system’s marginal



23

cost). Since the prices at the end suppliers and consumers is fixed, and the flow

through the system remains unchanged due to the allocation of internal costs, the

marginal cost can be applied as a profit allocation. For example, if an actor constricts

her flow on a particular asset from 50 units to 49 and observes the system’s marginal

cost as $1, then he determines he can charge the original price + $1. In the model

view, the cost a(u, v) on the edge goes from $0 to $1 while the system flows are

unperturbed. The system’s net profit is decreased because this is a cost, however, the

actor’s individual profit is increased by that mount. The result is a profit distribution

that follows the assumptions above.

The marginal cost alone, however, cannot be used to distribute profits fairly be-

cause a reseller situation may arise. Imagine three independent actors are operating

in a series. Each actor determines its marginal cost to be $1. This cost was calcu-

lated, however, with the assumption that the other actors in the series would take

zero profits. Intuitively, the profits available at the last actor in the series must be

split among all three so that the total system profit remains constant. The fairness in

this situation is taken by attempting to uniformly distribute the profits among actors

in these situations. The solution approach, as listed in the proceeding algorithm, is

to grow from small to large fractions of the marginal cost uniformly across the actors.

Limiting Information Certain situations may arise where the model needs to be

explored from the perspective of an actor or adversary who has a restricted view of

the system. This is the case when someone estimates capacity for example. The

application of this knowledge level is to add noise to the different parameters in the

system, with a feasibility restrictions. The simplest way to do this is to center a

normal distribution around the mean of the original graph parameter and then vary

the standard deviation based upon the knowledge level.

For each parameter, except for the flow f(u, v), the knowledge level σ is defined

as c′(u, v) = N (c(u, v), σ2). The distribution is truncated such that the signs of the
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Fig. 2.4. The graph shows an example scenario where each asset is
owned by a different actor A-F. The three suppliers A, B, D have unit
cost of production $3, $3, and $9 respectively and the end customer
has a fixed unit price of $11. At each edge, there is a fixed unit
cost and a marginal unit cost. The fixed cost is a parameter of the
model, while the marginal cost is calculated by observing the system’s
response to constricting flow through that particular edge. In this
case, actors A and B are in direct competition, so no unilateral price
movement is possible. C, however, is in a position to mark up the
price an additional $6 because it is in competition with D. E and F
are in series and may mark up to the remaining purchase price at the
customer, cumulatively. A fair split of $1 for E and $1 for F is shown
as an example.

original parameters do not change. The new flows are determined by evaluating the

optimization problem for the new parameter set.
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Measuring Impact

Each parameter, cost a, capacity c, and loss l can be varied to determine the new

utility. Impact = Utility′ − Utility where Utility′ = Utility as a, c, l → a′, c′, l′. The

impact is computed when an attack or other natural forces act on the systems. The

impact can be negative to indicate a gain in the Utility when there are multiple actors

in the system. In the models, the gain is primarily due to actors selling spare capacity

in the event of a failure.

2.1.6 Experimental Model

Geographic Model

Six Western US states are captured in a moderately complex, interdependent gas-

electric system model. The state-level representation maps to data available from

the Energy Information Administration (EIA) [32,33], and the states of Washington,

Idaho, Oregon, California, Nevada, and Arizona are chosen because this region is

generally a net importer of energy. Each state’s hub is mapped to its geographic

centroid, and edges are created based on border adjacency. Each state has two energy

hubs, one for natural gas and one for electricity, and a customer base for each resource.

In total there are 12 hubs and 18 hub-to-hub transmission lines. Figure 2.5 depicts

the infrastructure for the two systems, and the interconnection occurs between the

load side of gas (b) and the generation side of electricity (a).

Interconnected Infrastructure Model

Four functions must be defined for hubs and edges in the gas infrastructure. The

cost function a is based on the average price paid in each state over a year. For import

edges, where gas is purchased out-of-model, the cost is taken to be 25% lower than the

price customers pay, motivating transportation. Next the loss function l is defined.

For this step, a calculation is made based on a typical loss of 1% per 400 km [34],
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(a) Electric Model

(b) Natural Gas Model

Fig. 2.5. A flow model is created for six Western US states for both
an electric (a) and natural gas (b) infrastructure.
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since the actual loss rates vary based on each individual pipeline’s construction char-

acteristics. The resulting loss rates are seen in Figure 2.5 (b). The capacity function

c directly maps to EIA’s dataset [32]. Each state’s energy information profile details

energy produced by gas-fired generators and their efficiency, l. Finally the supply,

imports, and demand for each state were calculated by averaging yearly consumption

into short term amounts.

Similarly, the values for the electric infrastructure are calculated using the EIA

sources [33]. Each state has a suite of electric energy sources to choose from, nuclear,

coal, natural gas, solar, etc., and each source has its own edge into the hub. The

prices for these different sources are estimated and the supply and consumer pricing

in the system is assumed static because most contracts are negotiated for terms of a

day or longer [35].

Model Adjustments

To represent a more challenging model, several modifications are done to the

calculated infrastructure. The installed electric capacity c is reduced by 25% to

account for inoperable generators due to maintenance and climate, and the demand

is increased by 65% from the daily average to represent a high-demand period, i.e. in

the peak of winter. With these adjustments, the system has about 15% spare capacity

which is in line with the EIA’s spare-capacity estimates.

Operational Complexity

To evaluate whether or not the model is sufficiently complex, the system’s response

to capacity reductions is plotted in Figure 2.6. Four example edges are selected and

their capacity c is reduced between 0 and 100%. The plot shows the marginal increase

in cost per additional percentage of reduction. The stepping behavior represents the

different alternative sources that replace the eliminated capacity. The solid line, for

example, has a cheap alternative in the 5-15% reduction range. However, after 18%
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the system selects increasingly costly alternatives to augment the reduced capacity.

Since the lines have a variety of steps, the 12-hub model is complex enough to study.

The model created in this chapter is evaluated for a combined natural gas and

electric power distribution system. Three scenarios are examined to answer several

questions. The first scenario looks to establish the need for cooperation to achieve

optimal defensive strategies. The second scenario investigates the difference between

objectives of profit versus shortage to show that the choice in objective is crucial when

analyzing an attacker/defender strategy. The final experiment investigates greedy

attacker strategies to see whether or not a game framework is necessary to answer

attacker strategy questions.

Quantitative Data and Model Creation

The goal of these experiments is to create a realistic scenario in which to test

hypotheses about the utility of different components in the system. The high level

flow amounts and capacities should reflect what is seen in reality to avoid creating a

problem and solution from a scenario that might never exist.

Information from the EIA was used to create a model of the gas and electric sys-

tems of the western region of the United States (California, Nevada, Arizona, Oregon,

Idaho, and Washington states). The geographic centroid of each state was used as a

node in the graph, and each adjacent state’s interconnections were summarized into

single edges. The six state region was selected because of its relative isolation geo-

graphically and form the natural gas infrastructure perspective. The region imports

most of its natural gas from fields adjacent to the modeled states, and several of the

states have no external edges such as Oregon and California, having only minor in-

teractions with imports and exports of gas and electricity from outside of the system.

The 12-node system (6 for each resource type) is still complex enough to capture the

interactions seen in large CPS without being too large to burden experimentation.
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The model uses two actors, one for the natural gas infrastructure and one for

the electric infrastructure. Each actor attempts to maximize its own profit in the

scenarios tested, unless otherwise mentioned.

Natural Gas Infrastructure The interstate pipeline capacities for each state are

available in the EIA database which provides several types of state-level data. Each

state has an exact import/export capacity to other states and a per-state consumption

volume. This provides the capacity and consumer information for each gas node. A

portion of the gas moved is utilized by electric power generating facilities, and the

interconnection is captured by the transformational edges in the graph.

The next component is loss due to gas transport. These losses are based on

estimates formed from the evaluation of various US FERC reports which provide

information about how much each pipeline is charging for losses and uses of natural

gas due to transportation. Finally, revenue information was collected from the EIA to

provide values for the general gas customers versus the electrical generation customers.

The electric utilities generally paid less for gas, likely due to the large contract size

and optimization or predictability of demand.

Electric Infrastructure Similar to the gas infrastructure, the information pro-

vided by the EIA was used to construct the same set of graph components for the

electric actor. The primary difference is that transmission infrastructure information

is not publicly available or easily accessible, so the capacities and losses are less exact.

The generation losses are based on the actual performance data of units in each state.

The transmission losses are estimated based on distance. These costs are operational

only and do not include the amortized capital costs associated with plant construction

and lifetime because these are considered sunk costs when making daily operational

decisions.

Combined Infrastructure The two subsystems rely on different energy measure-

ment units for basic transport and pricing information. Since both systems deal with
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energy, the standard unit Watt was used to convert all of the components into the

same unit system. Gas is transported in a volume and may have different amounts of

energy per cubic foot, but the variance observed in the measurements for each system

revealed less than a 1% difference in energy content between sources so a standard

value was taken.

To establish demand, the year average consumption of both gas and electricity is

provided by EIA for each state. This amount was taken as the mean demand and

increased by 20% for the gas system and 65% for the electric system to reflect the

variance seen in average daily load versus peak load. Additionally the capacity used

for the electric system is provided as installed capacity, not available capacity. This

amount is reduced by 25% to reflect typical plant outages or reduced water supply

availability.

When the system is combined, it is important to understand how the interde-

pendencies manifest in the real system, as captured by the model. Figure 2.6 shows

how the capacity reduction of four different edges in the system have substantially

different impact profiles. An important concept in the power system is understanding

which source the next watt of demand will be allocated from. The figure shows the

marginal costs of providing the alternative watt when it is lost from the attacked

edge. Low values mean that a cheap alternative exists while high values means that

the most expensive fuels are utilized to power the system.

2.1.7 Results

In this section, three experiments are conducted to study the impact of attacks

in a multi-actor interdependent gas and electric CP system. The first experiment

shows that co-operative strategies across the gas and electric CPS reduce the impact

of most attacks. The second experiment investigates the difference between shortage

and profit impact, and the last experiment shows that greedy security strategies are

not sufficient for impact analysis in interconnected CPS.
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Fig. 2.6. This chart shows the marginal change in the impact for
incremental reductions in capacity for four edges in the system model.
The incremental steps represent the costs of the marginal generation
that must be utilized to deliver energy to the customer.

Single Failure Impact Analysis

The impact of an attack on the interconnected gas and electric infrastructure is

studied. For each edge in the graph, the capacity c(u, v) of the edge is reduced to

zero to simulate an attack. The impact I of the edge loss is computed by computing

Utility′ (Equation 2.1) and then subtracting it from the computed Utility when the

edge is present.

Two scenarios are considered. In the first scenario, I is computed in the presence

of an edge failure with a single actor representing the interests across the complete

interconnected gas and electric network. This scenario indicates how information

sharing results in lower impact and enables a more secure interconnected CPS. The

impact computed in this scenario is indicated as combined in Figure 2.7. In the second

scenario, I is computed independently, with one actor representing the gas network

and one actor representing the power network. The impact computed for each actor

in this scenario is then summed together and indicated as independent in Figure 2.7.
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The following observations are made from Figure 2.7. (a) The impact of indepen-

dently operating actors is higher or same as the combined gas and electric CPS. While

only the results for the top 10, out of 38, edges are shown, this is also true for the

other transmission and transformation edges in the model. (b) The impact is much

higher for a small set of edges and then rapidly reduces for the other edges indicating

that some edges are more critical than others. For example, when Edge #1 fails,

which is a transmission edge to indicate gas imports into Arizona, the highest impact

is observed in the combined actor model but it is lower than the independent actor

model. The difference between the impact in the two scenarios, is due to redirecting

spare gas resources to satisfy the NG fired electricity generators in the combined actor

model where as in the independent model, the independent electric network must rely

on more expensive sources of power. (c) Failure of some edges have the same impact

in both scenarios. For example, when Edge #2 fails, which is a transformation edge

from a gas to electric hub in California, the impact is same.

Hence this section empirically shows how a combined CPS can be more secure

when the system is cooperative across different sectors optimizing resources across

the full interconnected gas and electric CPS rather than considering each system in

isolation.

Single Failure Shortage Analysis

In this experiment, the difference between shortage experiences within the system

and financial impact captured by the utility function is investigated. Based on the

methodology developed in the previous experiment, the capacity of an edge is reduced

to zero, and the impact is computed based on a single combined actor. Additionally,

for each failure, the shortfall (that is demand not met) in watts is computed at the

loads in the system. The results are shown in Figure 2.8 where the y-axis indicates

the normalized financial impact and the normalized shortage impact. The normal-

ized impact is computed by dividing the impact of the current edge failure with the
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Fig. 2.7. This chart shows the impact of objective independence in
ten edges due to a failure in the model. Combined indicates a sin-
gle actor model where as Independent indicates two actors acting
independently.

summation of the impact caused by the failure of each of the other edges. The finan-

cial and shortage impacts behave differently. For example, while financial impact for

Edges #3, #4 and #5 is similar, the shortage impact is substantially different, due to

the availability and cost of alternative generation resources. This indicates the need

for detailed models when incorporating financial impact of shortages, by associating

nuanced models to capture unmet demand in dollars. Shortages should be carefully

modeled to ensure a secure CPS. If shortages have associated penalties which are not

subject to a ”force majeure” clause, the financial ramifications should be included in

the impact analyses.
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Fig. 2.8. This chart compares the normalized financial impact (left)
to the shortage (right) caused during a complete failure of an edge in
the system. The impact analysis could be different based on which
objective is chosen, profit maximization or shortage minimization.

2.1.8 Security Strategy Analysis

In this section two greedy security strategies are evaluated. The first strategy is

to attack the largest capacity edges first and the second is to attack the highest flow

edges. If a greedy strategy is successful then a complex security strategy may be un-

necessary. It is shown that for interconnected CPS, a greedy strategy is not successful

since there is no monotonically increasing trend between the greedy selection metric

(capacity or flow) and the impact that it has on the system.

To evaluate each strategy, a failure on one edge is modeled and the impact the

failure has against the greedy selection metric is used for comparison.

Figure 2.9 compares the edge’s failure impact as compared to the capacity of the

edge. For this strategy to be successful, the impact should increase as the capacity
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increase from left to right in the plot. However, it is observed this this not the case

indicating that a greedy approach does not work in an interdependent CPS. It is also

observed that there are several high capacity edges that upon failure that do not have

a high impact on the interconnected CPS.

To understand the dynamics of such failures, part (b) shows the impact versus

capacity reduction for two representative edges. Both there edges have similar impact

but have different capacities. When a failure occurs, the interconnected CPS re-

optimizes its flow with the a new least-cost plan. The impact of the alternative flow

is shown as the points along the line, and its slope is driven by the cost at the source

of the new resource. When the edge’s capacity is reduced between 0-100%, source

square may be used at a low cost, thus a low slope. Between 80% and 100%, source

circle may be used which has a very high cost.

Next similar analysis with flow is conducted. The largest edges are not always

completely utilized hence flow can be less than capacity. Figure 2.10 indicates the

impact of the failure in edges based on the observed flow. Failures in edges causes the

volume of resources to be rerouted, but because multiple redundant paths and low-

cost alternatives may exist, the selection of the highest-flow edge is not universally

the best. To understand the dynamics of such failures, part (b) shows the impact

versus flow reduction for two representative edges. Both there edges have similar

impact but have different flow. The capacity of the edge is progressively reduced to

indicate a reduction in flow. The circle point has some spare capacity, as its initial

flat portion in the line. The small flow redirection in the square point results in a

high, steep penalty when compared to the shallow growth of the first line. The slow

growth is again due to cheap alternative sources.

2.1.9 Conclusion

In this section, an approach to impact analysis was presented to support game the-

ory application to a combined gas-electric utility system. The impacts of equipment
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(a) All Edges (b) Impact for Selected Points

Fig. 2.9. Impact of edge failure compared with its transport capacity.
A lack of a clear increasing trend suggests that this approach is non-
optimal in attacking. (b) shows how the impact of the two points
progresses differently as capacity is reduced. Since the impact is low
for a large capacity loss in the circle point, based on the slope of the
line, the attack has less overall impact on the system.

outages and capacity reductions on company profits and system-wide profits were

calculated. When companies act independently, it was shown that some sub-optimal

choices are made in defensive resource allocation which supports a cooperative game

approach to developing security strategies. Additionally it was shown that depending

on the attacker’s objective of profit or disruption, different defensive maneuvers would

be made, so a careful bridge between shortage-based and financial-based adversaries

should be created. The game theory approach to defense was motivated by showing

that naive security strategies are insufficient in determining the most valuable target,

implying a more complex decision process should be involved in optimization. The

security analysis of the interdependent gas-electric system is ripe for further game

theory development and provide an approach for measuring the utility of different

system components.
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(a) All Edges (b) Impact for Selected Points

Fig. 2.10. Impact of edge failure compared with its optimized flow.
The high flow edges, when attacked, result in the most redirection of
energy in the system. (b) shows how the alternative energy cost may
be much higher per watt for some sources than others, the greedy
approach will not work as show in (a).

2.2 High-Level Adversarial Strategies

2.2.1 Introduction

This section addresses the problem of asset protection in the face of strategic

adversaries in an interconnected CPS. The model that is developed in this chapter

is of autonomous organizations (equivalently, corporations) dubbed as “actors”. The

actors own and operate various assets, and cooperate to provide some end-user visible

service. For example, the natural gas provider(s) and solar energy provider(s) feeding

into the electric grid, provide electric power to end consumers. Attacks against these

assets impact the profits of the actors. Motivated by the prospect of financial losses,

defensive investments are made by the actors. The gamut of relationships that can

exist between the actors as they relate to the defensive strategies that they deploy are

explored. The gamut runs from actors behaving completely independently through a

subset of them cooperating in securing the assets to perfect cooperation.
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There are a few insights into improving the models for defensive investment opti-

mization. First, the implications of attacks in the cyber side should be measured on

the physical side. This enables dependencies to be drawn from complicated intercon-

nections rather than approximated via contagion. Second, when every actor in the

system is considered to be financially motivated, then attacks are driven by profits

and defenses are driven by losses. This allows for adversaries to be profit seeking and

creates a complication for defenders where the assets which cause the most harm to

one actor may be owned by another. When actors are mutually harmed by an attack,

they may wish to collaborate in defense and share the expense of defending an asset.

The solution captures the physical interconnections as a directed flow graph. The

nodes and edges capture the primary supply chain factors involved in a system such

as the interconnected natural gas pipeline and electric grids. These factors are the

maximum capacity, cost per unit flow, and loss due to inefficiency. The flow is then

optimized under a multi-actor model which measures the profitability of each actor.

This model then serves as the basis for impact analysis—the supply chain factors

are perturbed during cyber-attacks and the change in profitability is measured. The

strategic adversary model then optimally selects a subset of actors in the system and

targets which have a large positive benefit to the attacker. The defenders, estimating

the adversary strategy, independently select assets to defend.

The model is evaluated against an interconnected natural-gas, electric system

which is created from data available from the Energy Information Administration

(EIA). The impact of multiple stakeholders is evaluated in the impact model, showing

that the inclusion of independent actors significantly influences the observed impacts

of cyber-attacks on asset owners. The strategic adversary model is evaluated against

varying number of actors and noise to capture the adversary’s sensitivity to accurate

models. Finally, the defense strategy is analyzed in its effectiveness at protecting

against the strategic adversary.
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2.2.2 Model Overview

The section provides an overview of the interacting forces in interdependent CPS’s

and how they will be captured in a model. The actors in the system are defined along

with their independent objectives, and the threat model and device level impacts are

outlined.

The Overall System

The desired outcome driving this work is an optimal defensive investment strategy

for each actor in an interdependent CPS. The first component is an impact analysis

tool which measures the financial outcomes of perturbations in the physical system,

which are driven by cyber attacks. The impact analysis is then used to drive a

strategic adversary who evaluates the best targets to attack, given the particular

impact model. The final piece is the defender who takes the preceding two pieces

and combines them to estimate an attacker’s moves and counter them with defensive

investment at crucial locations in the system.

Refer to Section 2.1.5 for the impact model details.

The Actors and Objectives

The interdependent CPS in the natural gas-electric critical infrastructure scenario

is comprised of several gas and electric entities. Gas is extracted by drilling companies,

transported by pipeline operations, and distributed to customers, and similar actors

exist on the electric side. Each group of actors has its own customer base, which may

be another actor in the system or direct consumers, and tries to maximize its profits

as a cost optimization objective.

Each actor owns a set of components (assets) that are modeled in a directed graph.

The graph’s edges have weights which correspond to the costs and losses observed
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by the system during operation, and an optimization problem is formulated that

maximizes the profitability of the system.

Threat Model and Impact Analysis

The threat model captures cyber attacks as actively seeking to disrupt hardware

in the system with a specific agenda. The occurrence of failures are systematic,

informed, and potentially widespread. The mechanics of an attack, whether it attacks

a particular programmable logic controller or some other sensor, are translated into

perturbations in the system model. An equipment piece that fails causes reduced

capacity or increased loss in the system which maps to suboptimal flows and reduced

profits.

Given the system model and no perturbation, the most profitable flows can be

established by the actors. An attack can then reduce the capacity or increase the

loss of a component in the system model. As a result, the system operates at a lower

efficiency, having higher costs or increased losses. The impact analysis then is the

loss in profits from these perturbations.

2.2.3 Attacker Strategy

In our model, the adversary takes on the role of a subset of the actors in the sense

that it tries to maximize the profit of some of the actors through a cyber-attack.

The rationale is that the adversary can get a share of the profits of the subset of

actors, e.g., by getting equity in the companies represented by the benefiting actors

or otherwise engaging in the market. Conceptually (and simplifying somewhat), one

can think of an impact matrix with the actors as the rows and the assets as the

columns. The value IM [a, t] implies the impact of taking down target t on actor a.

If this is a positive value, it implies actor a makes a profit out of this perturbation; if

it is negative, then it suffers a loss.
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Attacker Incentives and Constraints

In the impact model in Section 2.1.5, a few observations can be made which

motivate the existence of a profit-seeking strategic adversary. The first is that dis-

ruptions in the system cause a re-routing of flows around the problem area, and these

re-routings may shift profits from one actor to another, i.e. competitor elimination.

Assets in the impact model have several parameters that are properties of the

particular design and implementation of the CPS. These parameters are the cost

of attack, the cost of defense, and the probability of successful attack which are

in addition to parameters in the impact model. The cost of attack represents the

manpower and research required to disable an asset, the cost of defense represents

the same for mitigating attacks, and the probability of successful attack plays into

the expected return on investment.

Strategic Adversary

The strategic adversary (SA) assumes the role of an actor or actors in the system

and attempts to make investments with positive returns. Unlike in traditional impact

models, where the SA is viewed as only seeking damage, the SA here is causing

damages only to the extent that they support profits for some actors in the system.

This creates a scenario where attacks to some targets, which may be very damaging,

are unlikely because they do not create an opportunity for profit in the system.

Target Selection Algorithm

Each target t ∈ T has an expected cost of attack Catk(t) and an impact at actor

a, I(a, t), which is positive to represent gains, and a probability of successful attack

Ps(t). The attacker’s target set is T (i), actor set A(i), and is limited to spending MA

in attack expenses. The SA then maximizes its ROI as follows:
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max
T,A

∑
i∈T

(
−Catk(i) +

∑
j∈A

I(j, i) · T (i) · A(j) · Ps(i)

)
(2.8)

Subject to constraints:

T (i) ∈ {0, 1} (2.9)

A(j) ∈ {0, 1} (2.10)∑
i∈T

(T (i) · Catk(i)) ≤MA (2.11)

Equation 2.8 maximizes profits to a strategic adversary by selecting the set of

targets to attack, T , and actors with whom to share profits, A . Equation 2.9 and

2.10 constrain the functions as binary variables, and equation 2.11 limits the cost of

attack to a particular budget MA. These equations can be solved using mixed integer

linear programming (MILP). Solving MILP is computationally expensive, and the

combination set of actors and targets can become large. However, given that the

impact model represents a physical system, some optimizations can be made. The

graph can be segmented into regions of operation that contain non-overlapping sets

of actors, as commonly found in large interconnected systems, and solved through a

divide-and-conquer approach.

The SA may be faced with limited information about the system, as described

in Section 2.1.5. When the adversary solves the optimization problem with the per-

turbed values of the edges and the nodes, it gets a perturbed impact matrix I ′, which

is different from the ground truth impact matrix I. It then bases its attack decision

on I ′. In Section 2.2.5, the impact of the imperfect knowledge on the expected gain

of the adversary is characterized.

2.2.4 Defense

The defenders are all actors in the system who are fundamentally optimizing their

defensive investment decisions. Given the likelihood of an attack Pa, the likelihood



43

of a attack being successful Ps, the expected impact I, and the cost to defend Cd,

the actor decides to defend a target if PsPaI > Cd. The defensive model is integrated

with the other two components, the strategic adversary model and the interdependent

impact model, through the parameters I and Pa, respectively. The probability of

attack is created by the defender’s model of the strategic adversary.

Strategy

Each actor a in the system owns a subset of targets, Ta. For each target t, a

binary defense decision D(t) is made by the owning actor a. D(t) = 1 means that

the asset is defended, D(t) = 0 means it is not. The investment is limited by the

defensive resource MD(a). The defender then optimizes as follows:

max
D

∑
t∈Ta

(Pa(t) · I(a, t) · (1−D(t))− Cd(t) ·D(t)) (2.12)

Subject to the constraint:

D(t) ∈ {0, 1} (2.13)∑
t∈Ta

(D(t) · Cd(t)) ≤MD(a) (2.14)

Equation 2.12 trades the cost of defense against the expected loss due to an attack

and results in an optimal defense subject to the constraint in Equation 2.14 which

caps the amount of expenditures on defense to MD. This can be solved using MILP,

as in the strategic adversary case.

Limiting Information

Similar to the strategic adversary, the defender may have limited information

about the system. The impact matrix that the defender bases her decisions on may

be formed by a noise-perturbed model of the underlying system, i.e. I ′. The defender

is responsible for determining which targets the strategic adversary will attack, Pa.
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This is done by evaluating the SA model from the defender’s view of the system. For

this, the defender perturbs I ′ with her estimate of the knowledge that the adversary

has and creates I ′′.

Collaboration in Defensive Strategy

Multiple defenders may wish to coordinate defensive operations for certain targets

in the system. Some links may have negligible owner impact but cause substantial

losses in other parts of the system. For example, the lowest cost power source becom-

ing disrupted increases costs for all energy buyers, so they may wish to pool resources

to defend the low cost source.

Collaboration may occur based on varying levels of agreements. In one extreme,

no actors are collaborating, and in another extreme, all actors are collaborating.

In order to cooperatively defend a particular asset, all actors interested must have

negative impact values for that particular target. At target t, CD(t) is the set of

valid cooperating defenders. The optimization is as follows:

Define:

Ccd(a, t) =
Cd(t) · I(a, t)∑
i∈CD(t) I(i, t)

(2.15)

Optimize:

max
D

∑
i∈T

 ∑
j∈CD(i)

(Pa(j, i) · I(j, i) · (1−D(i)))− Cd(i) ·D(i)

 (2.16)

Subject to the constraints:

D(i) ∈ {0, 1} (2.17)∑
i∈Ta

(D(i) · Ccd(j, i)) ≤MD(j) ∀j ∈ A (2.18)

These equations are identical to the earlier set when |CD(t)| = 1. The optimiza-

tion in Equation 2.16 makes a decision on the total cost to defend a target when its

impact is combined across cooperative defenders. Pa(a, t) takes into account the fact
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that each defender, actor a, may have a different perceived attack probability based

upon the limited information model it uses in assessing defense.

2.2.5 Experimentation

CPS Model

Refer to Sections 2.1.6 and 2.1.7 for the detailed model explanation.

Attacker and Ownership Model The attacker in these scenarios has the ability

to reduce a target’s capacity to zero. If the attacker targets edge (u, v) then c′(u, v) =

0 and the impact assessment is done for this perturbation. Although there are several

models for attack behavior, this is chosen because it allows for large changes in the

system to occur. The impact of attack is measured as independent disruptions to

each edge in the graph.

Since this chapter makes no attempt to speculate on the best ownership distri-

butions, a uniformly random assignment of all the assets among the actors is taken.

When additional actors are introduced into the model, the number of edges (assets)

remains fixed and any one actor’s asset pool is subsequently reduced.

Experiment 1: Interdependent Model

The focus of this experiment is to analyze the behavior of the interdependent

system under attacker perturbations.

The premise of creating a multi-actor impact model is that having multiple actors

competing over resources allows for some actors in the system to benefit from attacks.

To capture this effect, the summation of positive (and negative) impacts are observed

in the system in this experiment. As the number of actors increases, two things will

occur. First, competitor elimination becomes more prevalent , i.e., for some functions

in the CPS, a monopoly is created, laying the foundation for more profits for some
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players. Second, since the attacks are really zero-sum, the gains will be met with

corresponding loss potentials.

Figure 2.11 shows the absolute value of gain or loss in the system, averaged across

random ownership, versus the number of actors present. The amount of gain in the

system increases with actors, as expected, but tapers off as additional competition

becomes impossible due to a nearly independent ownership model. The given model

has 12 points of competition mapping to the 12 hubs in the gas and electric system,

and so saturation occurs around the 12 actor mark in the graph. The takeaway here

is that gains are met with losses, and that gains increase with the number of actors.

Fig. 2.11. The total gain and loss in the system, as the sum across
impacts felt by all actors, increase as the number of actors in the
system increase up to a point of saturation. The sum of the gain and
negative loss remain constant.

Experiment 2: Strategic Adversary

The strategic adversary model is examined to determine what causes most damage

to the system.
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The SA’s goal is to extract profit from the system by attacking assets, subject to

a constraint on the total budget she can expend for launching such attacks. The end

result of applying costs to attacks is constraining the number of targets or particular

targets that the attacker can disrupt. For explorations in this section, the costs are

uniform across targets to remove some of the complexities involved in understanding

the model behavior and instead a limit to the number of targets will be used.

The SA launches an attack as a set of targets and actors with whom the SA will

share in profit, which is determined by solving the optimization function introduced

in Section 2.2.3 . To this end, the success metric of the SA is simply the sum of the

profits across the target and actor set chosen.

For this experiment, the SA is given a system with varying numbers of actors and

varying amounts of knowledge, represented as the standard deviation (σ) of noise.

The intuition is that an increasing number of actors provides a more granular option

for target selection. An attack on a particular target may cause, relatively speaking,

a gain and a loss to a particular actor. If that actor becomes subdivided into two

new owning actors, then the remaining profitable actor can be selected by the SA.

The other dimension is that when the SA knows less about the system, through the

addition of model noise, suboptimal decisions will be made. Experimentally the SA’s

target determination is done based on a noisy view of the system, while the actual

impact comes from what the ground truth model experiences due to an attack.

Figure 2.12 shows the profitability of the SA, averaged across random ownership

distributions, while selecting a maximum of six targets to attack. With a larger

number of actors in the system, the success of the SA is increased as expected, with

the 2-actor scenario having the worst profitability. This follows the curve in Figure

2.11. As the knowledge level of the attacker is decreased, the effectiveness of the

attack also decreases due to poorer decision making.

Figure 2.13 compares the SA’s anticipated versus observed profitability. As the

knowledge of the SA decreases, and the model becomes noisy, the attacker’s antic-

ipated profit does not decrease, but his actual profit does. This suggests a viable
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Fig. 2.12. This figure shows the profitability of the strategic adversary
versus the amount of knowledge (inverse of noise) that it has about
the system. As the noise increases, the profitability decreases. Addi-
tionally, as the number of actors increases, the profitability of the SA
also increases because of profit opportunities.

defense policy — deception, specifically, making the attacker think that he knows the

protected system better than he does in practice. Then, the attacker may be willing

to expend greater resources only to realize after launching the attack that he obtained

diminished returns (corresponding to the solid line in the figure).

Experiment 3: The Defenders

The defenders are comprised of every actor in the system, acting in self-interest

to mitigate losses due to attacks.

When making assessments about defense, a fixed system budget is assumed (12

assets) and then divided among the actors evenly. This means that in a 12-actor

system, each actor can defend a single target, and in a 2-actor system, each actor can

defend 6.
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Fig. 2.13. This compares the profit of attack for a 6-actor system.
The SA anticipated returns, based on the noisy model, do not decay
with knowledge level. This means that if the SA is overconfident, the
observed returns will be much less than anticipated.

The defender’s goal is to minimize the impact of an attack. The metric used for

this experiment is the reduction in the impact of the possible attack to the defenders.

To be successful, the defender must accurately reason about the strategic adver-

sary’s targets and then move to protect ones which cause a significant loss to itself

and are likely to be attacked. This it does under incomplete knowledge (hence the σ

for the various parameters that it has to estimate). Further, in estimatig the adver-

sary’s strategy, it has to speculate on the level of knowledge for the adversary (hence,

a speculated σ for the various parameters that the adversary uses). This mechanism

is as detailed in Section 2.2.4.

Figure 2.14 shows the effectiveness of defense for a varying number of actors across

the noise that the defender has in its model of the system. The Y-axis is the metric

that is calculated as follows: compute, for a fixed attack (single asset), the gain to

the adversary when the entire system is undefended; compute for the same attack
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the gain to the adversary when the defender makes the optimized decision to protect

some assets. The metric is the difference of these two values. As the noise increases,

the effectiveness of the defense decreases. Intuitively this is because the defender is

not completely aware of the impact that an attack has against a particular target and

therefore may choose the assets that she wants to defend unwisely. As the number of

actors in the system increases, the effectiveness of defense decreases for two reasons.

First, the actors are each operating with a smaller defense budget since the funding is

constant for the system, thus decreasing per-actor as the actors increase. Therefore,

the actor with large negative-impact targets may be underfunded. Second, the actor

who should defend an asset may not be the owner, leading to inefficient investing.

Fig. 2.14. The effectiveness of a defense is graded by its impact re-
duction in ground truth versus the knowledge level of the defender,
modeled as noise added to the ground truth. As the number of actors
increases, the effectiveness of the defense decreases due to misaligned
incentives and a lack of pooled defensive budgets.

Figure 2.15 investigates the impact of collaboration in a system of 4 actors. The

collaboration allows the defenders to share in defensive costs, in this case for all assets,

as long as they have an aligned defensive incentive. That is, if a target causes damage
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to actor A and actor B, A and B will split the defensive costs proportional to their

individual impacts. This allows for actors to more optimally defend assets by sharing

in costs. This effect wears off as noise increases and the defenders are unsure about

which assets are important.

Fig. 2.15. The impact of collaboration is measured by allowing the
actors to share in defensive costs. When the costs are shared, more
effective investments can be made.

Figure 2.16 compares the impact of collaboration across different actor sizes. In

the first case of 2 actors, it is likely that an attack on one target helps actor 1 and hurts

actor 2, resulting in a limited collaboration opportunity. In some cases, the attack

harms a common supplier or common customer which motivates collaboration. As

the number of actors increases, the opportunity for collaboration also increases and

results in larger gains. However, for a large number of actors - 12 in our experimental

scenario, where there are 96 assets - the incentive for collaboration increases but this is

counteracted by forces seen in Figure 2.14 that the effectiveness of defense decreases.
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Fig. 2.16. Collaboration allows for actors to improve their defenses. In
this case, the system-wide defensive investment is fixed as the number
of actors increases, resulting in reduced benefit of collaboration as the
number of actors increases and their individual budgets dwindle.

2.2.6 Conclusion

In this section, a modeling technique for evaluating cybersecurity defensive invest-

ments in interconnected cyber-physical systems was presented. An impact analysis

technique enables multiple actors to compete and maximize their individual profits

in a flow-optimization problem. The multi-actor approach allows for a strategic ad-

versary to exist who extracts profits from the system by selecting targets to attack

and assuming the role of some of the actors in the system. A defensive strategy cre-

ates defense optimizations in the face of a strategic adversary. Our experimentation

evaluates the impact of attacks, ownership, defensive investments, and collaboration

among defenders. It is found that as the number of actors increases and greater

competition results, a strategic adversary is able to net more profit from carefully

targeted attacks. However, collaboration among actors, even if budget limited, can

significantly blunt the effects of such strategic attacks.
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2.3 Model and Attacks Conclusions, Insights, and Future Work

This chapter presented the first pieces of the dissertation: a model for an example

CPS and an approach to attacking and defending it. These pieces, when combined,

provide high level insights into the operation of energy markets and how they can

be manipulated. The key insight from this work is that economic structures with

independent actors can capture strategic adversaries’ profit objectives. This model

enables new exploration into the energy-based CPS domain by focusing on economic

objectives rather than faults and disruptions. Chapter 3 grounds these high level

models with realistic negotiation processes. This improves the solution quality by

replacing the approximation for multiple actor profits in Section 2.1.5 with an online

iterative process.

The solutions presented in this chapter have a few shortfalls that future work can

address. First, for simplicity, this model assumes a linear combination of attack prof-

its. In practice, the interdependence of assets may not be linear, and more complex

models can better optimize both offensive and strategies. Second, the targets in this

work are abstract energy-flow disruptions. Specifically, the attacks constrain energy

flows to zero. These targets, however, may have multiple modes of failure that do

not necessarily map to a complete stoppage of flow. The model could be improved

in future work by analyzing multiple failure modes for each target. In Chapter 4, for

example, successful attacks disrupt the ability for energy flows to adjust rather than

bringing them down to zero. Finally, this work analyzes a static experiment system.

In practice, the system will evolve over time, and the strategy space for attack and

defense may not exist at a single optimal point. Future work could introduce a tem-

poral aspect to the strategy space. Tangentially, non-energy CPS may have different

objective functions, but many of the techniques presented in this chapter can still be

applied to different domains simply by replacing Equation 2.1 with another objective.

Future work could also address different domains.
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The next chapter introduces more technical models for energy system operation.

In these new models, communications exist between market players. Since these com-

munications occur in real-time, latency and temporary network outages can influence

market behavior.
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3. ENERGY CPS OPERATION

This chapter covers two technical market systems that use cyber-physical systems

to negotiate the usage of energy. The techniques presented here allow the targets

in Chapter 2 to be mapped to low-level network attacks. With the work presented

here, an adversary can attack a realistic smart grid deployment and extract additional

profits from the system, as later demonstrated in Chapter 4.

Section 3.1 is based on joint work with Dylan Shiltz and Thomas R. Nudell from

MIT’s Active Adaptive Control Laboratory. Sections 3.1.2, 3.1.4, and 3.1.5 and the

dynamic market mechanism (DMM) model are primarily the contribution of those

authors. The communication modeling in Section 3.1.3, experimental setup, and

experimental results and analysis are novel contributions for this dissertation. The

second half of this chapter (Section 3.2) is a market method created for analysing

real-time CPS.

3.1 A Framework for Evaluating the Resilience of Dynamic Real-Time

Market Mechanisms

3.1.1 Introduction

High penetration of renewable generation introduces challenges in many areas of

power system operations, including real-time market operations. In particular, the

fluctuations in renewable generation motivate a need for real-time coordination of

distributed energy resources, which can respond rapidly to intermittent generation.

A promising approach to facilitate this coordination is through dynamic economic

dispatch algorithms such as those proposed in [3, 36–43], paired with flexible con-

sumption through DR and flexible storage resources. These mechanisms enable ef-
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ficient integration of unpredictable generation and flexible loads into the power grid

with the goal of improving grid resilience and operational efficiency. Naturally, real-

time coordination of distributed energy resources, especially over a large geographic

region, requires communication across networks [44]. Such networks can experience

non-negligible latency, loss of information, and congestion. Dynamic market mech-

anisms and flexible consumption and storage will ideally improve grid performance;

however, less is known about their resilience behavior in the face of delays, outages,

and other disruptions to the underlying communication infrastructures, which may be

unavoidable. In this section, a framework is proposed for evaluating the resilience of

dynamic real-time market mechanisms for managing electric power grids in the face of

realistic network and power disruptions. This framework may be used to evaluate the

resilience of any number of market mechanisms (such as those described in [3,36–43])

operating on various communication infrastructures and power system networks.

In typical planning and operation of the power grid today, several market-based

control layers are already employed to maintain a balance between generation of

and demand for electricity. At the slowest time-scale, generation units are committed

well in advance, bidding to supply power in day-ahead markets (DAM). This creates a

tentative dispatch schedule for generators. Real-time markets (RTM), which operate

on the time-scale of minutes, revise this dispatch schedule to accommodate changes

in supply, account for inaccuracies in the predictions of load, and adjust to variable

renewable energy resources (RER). These markets also serve to reduce outage-induced

stress and inefficiency during power shortages or surpluses. Much of the intermittency

associated with renewables typically occurs at this faster time scale, necessitating

dynamic algorithms, including dynamic real-time market mechanism and price-based

coordination of DR.

In the current market structure, most loads are not price-sensitive (i.e. they are

price-setters rather than price-takers). For example, many residential consumers pay

a fixed rate for power that is set by utility companies and regulated by local and/or

federal agencies; these rates change, at the fastest, over the course of months. The
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DAM and RTM prices can potentially exceed these fixed rates during peak demand

or supply shortages, disrupting market efficiency. Traditionally, the market cannot

operate in a way that provides maximum social welfare to all participants because

of these traditional inflexible loads. In contrast, dynamic market mechanisms allow

flexible consumers to act as price-setters rather than price-takers, thereby allowing

near real-time negotiations of prices, generation, and flexible consumption set-points

which in turn can lead to optimized social welfare. Implementing a dynamic real-

time market mechanism, however, entails substantial communication overhead for

exchanging real-time information and iteratively negotiating prices.

In most existing algorithm designs [3, 36–43], the communication layer is typ-

ically idealized or ignored during market method evaluation. In reality, however,

communication networks cannot always operate with strict guarantees on latency or

disruption. Routing issues, link outages, and message loss are commonplace in large

networks due to the number of devices and their configurations. Large scale outages

on commercial networks are not uncommon [45]. Models of dynamic markets that

do not consider such network issues may prove unreliable or inconsistent when im-

plemented in a realistic communication environment that is prone to such outages.

Therefore, the influence of the dynamics of communication networks on markets and

their convergence, when driven by faults and failures, needs to be analyzed in detail

before these methods can be adopted widely on the smart grid. The framework pro-

posed in this section can be used for this purpose—to evaluate the resilience of these

market mechanisms and better understand how they may handle contingency events

in the power system under constraints of realistic communication implementation.

One strategy to account for realistic communication constraints is to design latency

aware algorithms, which assume a non-zero latency required for communication. For

example, DYMONDS [46] requires that communications be designed such that all of

the information required for operation is available in the central control location. It

is perfectly rational to design a latency aware algorithm in principle, but it may be

difficult to guarantee these specified latencies in practice. Hence, any latency aware
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algorithm can also benefit from the proposed framework by evaluating its viability

when the communication network does not operate as designed.

Several prior works evaluate the susceptibility of broader cyber-physical systems

to cyber-attacks. Work in [47], for example, focuses on cybersecurity aspects in con-

fidentiality and integrity, but it does not focus on the impact of network latency on

system operation. Work in [48] evaluates energy systems with distributed resources–

the target system for work in this section. Their security focus, however, is on in-

tegrity attacks via spoofed messages and insecure communications. In systems with

distributed energy resources, however, the communication network interconnections

may span large distances, and thus suffer from data availability concerns that have

not been addressed. The framework provided in this section focuses on the impact of

information availability on power grids, with an emphasis on market operation.

Framework Elements

The proposed framework consists of the market layer, including the decision mak-

ing components (ex. an independent system operator (ISO)), a communication layer

(ex. clients and servers), and the physical layer (ex. generators, loads, and power

lines) as shown in Fig. 3.1. The communication layer maps the agents in the physi-

cal network—generators and flexible loads—to nodes in the communication network.

The market layer represents decisions of economic dispatch where a balancing au-

thority (ex. ISO) and market participants (ex. generators and flexible consumers)

communicate with each other. In practice, the particular architecture of any of these

three layers may vary. This layered structure enforces causality across communication

boundaries and adds realism to the market mechanism design.

Using this framework, a standard scenario is considered by introducing faults

at the physical layer and failures in the communication network. Electrical power

systems must be designed and operated such that acceptable performance is main-

tained following a contingency. The North American Electric Reliability Corporation
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(NERC) defines a credible contingency as one that is both plausible and likely. The

failure of any single element of the power system may be considered a credible con-

tingency (sometimes referred to as N−1 contingency), while the simultaneous failure

of multiple elements that are not physically or electrically related is not likely, and is

therefore not a credible contingency [49]. In this section, the most common type of

single element failure is considered: generator outages.

Existing control loops are designed to stabilize the power system following such

disturbances. However, today’s traditional real-time markets (RTM), which deter-

mine dispatches on the order of 5 minutes, often clear some time before the operating

hour, and at best, can take several minutes to re-allocate generation. In contrast,

dynamic real-time market mechanisms can enable the grid to adapt more quickly,

responding to on-line information, making the grid more resilient to disturbances.

These new methods themselves, however, rely more heavily on communication in-

frastructure. The resilience study developed in this section attempts to evaluate the

ability of such mechanisms to respond to common contingencies within an adverse

communication environment.

A resilient mechanism will adapt to changes or threats to the system and still be

able to match supply and demand as closely as possible at all times. For this pur-

pose, metric is introduced that captures the impact of a physical disturbance and the

ability of the market mechanism to adapt to this physical contingency and reallocate

power in the face of simultaneous disruptions to the communication network. Hence,

this metric can be used to evaluate the resilience of any particular market mech-

anism with a given communication infrastructure and electric power system model

and contingency.

The remainder of the section is organized as follows. Section 3.1.2 introduces

dynamic electricity market mechanisms. Section 3.1.3 models the operation of these

market mechanisms over realistic communication networks. Section 3.1.4 formally

defines the resilience metric. Section 3.1.5 details the experimental scenarios, which

start with a 118-bus test case, used to illustrate the framework. Section 3.1.6 discusses
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Fig. 3.1. Each agent in the physical network—generators and flexible
loads—is associated with a client in the communication network, these
clients send and receive information to and from the server at the
independent system operator (ISO) who operates the market.

simulation results, and demonstrates the utility of the framework for evaluating the

resilience of dynamic real-time market mechanisms. Section 3.1.7 provides concluding

remarks.

3.1.2 Dynamic Real-Time Market Mechanisms

An electric power grid is a network of high voltage AC transmission lines that

route power between generators and consumers over large distances. Today this

network is managed through a hierarchy of electricity markets, in which generators

and consumers can negotiate the price and quantity of power at various locations in

the grid. In deregulated electricity markets, an economic dispatch is performed on
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the order of every 5 minutes. This dispatch, calculated in a centralized fashion by an

independent system operator (ISO), determines the most cost effective way to meet

power demands subject to constraints on generators and the grid.

The introduction of intermittency and uncertainty into the electric power grid

through the widespread adoption of RERs, however, has caused the traditional mar-

kets to become decompensated. Managing RERs, which commonly suffer from inter-

mittency on a very fast time-scale, and the potential of adjustable demand through

DR resources necessitate a dynamic framework. The former introduces issues of

strong intermittency and uncertainty, and the latter a feedback structure where de-

mand can be modulated over a range of time-scales. Both of these components dictate

a new look at market mechanisms with a control-theoretic perspective. In smart grid

literature this has sometimes been called price-based control (see [50] and references

therein) or transactive control (see [51] and references therein). Throughout this

section the underlying algorithms of these methods will be referred to as dynamic

real-time market mechanisms.

Dynamic real-time markets represent expanded participation opportunities in the

market process, which has been enabled by technical innovations that allow for rapid

communication among a wide, automated user base. This allows a market to ef-

ficiently embrace RERs and DR with real-time decision making but requires large

digital communication networks. In turn, frequent communication enables grid com-

ponents (clients) to quickly adapt to changing conditions. It also allows for more

accurate predictions of renewable generation and load fluctuations, as decisions are

made closer to real-time.

Market Mechanism Operation

Although electricity market mechanisms vary in their implementation, many of

the dynamic real-time mechanisms share a few common features. Each generator

typically has a cost curve that describes the marginal cost of generation as a function
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of the power being generated. These curves tend to be convex (i.e., as a generator

approaches its maximum operating limit, its marginal cost of generation increases).

Similarly, each flexible consumer has a utility curve that describes the marginal utility

of consumption as a function of the power consumed. It is assumed that these utility

curves are concave [3, 36–43]. In addition, all generators and consumers have limits

on how much power they can produce or consume at any given time. A concrete

implementation with quadratic cost and utility curves is shown in Section 3.1.5.

The objective of a market mechanism is to maximize system utility and minimize

system cost, subject to constraints of the market players as well as the physical

transmission system. This can be written as an Optimal Power Flow (OPF) problem,

which is an optimization problem of the form

min f(x) (3.1)

subject to

h(x) = 0 (3.2)

g(x) ≤ 0 (3.3)

where x is a vector of system states (including generation, consumption, voltage an-

gles, etc.), f is a cost function of these states, h(x) is a set of equality constraints

enforcing power balance at each bus, and g(x) is a set of inequality constraints en-

forcing bounds on generation, consumption, and line transmission. The most general

form of (3.1) is a fully non-linear AC OPF that is non-convex and NP-hard. Thus, for

real-time operation it is common to use a linearized DC OPF formulation [52], which
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neglects reactive power flow and AC line losses. This allows the equality constraints

h(x) to be written as a linear function

hn(x) = ∆n +
∑
i∈Dn

Pi −
∑
i∈Gn

Pi +
∑
m∈Ωn

Bnm(δn − δm) = 0

∀n ∈ N (3.4)

where Dn ⊂ D and Gn ⊂ G are sets of flexible consumers and generators at node n,

Ωn is the set of nodes adjacent to node n, N is the set of all buses in the network,

and Bnm are the susceptances of the lines from node n to node m. Each bus also

experiences a conventional (inflexible) demand ∆n.

If the objective function f(x) is convex, then Problem (3.1) is convex and can be

solved efficiently. Price-based solutions of (3.1) usually involve calculating locational

marginal prices (LMP’s), denoted by λ at each bus in the system. The power produced

or consumed by each market player is denoted by Pi ∈ x, i ∈ V = D ∪ G, and is

typically some function of λ and the grid state x. That is,

P k+1 = ψ(xk, λk) (3.5)

where ψ may contain information regarding grid topology, cost and utility curves,

grid frequency, and other network parameters. In (3.5), the superscript k denotes the

iteration index, with zk denoting the value that z takes at time tk, and P denotes a

vector with its ith element given by Pi. The power setpoints are iteratively updated

with period Tk, such that x converges to x∗, the optimal dispatch for the grid. It

should be noted that price-based mechanisms are not the only proposals in the lit-

erature (other approaches include dynamic programming, integer programming, and

other non-derivative methods), but in this section is focused on price-based methods.

The structure of (3.5) suggests a decentralized execution over a large digital com-

munication network with synchronized updates. If information is successfully sent

and received during the negotiation window Tk, then the algorithm works as de-
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signed. However, if communication is lost or is delayed, the algorithm suffers from

network impacts which may adversely affect its performance. In order to understand

the network impacts, the next part of the framework describes communication mod-

els.

3.1.3 Modeling Latency in Communication Networks

Solving the optimization problem (3.1) using a dynamic real-time market mech-

anism requires communication between widely distributed parties—namely clients

(ex. loads and generators) that may be several hundred miles apart and a server

(ex. ISO). To achieve a near real-time synchronization between the loads and genera-

tors, the market model must be fast enough to converge with reasonable computation

power, and the interaction between the clients and server must occur via a realistic

communication network.

Most market mechanisms operate by iteratively updating price in real time in

response to changing physical conditions such as increased load. These physical con-

ditions occur at the ends of the network and must be communicated with the central

market coordinator (ex. ISO) to establish optimal prices. Once new prices are avail-

able, these too must be communicated to the clients. When network conditions are

non-ideal, this communication process can become irregular, disrupting normal mar-

ket behavior.

Iterating Markets Over Networks

Market mechanisms are designed to find solutions to the optimization problem

(3.1), often using iterative solution techniques such as the Newton-Raphson [3] or

interior point [53] methods. Network-agnostic implementations of these methods

assume that the computations and iterations occur instantaneously and synchronously

in the system. On a practical computer network, however, each iteration takes some

non-zero time to complete. The numerical solution method is broken into discrete
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Fig. 3.2. Relevant time scales for distributed market mechanisms

steps with a real-time duration of Tk, and the maximum number of allowed iterations

to converge is Ts
Tk

, with Tk � Ts (see Fig. 3.2). The market mechanism sends a

negotiation xk and waits Tk seconds for a reply from the clients. If every client

replies within Tk seconds, then the algorithm operates as designed. If no reply is

received, however, the algorithm may enter an undefined operational state and can

suffer network impacts. The rest of this section defines how the market will operate

in the presence of irregular communications.

Latency Model

Latency is introduced to market mechanism algorithms by delaying the round-trip

interaction between the central market and the distributed clients, as a perturbation

of an iterative optimization algorithm. In this way, the control actions taken because

the market outcome are delayed [54, 55]. Each client i has a pair of states xi, λi

that is delayed by a latency function τi(k). This shift must be negative to maintain
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causality, and assuming time starts from zero, k − τi(k) ≥ 0. Delay is introduced to

(3.5) as

P k+1 = ψ(xk−τ(k), λk−τ(k)) (3.6)

where x and λ are defined in (3.5) and τ(k) can be thought of as a vector of the

latencies of each client.

An example of a latency model applied to client i ∈ V can be expressed as

τc,i(k) =

k k < `i

`i k ≥ `i

(3.7)

where k is the time-index and `i is a constant-latency value for client i. The simplified

constant latency model in (3.7) is applicable to network conditions where each client

has a fixed minimum latency to communicate with the ISO server e.g. speed of light

limitations due to grid geography.

Another model shown in (3.8) captures network outage situations, and we denote

this function as τx. In this case, a set of clients, denoted X ⊂ V , is unable to

communicate with the market. Formally,

τx,i(k) =

k i ∈ X

0 i ∈ V \ X
(3.8)

The client is unable to receive an updated price, and the market evolves as if the client

is unable to change its power level. The model (3.8) assumes the outage occurs at

k = 0, although the value of τx,i(k) can be shifted to the outage start time. The model

(3.7) and (3.8) are a compact representation of the latency models used in [54,55].

For simplicity it is assumed that the market mechanism uses a zero-order hold

during non-communication periods in both (3.7) and (3.8). That is the part of the

state x controlled by client i does not advance. It is also noted that (3.7) and (3.8)
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are primitive models which can be combined to create more complex scenarios that

include both disconnects and constant latency.

Practical Networking Constraints on Market Mechanisms

Up to this point, τ has been modeled as an integer parameter, offsetting k. Real

computer networks, however, experience real-valued latency L ∈ R≥0. The mapping

from real latency L to τ can be represented as

τi(k) =

⌊
L(tk)

Tk

⌋
(3.9)

where τi(k) is the delay shift at time step k, tk is the mapping between the step k

and time, i.e. as tk = kTk, L(t) is the real-valued latency at time t, and Tk is the step

size.

The convergence rate of stochastic gradient descent based methods is bounded

by O(
√

τ
Tk

) [56, 57]. Comparing L(t) = 2Tk to L(t) = Tk, for example, gives some

intuition to why this is true. In a network-agnostic implementation, τ may be forced

to 0 by increasing Tk to absorb the latency difference. As a result, the convergence rate

would be half. The τ model, however, operates like a pipeline where new iterations

may be based upon stale values. As a result, decreasing Tk with a fixed L provides

diminishing improvements in solution quality.

The communication systems of the future smart grid have not yet been final-

ized [58], and there is a direct relationship between reliability and cost. Internet-scale

communication, for example, relies on a best-effort model to keep costs low. This

means that there are no guarantees on delivery, bandwidth, or latency among clients

connected to the Internet. While many competing models in the past such as circuit

switching networks provided dedicated, rigid bandwidth and latency guarantees, they

were ultimately too expensive compared to best-effort methods since they eliminated

multiplexing opportunities (the use of idle bandwidth). Establishing high-reliability

latency-guaranteed networks between power generation stations, often located in re-
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mote areas, presents a high-cost barrier to reliable communication assumptions. For

this reason, best-effort networks may provide a cost-optimal solution, as long as the

market mechanisms can sustain operation in poor networking environments. If design

shows that there are significant benefits to reliable latency values, then more rigid

network constraints could be implemented such as those for the IEC 61850 technical

standard that requires performance minimums for certification.

In order to understand the consequences of the latency models in the above dis-

cussion in the context of resilience, the next section develops the final component of

the framework: a resilience metric.

3.1.4 Resilience Metric

The primary responsibility of the dynamic real-time market is to allocate resources

to match supply and demand repeatedly over very short time-scales. The dispatched

power matches demanded power as closely as possible at all times, but primary control

systems and secondary markets will always compensate for any discrepancies. In

other words, the amount of power that cannot be allocated by the market mechanism

must be accounted for by other means, either through costly ancillary services or

through adverse impacts to the grid such as frequency deviations from 60 Hz. The

effectiveness of the mechanism can therefore be measured based on the mismatch

between dispatched power and actual power generated at a particular time throughout

the system, termed as residual power, denoted Rp(t) ∈ R. The resilience metric that

is proposed in this section, therefore, is a measure of Rp(t).

In the current context, it is argued that a resilient mechanism should adapt to

changes or threats to the system and still be able to match supply and demand as

closely as possible at all times. A perfectly resilient mechanism will have an Rp(t) that

is always zero, that is zero impact, even in the face of disturbances. A non-resilient
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system can then be viewed as a system with non-zero Rp(t), with its magnitude

indicating the degree of non-resilience. Therefore, the resilience metric is defined as

R(t) = 1− |Rp(t)|
Rmax
p

(3.10)

which is a non-dimensional quantity with 0 ≤ R(t) ≤ 1. Notice that R(t) = 1 ∀t

denotes a perfectly resilient system and R(t) = 0 ∀t indicates a perfectly non-resilient

system. The metric in (3.10) captures the impact of failure, which is one key compo-

nent of risk modeling of cyber-physical systems [23,48,59].

Other aspects of risk modeling include threat and vulnerability, which capture

the likelihood of a particular failure in both the physical and communication net-

works [23]. Vulnerabilities include failures of the advanced metering infrastructure

and manipulation or disruption of SCADA systems [60]. Developing a more compre-

hensive resilience metric, in comparison to (3.10), which additionally captures threat

and vulnerability is still an active area of research and outside the scope of this section.

Using (3.10) along with realistic communication, computation, and market mech-

anism models allows us to evaluate and compare the resilience of future grid operating

strategies and provides insight into overall system performance. A concrete example

of such future grid operation consisting of the Dynamic Market Mechanism (DMM)

developed in [3] used to manage the IEEE 118-bus test system is described in the

proceeding sections. The experimental setup is presented next, followed by simulation

results in Section 3.1.6.

3.1.5 Experimental Setup

In this section, the experimental setup that is used to evaluate the resilience

framework is explained. Three experiments are designed that evaluate the resilience of

the DMM described in (Section 3.1.2) under different communication network stresses.

Each experiment uses the same physical system, the IEEE 118-bus. At the beginning

of each experiment the highest-output generator is removed from the system. The
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resilience of the DMM is measured by R(t) defined in (3.10) with Rmax
p = Pi of

the removed generator. All simulations were carried out in MATLAB1 using the

Matpower 118-bus test case [61].

Physical System Scenario

The experiment begins with the IEEE 118-bus test system [61] with a suite of

loads—two types of dispatchable DR along with conventional loads—and generators

connected to various buses throughout the system. The conventional generators and

loads are defined by the 118-bus test case [61]. There are fifty-four dispatchable

generators in this model. Additionally, a total of thirty dispatchable demand-response

units are distributed arbitrarily throughout the system with power consumption limits

of [10, 60] MW. The thermal limits on the transmission lines are assumed to be 300

MW such that the system is partially congested.

Cost and utility curves, mentioned in Section 3.1.2, used in this example are

quadratic curves with an additional barrier function [62] to accommodate minimum

and maximum bounds on power generation or consumption. Specifically, the cost and

utility curves are expressed as

C(Pi) = biPi + ciP
2
i +

M

(Pi − Pi)2
+

M

(Pi − Pi)2
, i ∈ G (3.11)

U(Pi) = biPi + ciP
2
i −

M

(Pi − Pi)2
− M

(Pi − Pi)2
, i ∈ D (3.12)

where bi and ci are base and incremental cost/utility parameters for the ith agent,

respectively, and P i and P i are maximum and minimum generation or consumption.

The parameter M determines the steepness of the barriers, and in the experiments

M = 5. The cost parameters for the generators are defined in [61]. DR cost param-

eters are selected from the uniform distribution bi ∈ U(0, 45), ci ∈ U(−2,−1) for

i ∈ D.

1MATLAB is a registered trademark of The Mathworks, Inc
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Summary of DMM

The dynamic market mechanism used here was originally proposed in [3], and it

uses a Newton-Raphson-like primal-dual interior point method [62] to update (3.5).

The decision variables are Pi, i ∈ V = G ∪D, and δ, which denote generation, flexible

consumption, and voltage angles respectively. We denote the state vector as x =

[δTP T ]T and the objective function as f(x). The Lagrangian of the optimization

problem is L(x, λ) = f(x) +λTh(x) where h(x) denotes power balance at each bus in

terms of the state variables. The DMM iterates can be expressed as

xk+1 = xk − α(H)−1∇xL(xk, λ̂k) (3.13)

λk+1 = λ̂k − αh(xk) (3.14)

where λ̂k = M1(h(xk)−M2∇f(xk)), H, M1, and M2 are constant matrices, and α is

a positive step size. See [3] for specific details. In our experiments α = 0.01.

Networking Scenario

The communication network is a hub and spoke model where each client, either a

generator or a DR unit, has a direct link to the ISO who facilitates the market. The

nominal network scenario can be described by a particular τ function, as mapped

through (3.9). For these experiments, a DMM with negotiation iteration length of

Tk = 30 ms is used as specified in [3]. Therefore τ = 1 maps to L ∈ [30, 60).

Link outages are modeled as in (3.8), with the size |X | indicating the number of

links disrupted. In practice, multiple links could be targeted, representing a strategic

attack on the network. However, analysis of such attacks is outside the scope of this

section. Three networking scenarios are described next.
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Experiment 1: Single Link Outage For a single link outage |X | = 1. This

simulates a single fiber cut, for example, or other sudden network failures. In total,

84 outage simulations are evaluated, one for each client.

Experiment 2: Small Constant Latency Small constant latencies represent

minimum communication delays for deployed systems. These delays arise due to the

speed of light, the actual lengths of communication cables, the store-and-forward

delay of intermediate networking equipment such as routers and switches, and the

technology in use (fiber, radio transmission, etc.). Part of the system design is se-

lecting a communication rate for processes that use iterative solution techniques. If

this communication interval is too short, then the response of the system will become

degraded. Design values for latency may be exceeded with geographic growth of the

control area, backup network links, or general system design.

For Experiment 2, the latency of every client is identical and scaled from L = 0 ms

to L = 120 ms in 30 ms increments using model (3.7) with the parameter `i ranging

from 0 to 4 (i.e., L=0ms
Tk=30ms

= 0, . . . , L=120ms
Tk=30ms

= 4). In contrast to Experiment 1, no links

are taken offline in Experiment 2.

Experiment 3: Non-Uniform Latency Many cases can arise in networks where

there is a non-uniform latency across the different client to server connections. For

example, some clients are farther geographically from the server than others and are

therefore more susceptible to latency than those that are closer. Additionally, some

clients may use older communication technologies—especially in backup situations—

that have high latencies such as satellite-based communications.

To capture this, the model (3.7) is used, as in Experiment 2, but with non-uniform

`i across clients. This non-uniformity is introduced via independent Gaussian noise.

Each client’s latency is assigned from a truncated Gaussian with values between 0

and 2µ as N(µ = 60 ms, σ), where σ is the controlled parameter. This creates a

situation where some clients are able to respond more rapidly than others during the

simulation.
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Fig. 3.3. The system responds to a worst-case single-generator failure.
The market minimizes residual power in two identical experiments,
but one has a communication link outage to a single client–the one
that causes the most impact.

3.1.6 Experimental Results

Experiment 1: Residual Power with Single Link Outages

In this experiment, every network link between the ISO and the client (generator

or demand-response agent) is independently disrupted for a total of 84 simulations.

The cumulative residual power for each outage is used to rank the links in order of

impact. Fig. 3.3 shows the response to the power disruption for both the baseline

(outage-free) and worst-case link outage scenarios.

The results indicate that this particular market mechanism is resilient to single

link outages. In the worst case, a single link outage is identical to removing two

market players from the system for this scenario (one by power fault and one by

communication fault). As long as the underlying power system has the capacity to

adjust to these combined worse case situations, then isolated link outages will not

adversely impact grid resilience.
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In fact, one could argue that this dynamic real-time market mechanism has made

the power system more resilient at this fast time scale, despite the isolated link out-

ages. To understand this, consider the RTM used today, which will clear for 5 minute

intervals over an operating hour at least 60 minutes before the start of that operating

hour. This means that the market would make no adjustments over the course of

the simulation. Instead, the system operator must rely on ancillary services such as

AGC, or rely on corrective action—essentially a manual override implemented by the

central ISO. In contrast, the DMM has adapted to the physical fault and reallocated

most of the power optimally.

While the framework demonstrates that the DMM response is satisfactory, the

algorithm is unaware of its networking environment. At convergence, a small amount

of power has not been reallocated by the market mechanism. This amount is propor-

tional to the remaining difference between dispatched and actual power at the client

suffering a link outage. This quantity can be minimized by tuning DMM parameters,

namely α and M . Alternatively, if the algorithm were aware of the network failure,

then it could drop the affected client from the market and dispatch the power to other

market participants. This indicates practical design challenges in market mechanisms

of detecting and perfectly adapting to network disruptions.

Experiment 2: Small Constant Latency

Fig. 3.4 shows the impact of low constant latency values on algorithm performance.

As latency increases, the response of the system becomes slower. In an integrative

process, the effective gain of the control system is proportional to the rate of com-

municated updates since the state uses a zero-order hold in between update periods.

When the latency surpasses the design threshold of Tk = 30 ms, the impact is similar

to a reduction in the α gain parameter in update equations (3.13)–(3.14). While

the recovery of the test system slows down as the latency increases, the resilience

is still acceptable. In particular, DMM is still able to fully adapt to the loss of a
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Fig. 3.4. The mean latency for each client is increased. The higher
latency values reduce the rate of communication, and the convergence
speed of the system for different latencies is shown.
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Fig. 3.5. The variance in latency is increased for a small mean value.
After the system apparently stabilizes, the response begins to oscillate.

generating unit—even the highest constant latency case that was tested—well before

a traditional RTM would be able to take any action.

Experiment 3: Non-Uniform Latency

Non-uniform latency can create instability in the DMM, as Fig. 3.5 illustrates.

Initially, the system responds as expected with the resilience metric driving towards

unity. When the system nears convergence (after 30 seconds), the resilience begins to

deteriorate for all distributions of non-uniform latency. The oscillations in the R(t)

signal indicate instability in residual power due to commanded power levels. This

is because the utility and cost curves are non-linear around their upper and lower

bounds. Small changes near the bounds result in large jumps in the cost gradient

values that the DMM algorithm uses to optimize social welfare. Since some clients

can respond faster than others, many iterations can pass with these inflated gradient

values. As a result, the system moves much farther away from the power constraints

than it otherwise would. This behavior ultimately drives the system to instability

after sufficient time and crashes the market.
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An interesting note is that the distributions simulated here have a fairly small

variance from the mean. If larger variances are used, then the instability could occur

even more quickly. These results indicate that asynchronous iteration across market

players can lead to unstable operation, and that market designers should be aware of

the impacts of non-uniform latency.

In summary, the framework shows that the DMM is tolerant to single link outages

and small uniform delays. In these scenarios, nearly all of the power lost by a worst-

case generator trip is reallocated within five minutes. Hence, the DMM can make the

118-bus test system resilient to N − 1 contingencies despite non-ideal communication

network conditions. The framework has also revealed that non-uniform latencies, even

those with a small mean and variance, can lead to instability in the market mechanism.

These procedures and tests could be repeated on a different power system model with

a different market mechanism and/or communication network.

3.1.7 Conclusions

In order to efficiently embrace DR resources, the smart grid is steadily moving

toward dynamic, real-time markets that require frequent and reliable communication

over wide area networks. Yet, little is known about how such markets may perform in

real-world implementations as the underlying communication networks may be sub-

ject to latency and faults that can impact the market performance and ultimately

the performance of the physical power grid. In this section, a framework was devel-

oped for analyzing and evaluating the resilience of real-time markets in the face of

latency and faults in the communication network. The framework may be used as

a starting point to evaluate the resilience of any power system operating with any

given market mechanisms implemented with a realistic communication network. The

resilience metric developed captures the impact of physical failures and the ability

of the market mechanism to adapt to and recover from these failures in an adverse

communication environment.
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To illustrate the framework’s utility, a recently proposed dynamic market mecha-

nism was simulated with an IEEE 118-bus test system that was subject to a N − 1

contingency scenario of the physical grid. The framework illustrated that the system

was resilient to single communication link failures as well as constant low-latency

scenarios. This is a significant resilience improvement enabled through the fact that

the DMM was able to respond at a much faster rate than the typical time scales

of current RTMs. The framework also provided insight into some of the potential

vulnerabilities of the DMM. In particular, when there are non-uniform latencies, the

DMM may result in oscillatory behavior leading to instability. This in turn suggests

that attention should be paid to designing a resilient DMM that accommodates such

latencies.

3.2 Dynamic Pricing for Smart Grids in the Presence of Non-Linear Net-

work Conditions

3.2.1 Introduction

Modern electric grids and distribution systems are plagued by pervasive inelas-

tic loads that do not respond to changing grid conditions such as the unpredictable

availability of renewable energy resources (RER). Therefore, when market conditions

indicate scarcity, these loads happily consume energy, agnostic to soaring energy-

source costs. Unregulated power markets suffer from large, dramatic swings in prices

due to this inelasticity especially when unpredictable or transient power conditions

arise. These swings, absorbed by power producers, intermediate brokers, and dis-

tribution system operators, cause serious financial losses, drive companies such as

Duke Energy out of competitive markets [63], and result in grossly inefficient uses of

electricity. A study for the NY-ISO, the independent (power) system operator (ISO)

for the state of New York, indicates benefits from elasticity could be as high as $403

million per year [64]. A solution that introduces elasticity exists—demand side man-
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agement (DSM) in the smart grid (SG)—but it presents a unique set of networking

and optimization challenges that have not yet been solved.

Creating flexibility requires both exposing consumers to an incentive signal and

enabling them to act on it. Demand side management [65] embodies the set of tech-

niques and technologies that enable load elasticity. This section is specifically focused

on the transactive control elements–those which enable elasticity. For example, a tech-

nique may negotiate a price for power, send it to a consumer, and allow the consumer

to adjust a load via intelligent devices such as an Internet-enabled thermostat. Most

existing power markets operate with large bulk producers that are unable to respond

to rapid changes in price signals. For example, the NYISO estimates that 96% of

energy is cleared in their day-ahead market with only 4% of energy transactions oc-

curring in their 5-minute real-time market. At the same time, however, distribution

level system operators (DLSO) are burdened by rooftop solar panel integration [2],

charging penalties due to the disparity in net metering revenues and actual market

costs. DSM techniques are needed that can operate at the distribution level with large

numbers of individual consumers. Existing techniques, however, rely on predictable,

cooperative consumers and real-time information exchange to operate successfully.

In this section a technique for distribution-level transactive control is presented and

evaluated under non-linear network conditions.

DSM techniques can be broadly split into two categories: transactive control and

direct load control (DLC). In DLC, a central authority creates elasticity by directly

modifying the energy set points for various loads in the grid with the permission of the

user under a contract. An aluminum smelting plant may be asked to shut down for the

day or a clothes dryer in a home may be temporarily disabled, for example. Techniques

such as demand response (DR) and agile balancing [43] fall in this category. These

techniques, however, centralize control and eliminate consumer’s choices–choices that

often change in real-time. To account for time variations, a transactive layer is added

to DR via dynamic pricing signals. Instead of directly controlling loads, the central
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authority sends dynamic price signals, reflective of market conditions, and consumers

respond to these prices.

Several techniques and methods exist for managing price signals, but they have

two shortcomings that are addressed by work in this section. First, most techniques,

such as those in [41, 53, 66], rely on optimization techniques such as the interior

point method. These optimization methods require price-demand gradients to exist.

At a consumer level, however, many loads are often discrete. For example, electric

water heaters and small air conditioner compressors operate on simple on/off signals,

creating non-smooth load profiles. Second, most techniques, such as those in [1,41,53,

57,66,67], do not consider the network implications of implicit optimization methods

used in their solutions. For example, if a Newton-Raphson based method [68] is

used to converge around an optimal solution, all of the iterations are assumed to

occur in the same time instant. When networked, this implies that the load profiles

for consumers are stationary while a solution is found, eliminating the incorporation

of time-varying information during convergence. While prior work has created the

groundwork for feasible real-time transactive control at the consumer level [69], the

behavior of most algorithms is undefined if communications are lost from some clients.

The technique presented in this section is derivative-free, non-stationary, real-time,

and resilient to a variety of network conditions.

Distribution scheduling presents a unique set of challenges that this section ad-

dresses. First, large numbers of low-budget consumers are interacting with the power

market. This points to best-effort, existing network technologies for communication

among market players that introduce jitter, congestion, and reliability issues into the

communication infrastructure. The technique in this section provides mechanisms for

overcoming unstable communications via continuity planning and efficient inclusion

of outdated information where possible. Second, individual consumers may not have

well defined cost information, and it may change with time. To optimize price in

this context, derivative free techniques are used that make no assumptions about the

structure of consumer’s load profiles. Finally, since new consumer technologies such
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as plug-in electric vehicles can respond rapidly to price signals, on-line price signal

that changes rapidly without fixed windowing are used.

In order to address these challenges, the Nelder-Mead (NM) optimization heuristic

[70] is modified to work on an online, non-stationary stochastic objective function.

Standard NM is not designed to handle stochastic problems [71], so it is modified as

to tolerate stochastic processes. The algorithm is further enhanced by accounting for

non-stationary objective functions. The proposed optimization technique, though ap-

plicable to non-stationary stochastic problems, is still not robust to network failures

as each iteration requires an objective function evaluation that requires network com-

munication. The NM technique is further enhanced by providing network-immune

function evaluation via state projection and estimation.

Using this technique, it is possible to provide online, dynamic pricing for an exam-

ple distribution system’s power market. The technique is able to increase efficiency

by 64% over optimal 5-minute time-of-use pricing by rapidly issuing dynamic price

values to consumers. If a rapid transient occurs, then the online, algorithm is able

reduce residual power by 85% over an a priori time-of-use approach. The performance

of the technique is evaluated for a variety of network conditions, and it is shown that

even under high latency situations, with 20% of clients disrupted or less, the solution

still performs better than time-of-use solutions.

The rest of the section is structured as follows: Section 3.2.2 provides additional

background on the DSM problem. Section 3.2.4 provides an overview of related work.

Section 3.2.7 covers the solution technique, and Section 3.3 investigates networking

impacts. Section 3.4 evaluates the performance of the algorithm presented in this

section, and Sections 3.4.7 and 3.4.8 discusses and concludes it.



82

3.2.2 Background

DSM, Dynamic Pricing, and the Power Grid

In the power grid, the goal is to constantly match supply with demand [1]. The

mismatch in supply and demand is known as residual power (RP), and without

widespread energy storage devices, it must be immediately corrected. Small amounts

of residual power is absorbed by automatic generation control and system inertia.

Large amounts of RP, however, can result in grid overload and cause brownout and

blackout conditions. To minimize RP today, power utilities implement day-ahead

scheduling based on energy usage forecasts. Market players submit bids some time in

advance to meet the forecasted energy needs at various intervals spread throughout

the day. While the vast majority of energy is scheduled a day in advance, a small

amount of generation participates in a ”real-time” market (RTM) that attempts to

rectify the residual power resultant from forecasting errors and unexpected transients

such as generator outages. In this case, real-time is relative to day-ahead, and the

market for one real-time period may close well in advance of that period. The prices

in the RTM can range from $30 in one 5-minute window to $300+ in the next. Dy-

namic pricing and demand side management are designed to reduce this variance by

bringing more market players, especially consumers, into the real-time domain.

Demand side management (DSM) [65] entails a large suite of technologies that

bring real-time flexibility to the smart grid. The components include digitally con-

trollable loads, network protocols, metering devices, and other pieces required to

adapt power supply and demand to a control signal, used by transactive control sys-

tems [72]. A general dynamic pricing objective function [73], used by DSM, is shown

in Equation 3.15. It minimizes RP by controlling the locational marginal pricing

(LMP), λ, throughout the system.

arg min
λ

∑
n∈N

(
|
∑
i∈n

Pi(λn) + Pt(n)|

)
(3.15)
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where n ∈ N covers all the nodes in the power grid, Pi(λn) is the power used or

produced (negative) by each client at price λn, and Pt(n) is the inter-nodal power

transfer constrained by transmission capacity.

3.2.3 Real-Time Communication

The algorithmic core to dynamic pricing is a numerical optimization technique

used to solve Equation 3.15. The fundamental basis for dynamic pricing is that the

distributed consumers have access to changing, private information that is beneficially

incorporated into the pricing optimization problem, i.e. Pi(λn) is actually Pi(λn, t), a

continuous-time (though likely discrete) function. This inherently requires constant

communication between the DSM market players to adapt to changes as the system

evolves.

As DSM methods solve for new prices, they are broadcast system-wide to the mar-

ket players. The market players respond by adjusting consumption and production

values that the DSM algorithm samples for its next price calculation. This pro-

cess happens in two stages: negotiation and actuation. In the negotiation stage, the

prices are hypothetical and used to improve solution quality, for example in a Newton-

Raphson iterative process. Constraints or other dynamic information are exchanged

at this level, depending on the solution algorithm used for DSM. The actuation stage

sends contractually backed prices on which the consumers act. Figure 3.6 shows this

process.

Many DSM techniques convert the continuous-time DSM problem into discrete

windows for which a solution can be generated by a stationary optimization tech-

nique. Once the algorithm has converged, a new window can be created and the

algorithm advanced. A practical problem with this approach is that new information

cannot be incorporated into the problem until the next window occurs. Addition-

ally, the functions Pi are owned by the distributed market players and must be syn-
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Fig. 3.6. Communication pattern: Negotiation phase and actuation phase.

chronously frozen. Any deviation by the individual market players from the frozen

Pi can invalidate convergence properties that rely on stationary functions.

Nelder-Mead and Derivative Free Optimization

Many optimization techniques analytically derive Pi and use its formulation in

an interior point method or gradient descent to solve Equation 3.15. These methods

make assumptions about client behavior when formulating P ′i , and then iterative

methods such as the Newton’s method are used to optimally find λ as the roots of

Equation 3.15. These techniques, however, rely on the derivability of Pi(λ)′ and may

not exist for Pi(λ, t) or at all for clients with discrete behaviors.

Derivative free optimization techniques such as the Nelder-Mead method [70, 71]

solve the optimization problem via heuristic searching without relying on derivations

of Pi. These techniques iteratively evaluate the objective function (RP) and make

algorithmic decisions on which point to evaluate next based on prior observations.

The convergence properties of these methods are not well guaranteed, but they do

usually generate sound solutions to the dynamic pricing problem when used in this

section.
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Practical Limitations to DSM

Optimizing DSM requires extensive network communications to occur over a wide

area network. Geographic limitations restrict the speed at which messages can be ex-

changed, and throughput limitations restrict how many messages can be transmitted

and received for any window of time. Therefore the cost of optimization is summarized

as the number of function evaluations required to reach an optimal solution.

The computational requirements for large optimization problems solved by Nelder-

Mead are rather minimal sorting and summation components across a fixed number of

historical values. Computational restrictions are therefore ignored. The networking

restrictions for a price-power exchange is roughly 100 bytes of data in each direction

(64 bytes for a TCP datagram and 32 for a value). A 10-Gbit connection could

therefore sustain a theoretical 1.5 million exchanges per second, a suitable amount

for a large power market.

3.2.4 Related Work

3.2.5 Existing DSM Techniques

A wide range of existing DSM techniques provide mathematical and heuristic ba-

sis for optimizing power delivery in the smart grid. Work in [41] creates a general

concave optimization problem around dynamic pricing and solves it using an iterative

gradient projection method. This approach, however, utilizes gradients in consumer’s

utility and solves optimization problems using fixed windows of time. Work in [53]

optimizes DSM with plug-in electric vehicle (PEV) consumers acting as the model for

Pi. This technique also uses integer programming or interior point methods to solve

for stationary dispatches. A common theme in DSM approaches [1, 57, 65] is to seg-

ment the energy market into windows in which the system is stationary and a solution

can optimally converge before adjusting the market. Most methods rely on station-

ary problem parameters and ILP/MILP/IPM to solve the distributed optimization,
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and they do not consider the communication patterns or overhead associated with

distributed gradient and function evaluations.

Work in [74] provides a distributed method for optimizing prices in DSM. The

technique, however, relies on broadcast messages to all connected clients which is

not a scalable solution. Additionally, the problem is assumed stationary between

iterations. In this section, a system that accommodates the delays due to real-time

communication and does not require the system to be stationary between iterations

is proposed.

3.2.6 Existing Latency Studies

There has been some work on DSM with lost communication messages in [57].

The authors frame the DSM problem using an interior point method to solve for

the prices, like several other techniques. They then analyze the convergence on lost

communications by solving the problem using stale, outdated information. Work

in [56, 75] and the results (also derived in [57]) show that convergence is still pos-

sible when the gradient/lagrangian are stationary buy delayed in time. In [56] the

convergence rate is shown to slow as a function of the amount of stale information

incorporated into the convergence process. Under latency conditions τ , the solution

convergence error for gradient descent is bounded by
√
τ/T where T is the number

of negotiation iterations [76]. These techniques, however, rely on stationary (and

existing) gradients at the market players. In this section, a system that is based on

derivative free optimization and does not require knowing the gradients at the market

players is proposed.
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3.2.7 Solution

Definitions and Assumptions

The market consists of players or clients whose only action is to consume or

produce power. A central price-setting entity (assumed to be a distribution-level

utility) dispatches prices to clients as either hypothetical (negotiation) or actionable

as a control signal, and the power utilized by each client at a particular price point

is assumed authentic. Consumer/producer constraints are manifested in the cost

function as asymptotes. Non-participatory clients are modeled as offsets in the nodal

power balance.

Overview

In the nodal power balance model, the consumers are a distributed set of market

players connected to a central price coordinator. The coordinator controls the price

signals at each node to balance power in the grid. To do this, the market players reg-

ister with the coordinator and provide their real-time consumption levels in response

to a hypothetical or actionable price that is periodically transmitted to the clients.

The coordinator decides, via a pricing algorithm, subsequent prices in response to the

power levels provided by the market players. Whenever a new price is determined to

be more efficient than the existing price, it is made actionable. To determine optimal

prices, the ISO periodically transmits prices and waits for a fixed period for a reply.

In the event no reply is received from a market player, a substitute value for power is

used. In the event information arrives after a period has expired, it may or may not

be useful to the ISO for calculating future prices.

Non-Stationary Objective and Time-Scales

The underlying algorithm is designed around an implicitly non-stationary objec-

tive function. Each iteration of Algorithm 1 takes non-zero time, and this has an
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influence on the behavior of f(x, t), the objective function. A stationary x with a

varying t will ebb and flow with the overall supply and demand of electric power in

the grid, and sometimes during transient events such as faults, the change between

f(x, t − ε) and f(x, t + ε), denoted ∆f(), can be dramatic. The standard Nelder-

Mead algorithm on which Algorithm 1 is based will not converge if ∆f() escapes

the contracting simplex and the resulting finite, constrained search space. Several

modifications are made to allow large ∆f().

Nelder-Mead Optimization

Algorithm 1 contains the approach used to solve the optimal price in the system.

The algorithm is based on a standard Nelder-Mead algorithm [71] but modified to

support non-stationary problems. Three modifications are provided to enable the al-

gorithm to perform online optimizations on non-stationary objective functions. First,

the search spaced used by NM is modified to prevent collapse so that transients can

be detected. Second, the algorithm is updated so that cached function values are

updated to improve point-ranking. Finally, the algorithm is changed to enable quick

retracing of the simplex space during its shrink operation.

In the algorithm listing, the function evaluations are explicitly demarcated to

show where communication must occur as the evaluation of f(x). Since the power

consumption is determined by distributed clients, the x term must be transmitted to

each client. The clients reply with fc(x) and f(x) =
∑
∀c fc(x).

Simplex Collapse The standard Nelder-Mead algorithm collapses a simplex around

an optimal point in a search space. When the simplex is sufficiently small, or the stan-

dard deviation of f(X1), ..., f(Xn) is less than a threshold, the algorithm terminates

with a solution (however, the online method never terminates since the objective

function is non-stationary). If f(x) is non-stationary, then the optimal point may

move outside of the simplex and outpace the reflection point’s growth, especially if

the simplex is small and the change in f is large. In the standard Nelder-Mead algo-



89

Algorithm 1: Modified Nelder-Mead

1 Initialize X1..n, f(X1..n)
2 while true do
3 Sort X1..n by f(X1..n) ascending f(X1) ≤ f(X2)
4 Set X1 as actionable
5 Xo = X̄1..n−1

6 Rv = rand(−0.5, 0.5)
7 R = Rv(ω + β/(std(X1..n) + β))
8 Xr = Xo + α(Xo −Xn) +R
9 Evaluate f(Xr)

10 if f(X1) ≤ f(Xr) < f(Xn) then
11 Xn ← Xr;f(Xn)← f(Xr); continue
12 end
13 if f(X1) < π then
14 Re-Evaluate f(X1)
15 end
16 if f(Xr) < f(X1) then
17 Xe = Xo + γ(Xo +Xn)
18 Evaluate f(Xe)
19 if f(Xe) < f(X1) then
20 Xn ← Xe;f(Xn)← f(Xe); continue
21 else
22 Xn ← Xr;f(Xn)← f(Xr); continue
23 end
24 end
25 Re-Evaluate f(Xn−1)
26 if f(Xr) ≥ f(Xn−1) then
27 Xc = Xo + ρ(Xo −Xn)
28 Evaluate f(Xc)
29 if f(Xc) < f(Xn) then
30 Xn ← Xc;f(Xn)← f(Xc); continue
31 end
32 end
33 Xb = X1

34 for k=1..n do
35 Xk ← Xb + σ(Xk −Xb)
36 Evaluate, Store f(Xk)
37 end
38 end

rithm, the simplex can only expand in the case that f(Xr) < f(X1), the best point.

This means that the algorithm will become stuck in practice, especially since f(Xr)

will only become worse as the optimal point moves away from the simplex. The first

modification, in lines 6, 7, 8, adds random noise, inversely proportional to the size of
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the simplex, to the reflection point. This allows the simplex to expand, as a function

of ω, β, when the search space is very tight. If the reflection point is accepted, then

the centroid Xo can move a substantial amount, accelerating the pace by which the

simplex can track the non-stationary optimal point.

Inaccurate Ranking The sorting operation on line 7 operates on historical, mem-

oized function evaluations, each of which takes a non-trivial amount of time to cal-

culate. Consequently, if at any point X1 is close to the optimal X, then its rank

will become difficult to change by subsequent evaluations unless the simplex shrinks.

Line 13 contains a condition in a parameter π to re-evaluate the optimal point X1.

Since the residual power problem is convex with a optimal point at zero, the amount

of re-evaluation requests can be throttled this parameter. Intuitively, when the ob-

jective value of f(X1) is large, the probability that f(Xr) < f(X1) will be large. This

compounds with the simplex expansion in Section 38, so that when the optimal point

leaves the simplex, the probability that the simplex updates with Xr increases.

Reflection Retracing The most expensive operation in terms of function evalua-

tions is the, reduction/shrink part of the algorithm starting on line 34. In this phase,

the entire simplex is reduced around the best point X1 as Xb. If the optimal point

moves quickly enough away from the existing simplex, then the condition that the

reflection point is worse than any existing point, f(Xr) ≥ f(Xn), will occur. Addi-

tionally none of the exploration points will be better than f(Xn), by assumption. As

a result, the algorithm will shift and re-evaluate every point in the history, including

X1. This expensive operation requires n function evaluations to complete, but it

will enable the efficient movement of simplex provided σ is not too small. By also

re-evaluating X1, the ranking of the new points can be updated.
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Fig. 3.7. Faults: When the communication channels are interrupted,
the algorithm operation becomes blocked (left). With a recovery
mechanism, a new price and power level can be used to continue
operations (right).

3.3 Networking and DSM

The behavior of most DSM algorithms is undefined whenever information does

not successfully arrive in each iteration, as shown in Figure 3.7. For example, Algo-

rithm 1 will not complete with even a single straggler in the function evaluation phase.

This section presents methodologies used to recover from non-linearity experienced

in networked and distributed systems.

3.3.1 Latency Influences in DSM

Negotiation

Traditional optimization techniques are designed to operate iteratively in lockstep.

The prices for the next iteration depend on the power levels of the previous iteration,

and these are assumed available at each iteration. In a large scale system, however,

this means that the real-time iteration speed is bounded by the slowest market player.

To solve this issue, latency can be accounted for by introducing stale information into

the optimization problem when communication is interrupted. Optimization occurs
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around z = f(x(t− τ(t))) instead of f(x(t)), for example. Each iteration is assumed

to take Ts seconds to complete before moving to the next step.

The relationship between τ and t is maintained by wall-clock speed of each itera-

tion, Ts. Each transmission of z(t) takes τR(t) wall-clock seconds. Each overall iter-

ation blocks for τI seconds, waiting for all replies to arrive, then τ(t) = b(τR(t)/τI)c.

This maintains the relationship that error reduction is bounded by the real-time speed

of the communication network. If the number of iterations completed in a window of

time is doubled, and min(τ(t)) ≥ 1, then τ ′(t) = 2τ(t),
√
τ/T =

√
2τ/2T =

√
τ ′/T ′.

The algorithm presented in Section 3.2.7 operates with a memoized history. La-

tency is captured by each function evaluation, where x is sent out to all the clients,

and they reply with fc(x), and the objective function is
∑
∀c∈C fc(x). Continuity is

guaranteed by using an approximation function for fc(x). Initially all values for f(x)

are populated with the projection function and then replaced as new values arrive

via communication systems. In this case, if τc(t) > 1, it will not be incorporated in

the initial evaluation of f(x) in the algorithm. Instead, the historized value of f(x)

is updated when the new information arrives. This allows for efficient a posteriori

incorporation of stale information, manifested via re-ranking of f(X1..n). The accu-

racy of the projection function will impact how well the method survives high latency

situations.

Actuation

Latency in the actuation loop for DSM introduces potential state inconsistencies

in the system. There are three hypothetical states in the system: the a posteriori

oracle-optimal xO(t), the DSM’s intended state x(t) and the experienced state x(t−

τ(t)). The DSM is intending to minimize the objective function f(x) which captures

the inefficiency of the state. At a base level, the penalty for actuation delays is

f(x(t− τ(t)))− f(x(t)) while the degradation performance of the system is f(x(t−

τ(t)))− f(xO(t)).
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Fig. 3.8. Asynchronous state traversal from x(t0) to x(t1) via several
potential paths, each a function of communication latency.

In existing DSM techniques, timescale for negotiating is much shorter than ac-

tuation, however, which leads to granularity issues in tracking the true impact of τ .

For example, the time-scale for actuation may be 5 minutes. Latencies between 0

and 5 minutes are captured by τ = 0 i.e. the actuation is based on a projection 5

minutes in the past, and as long as the message arrives by 5 minutes, there is no

consequence at this level. The problem is complicated due to the lack of a distributed

agreement protocol in the system. For example, consider a system in which τ(t) ≥ 1

for all market players. Since information is received asynchronously, the evolution

from x(t0) to x(t1) is asynchronous, as shown in Figure 3.8. With the right latency

values, the asynchronous state traversal may transit state spaces that perform poorly.

Ideally, the movement between states would be instantaneously, as modeled in DSM.

However, the speed at which traversal occurs, a function of communication latency,

impacts the performance of DSM. The movement between states is necessitated by the

encroaching ”degraded” operation space (i.e. S(x(t)) is becoming worse over time).

For this reason, costly distributed agreement protocols can have a high penalty.
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The algorithm presented in this section, however, actuates whenever any new,

more-optimal X1 value is found (i.e. X1(t − 1) 6= X1(t)). At this level, the system

responds much more quickly to changes in the power grid. Degraded states are much

more easily avoided. Stability can be ensured by coordinating, a-priori, the load

points that the consumer will use if communication is disrupted.

3.4 Experimental Results

This section provides and analyzes two primary experiments. In the first Experi-

ments, 1-3, the base optimization technique is evaluated and compared to the optimal

performance of other techniques. This section also analyzes the algorithm’s sensitiv-

ity to parameters described in Section 3.2.7. Experiment 4 analyzes the algorithm’s

ability to withstand uncertain network conditions expected to arise from best-effort

networks.

3.4.1 Experimental Setup

The experiment uses agent-based modeling to capture the behaviors of an example

smart grid setup. There are three primary agents: the consumer/producer, the market

manager, and the communication agents. The consumer/producer agent models a

generator or consumer in the system, the market manager implements Algorithm 1,

and the communication link accounts for latency and congestion behaviors in the

system. A central event-based queue manages the interactions between the agents,

and an external scenario file describes the transient behaviors of the agents.

Communications Model

The communication between the agents is managed via a FIFO queue. The deliv-

ery time for a message is calculated as latency plus transmission time (size/bandwidth)

with a maximum queue size that introduces dropped packets. The bandwidth and
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Table 3.1
Example parameters used in Figure 3.9

Pmin Pmax λmin λmax

Consumer 0 110 0 100
Generator -90 0 30 80

latency parameters can be controlled to introduce latency via agent-to-agent message

congestion or via external congestion.

3.4.2 Load and Generation Model

This experiment models supply and demand as scaled sigmoid functions, as shown

in Equations 3.16, 3.17 as P (λ). Figure 3.9 shows two example curves with the corre-

sponding residual power at each pricing point, based on the parameters in Table 3.1,

where the generator power level is presented as positive but actually negative. The

sigmoid function was chosen to allow responsiveness to price while also facilitating

asymptotic behavior at the extremes, capturing market-enforced constraints.

λs = 6 ∗ λ− λmin

λmax − λmin

− 3 (3.16)

P =
Pmax − Pmin

1 + eλs
+ Pmin (3.17)

For the experiments conducted in this section, unless specified, the parameters

used are as follows. There are 2 generators G, NG = 2, and 100 consumers C,

NC = 100 with a target power TP = 100. The mean Pmin for the generators is PT

NG
.

The Pmax for the consumers is 3PT

2NC
. The λmax for C is $100, and the λmin is $0. For

the generator it is $80 and $30 respectively.

The non-stationary components are as follows. The generator and consumer have

a time-constant τG, τC as 3600s
π

for a period of two hours. The magnitude of change

AG, AC is 0 and 0.35PT

NC
respectively (generation is not time varying by default). For

generators, only Pmin is modulated as AG ∗ sin( t
τG

). For consumers, both Pmax and
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Fig. 3.9. The supply (generator) and demand (consumer) are shown
for varying market prices. The residual power shown is the imbal-
ance between the generator’s output and the consumer’s input. Since
residual power can disrupt the grid and lead to inefficient generation,
the goal is to optimize the market price such that the residual power
is minimized.

Pmin are modulated by AC ∗ sin( t
τC

). This creates periodic swings in demand that

require constant updating of λ to maintain system optimality.

Transient Events

To analyze the effectiveness of the online algorithm at handling unpredictable

transients, step changes in demand are introduced into the model. To model step

behaviors, the Pmax and Pmin parameters are shifted by PT

2NC
and PT

10NC
respectively.

This shift is done at different points in time depending on the particular experiment.

3.4.3 Experiment 1: Analysis under Normal Conditions

In this experiment, the DSM technique is subjected to a two market scenarios:

one predictable and one unpredictable. The network conditions are assumed to be
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favorable such that 60 iterations can occur per minute (1 per second). A time-

changing scenario is run for one hour of simulation time and compared to an optimal

windowed output function, time-of-use (TOU). The primary difference between the

online method and the TOU method is the granularity of control.

In the first experiment, the market price is plotted across time for one hour,

shown in Figure 3.10, under the time-varying parameters described in Section 3.4.2.

Three different profiles are presented–the online, optimal, and 5-minute ideal time-

of-use (TOU) values. The online solution closely matches the optimal with a lag for

iteration-execution of one iteration (one second). The TOU solution is only optimal

at one point per window in this scenario. It is worth noting that as the window size of

TOU approaches zero, it matches the optimal solution (only with perfect prediction,

since TOU is scheduled in advance).

Fig. 3.10. The λ price values are shown for a particular one-hour
scenario. The optimal price is constantly changing, and the online
method is attempting to match it. The time-of-use (TOU) method
provides pricing windows with perfect prediction. The online method
is much closer to the optimal price than the TOU approach due to
increased granularity of control.
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The optimality of the online approach in the residual power domain is shown in

Figure 3.11. The online solution never perfectly matches the optimal solution, but it

gets close at the apex of the price curve where the system is slowly changing. The

TOU technique is only optimal at one location per window and suffers more when the

slope of change is highest. The online method reduces residual power by 64% over

the 5-minute time-of-use approach.

Fig. 3.11. The residual power in the market must be absorbed by
automatic generation control. Less residual power indicates optimal-
ity in the pricing method. The online method is able to outperform
the TOU method when changes occur in the system due to increased
time-precision, reducing residual power by 64%. When the system
is not changing rapidly, at the 30-minute mark, both approaches are
comparable.

3.4.4 Experiment 2: Unpredictable Step Change

This experiment adds an unpredictable step change to demand, as described in

Section 3.4.2, to the prior experiment. At 20 minutes in, a change in demand occurs to

simulate a large load suddenly coming online. At 40 minutes, the load is removed and

the system resumes its predictable behavior. Figure 3.12 shows the price response
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to this situation. TOU is unable to adapt to the transient since it is calculated a

priori while the online method is able to observe and respond to the changing market

condition.

Fig. 3.12. A step load is added and removed at 20 and 40 min-
utes respectively. The TOU method, calculated a priori, is unable
to adapt to the change in the system. The online method lags the
optimal method during the step transient, but it is able to adapt to
the changing market conditions.

The residual power from this experiment is shown in Figure 3.13. The online

algorithm adapts to the transient by observing market conditions and making real-

time updates to the price. The algorithm rapidly improves in a few market iterations,

resulting in a 85% reduction in residual power over TOU. Higher speed iterations (sub

one-second) could enable outage avoidance by curbing demand quickly in a transient

such as a transmission line being disabled.

3.4.5 Experiment 3: Sensitivity to β

A key parameter to the adaptability of Algorithm 1 is the β parameter which

controls the minimum exploration capability of the algorithm (e.g. the minimum size

of the simplex). Figure 3.14 shows how the system responds to various values of β
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Fig. 3.13. The residual power is shown for a step change in load. The
online method responds to the transient to curb residual power and
outperforms the a prior TOU method by 85%.

during a transient that lasts between time 200 s and 400 s. The lower values of β

allows tighter simplex solutions to exist. This hurts adaptability to change, both

time-varying and transient. The higher values allow quick changes to occur in the

simplex search space, and as shown in the figure, the high β values are quicker to

adapt to change. The lowest values are unable to adapt to the transient and become

optimal again once the transient ends. In some sense, the β parameter tunes the

responsiveness or long-term smoothness of the algorithm.

Figure 3.15 shows a spread of β values and the average impact on residual power

for scenario described earlier. Higher values of β give more flexibility to the system

and allow it to adapt to changing conditions. In low-transient situations, the value

of β has limited impact relative to other terms in the algorithm. This is because

when the system is tightly converged on a particular solution, explorations in new

directions yield dead ends, so there is limited impact.
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Fig. 3.14. Different β values for Algorithm 1 are plotted for a step
change at time 200-400 seconds. The high values of β improve adapt-
ability to transients while the low values resist drastic changes to the
price.

Fig. 3.15. The average residual power in the market decreases with
higher β values during the transient period. Without transients, the
β parameter has little impact on performance.

3.4.6 Experiment 4: Networking Impacts

For this experiment, the prior experiment is repeated with increasing latency. In

order to operate under latency, the ISO utilizes a power consumption estimate for
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clients that do not respond within one timestep. Equation 3.18 captures the model

used for this experiment. Pe is the pre-transient power and τ is the time since an

update was received from the client. Parameter Jo = −0.2 offsets the estimate and

Jv = 0.01 adds random noise to the offset with R being a sample from the normal

distribution with mean and variance equal to one. The Jt = 50s parameter controls

the time-dependent decay of the estimate accuracy. Using these parameters, the

online algorithm is harmed by non-reply from clients.

P ′ = (Pe(1 + Jo) + Pe ∗ Jv ∗R) ∗ τ
Jt

(3.18)

The networking model for this experiment is a star or hub and spoke topology.

Each client has two communication agents, one upstream and one downstream, in-

terfacing with the online algorithm. The latency values are assigned to each link as a

constant offset and the bandwidth is set to 1 Gbit. A random subset of communica-

tion agents have latency added, controlled by the fraction parameter. At 50 seconds,

the latency is added to the scenario. At 100 seconds, a transient occurs, and at 200

seconds the latency is removed from the scenario which terminates at 300 seconds.

Figure 3.16 shows the performance of the online algorithm with varying factions

of the communication agents experiencing high-latency situations. The fixed-price

solution shown captures the behavior if the perfectly projected price is used, absent

adaptation to the transient. When too many clients are disrupted, the online algo-

rithm is penalized by the inaccuracies introduced by Equation 3.18. Even with these

inaccuracies, the online algorithm is able to withstand 20% of clients being disrupted

before performing more poorly than the fixed/windowed solution. A more accurate

estimation function would improve performance.

3.4.7 Discussion

The algorithm presented in this section is designed to accurately respond to quick

transients in the power grid by using price signals. Much optimization, however, takes
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Fig. 3.16. This figure shows the performance of the system with a
varying number of clients experiencing latency conditions. As more
clients are exposed to latency, the system is unable to adapt well to
transients. Small populations are easily accounted for by the online
adaptability of the algorithm, but the larger populations place a high
reliance on the load-estimation function.

place in longer term planning. For example, work in [43] optimizes consumption cen-

trally by observing each loads needs and flexibility and developing a global operation

plan. The approaches are complimentary, however, since long term plans are inher-

ently not robust to changing market conditions. Ideally, the algorithm presented in

this section would be used in conjunction with global planning to create an optimal,

robust solution.

A limitation to this approach arises from developing ultra-precise control. Much

of the price fluctuations at fast timescales are viewed as noise, especially if the system

has substantial inertia e.g. synchronous motors as loads. For this reason, there is

usually resistance in moving from 15-minute to 5-minute windows, etc., especially at

a wholesale level. It is worth noting, however, that solid-state electronics such as

those found in electric vehicles can rapidly respond to market conditions.
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3.4.8 Conclusion

In this section, a technique for optimizing dynamic pricing signals for distribution

level power markets was presented. A Nelder-Mead optimization technique was mod-

ified to support non-stationary, non-smooth price-demand curves for consumers in

electric power markets. Network-aware enhancements were applied to the optimiza-

tion technique, and it was used to optimize dynamic prices for an example market

scenario. The technique was able to reduce residual power by 64% over 5-minute

time-of-use methods during stable scenarios and by over 85% during large transients.

In future work, the particular patterns of latency that are most disruptive to the

optimization problem will be analyzed, and that information will be used to model

strategic adversaries and cyber attacks on the grid.

3.5 Technical Market Conclusion

This chapter covered technical market operations—the mechanics and algorithms

by which market clearing prices are found. The two methods presented were analyzed

from a network perspective and shown to be resilient in some cases and unstable in

others. This chapter motivates the need for further strategic adversarial analysis, and

the next chapter combines this chapter and the previous one into a concrete strategy

space for lauching network attacks to disrupt power markets.
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4. MARKET MANIPULATION

In this chapter, the economic models from Chapters 2 and 3 are combined into a

unified model for strategic adversaries in cyber-physical systems. The first section of

this work has been published in COMSNETS ’16 [77].

4.1 Introduction

Dynamic pricing markets in the smart grid (SG) [58, 65] enable the optimization

of physical resource allocation. NYISO, the power system operator for the state

of New York, could realize as much as $400 million [64] in annual efficiency gains

by leveraging wide-area real-time dynamic pricing systems. These gains, however,

depend on consistent, reliable communication networks to facilitate control signal

and measurement exchanges. The control signals comprise the price signals that the

utility sends to the consumers and the measurement signals comprise the readings of

the electricity usage at the consumers. Consumer-grade networks are often unreliable

or congested at times, and they are highly susceptible to denial-of-service (DoS)

attacks that disrupt communications entirely. As researchers pursue SG and other

incentive-driven network control systems, they need tools to first understand what

will be impact of outages of the network infrastructure on the demand-driven pricing

mechanism on the SG and then how to mitigate the impact of this increasing attack

surface and improve system resilience.

Electric power markets suffer from volatility because electricity is not easily stored.

This volatility is expected to become much more acute with the increasing use of re-

newable energy sources, such as, solar and wind, that depend on the weather patterns.

This creates a constant need to match supply with demand, but presently demand is

inelastic and unaware of real-time market conditions. Supply and demand has histor-
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ically been predictable which has limited this mismatch of supply and demand to a

tolerable level. New renewable energy resources (RER) such as solar and wind driven

supplies, however, have reduced this predictability to the point that technologies like

roof-top residential solar are becoming cost-prohibitive [2] to integrate into the grid.

The future smart grid is designed to bring elasticity to demand via techniques such

as demand response (DR) [65] and transactive control (TC) [72] so that RER’s can

be better integrated and system efficiency improved. These techniques, however, rely

on extensive communication infrastructures to coordinate wide-area energy consump-

tion.

Transactive control enables distributed, independent control systems, operated

by independent actors or market players, to coordinate via incentive-driven signals

(prices). For example, the set point on an air conditioner may be sensitive to the

cost of electricity in an automated way. This incentive can be set a priori via time-

of-use pricing, but it is not sensitive to unpredictable changes in market conditions.

Alternatively, a central market coordinator can negotiate with these automated loads

by exchanging price and load information in real time with all of the actors. This

negotiation process enables actors to rapidly respond to fluctuations in grid supply

and by adjusting their energy usage based on price signals and their current exogenous

needs. It is possible to disrupt the price signal negotiation, however, via attacks on the

wide-area communication network. Since network attacks can influence the market

price of energy directly, via control signal disruption, a strategic adversary (SA) can

potentially launch attacks to manipulate prices in her favor.

When communications between market players are disrupted, the transactive con-

trol system becomes unable to influence consumption or production at those market

players. For example if there is a spike in demand, the price signal should rise to

curtail consumption and promote production. Producers who are aware of this sig-

nal increase their output and collect additional profits. An attack could disrupt the

market signal at the producer, however, and as a result, power output would re-

main stagnant. Consequently, the market price may rise higher than it otherwise
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would have to sustain equivalent demand curtailment, and this may benefit the other

producers in the market. It could also lead to blackouts if the disruption is severe

enough. If the SA is a producer, then direct financial benefit in the power market can

be gained from such an attack. The SA can also benefit from the profits of multiple

actors through various means such as investing in these actors. The ability for a

network attack to benefit the SA is called the attacker’s incentive, and this section

focuses on measuring and reducing that incentive via defensive maneuvers.

Prior work in [78, 79] has shown that network attacks in smart grid control sys-

tems can disrupt price signals and provide benefits to subsets of consumers. These

techniques, however, do not consider defensive maneuvers that the market players can

use to protect themselves. Additionally, they rely on a strong adversary that compro-

mises the entire market communication infrastructure. In this section, it is assumed

that only the attacker can disrupt network links. Additional work in [20–24] has cre-

ated a game-theoretic structure around attack and defense in control systems. These

works do not consider the financial incentives of the attacker, however. Instead they

focus on overall system performance or lower level dynamics and model the attacker

as benefiting from system disruption rather than profiteering. In this work, game the-

oretic strategies for smart grids are combined into an attacker/defender game, with

multiple defenders, that relies on financial incentives to motivate attack and defense.

This solution encompasses a method for estimating the attacker’s incentive through

attack strategies, mapping them to a game, and playing the game from a defender’s

perspective to minimize the attacker’s incentive. First, a model for translating attacks

and impacts on a smart grid is created to form a strategy space for the attacker. A

dynamic market is implemented with communication links that can be disrupted via

denial of service attacks to capture the attacker/defender strategies. From this space,

the attacks are optimized to maximize the attacker’s incentive (profits) by attacking

communication links that distort the market to benefit the adversary. This is done

via mixed integer linear programming (MILP). Then a model for defender is created

that attempts to minimize the attacker’s incentive by blocking certain attack strate-
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gies via defensive investments (i.e. DDoS protection). Since the model has multiple

defenders (actors), the impact of information sharing among the defenders on the

reduction in the attacker’s incentive is also explored.

The solution is tested with a smart-grid based transactive control system. The

baseline system optimizes power consumption by controlling the market price sig-

nal. A simulated communication network facilitates the exchange of price and load

information. The attacker can choose which communication links to disrupt with a

DoS attack, and the defender can choose some links to protect. It is shown that

the baseline attacker incentives can be as high as 51% of overall operating profits.

When the defender and adversary’s budget are equal, the attacker’s incentive is re-

duced by up to 70%. These results validate the utility of this section’s technique in

optimizing defensive investments. It points the way forward for practitioners (such

as, utilities) looking to deploy demand-driven pricing for electricity by showing how

much resilience in the networking infrastructure is needed to assure a certain level of

economic profit from the system.

The rest of the section is organized as follows. Section 4.2 covers the background

in dynamic pricing markets and how they can be manipulated. Section 4.3 outlines

the basic attack/defense strategy, and Section 4.4 expands the strategy to include in-

formation sharing among market players. Section 4.5 evaluates the strategies against

an example dynamic pricing market, and the related work is discussed in Section 4.6.

The section is concluded in Section 4.7.

4.2 Preliminaries

4.2.1 Electric Power Grids

Power grids are complex, interconnected systems composed of generators (sources)

and loads (sinks). Each generator and load is connected to a series of transmission

links (edges). A simple approximation of the energy system is a DC-load flow model

which can be represented as a flow graph [4] where each asset (load, generator, edge)
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in the physical system is an edge or node in the graph. Profit-seeking actors sell

energy above cost (generators) or transform that energy into something more useful

(loads). The system is most efficient when supply and demand are equalized since a

surplus of power is dissipated as waste heat and a shortage of power causes brownouts,

blackouts, and other grid stability issues. The imbalance of supply and demand is

known as residual power (RP), and power grid operators strive to minimize this

value. Dynamic market mechanisms [3] and demand response (DR) [65] minimize RP

by either direct load control (DLC) or dynamic real-time markets. The work in this

section focuses on power markets rather than DLC since the markets have a direct

impact to profitability and thus attacker’s incentive.

4.2.2 Power Markets

Power markets utilize a variety of economic strategies to minimize RP (4.1) and

maximize the system’s social welfare (SW). The SW defines the global system benefit

from energy transactions as shown in (4.2), where ωi is the value (consumers) or cost

(producer) of power at each actor or market player i, and Pi is the amount of power

consumed or produced by that market player. The parameter C penalizes the system

for residual power with C � ωi. While somewhat simple on the surface, the problem

of maximizing SW is complicated by time-varying changes in ω and the constraints on

P that arise from power grid topologies and physical power constraints. To address

these challenges, new smart grid models [3,53] allow real-time power markets to evolve

with changing system conditions such as outages or unpredictable RERs.

The power market utilizes (4.3) to minimize RP, effectively maximizing SW. Each

actor is exposed to the price λ, and they adjust their power output/input to optimize

their individual economic situations. For consumers, their individual profit is SWa =

Pi · (ωi − λ). If λ > ω for a consumer, then f(λ) = 0 since the consumer would

experience a net loss by consuming energy. Changes in energy needs or production
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Fig. 4.1. The residual power (RP) and market price (λ) are shown
for an example grid scenario based on prior market solution work,
later described in Section 4.5.1. The market experiences a demand
surge in Pi for consumers at t=100 s followed by a reduction at t=250
s. During the surge, residual power spikes until the market price is
corrected.

are captured by (4.4). For example, a wind power producer has a very low ω since

wind is free and are thus driven by constraints in P .

RP =
∑
∀i

Pi(t) (4.1)

SW(t) =
∑
∀i

ωi(t)Pi(t)− C · |RP(t)| (4.2)

Pi(t) = fi(λ(t)) (4.3)

Pi(t) < Pi(t) < Pi(t) (4.4)
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Online power markets optimize (4.2) by repetitively sampling Pi and updating λ.

Each consumer receives a message containing λ and replies with Pi = f(λ). Fig. 4.1

shows how a market evolves during a step transient in (4.4). The implementation

of these systems, however, exposes security vulnerabilities that can be utilized by

strategic adversaries to extract profit from the system. For example, the value of

f(λ) may be based on an outdated λ during a communication outage thus reducing

the SW. The defensive strategies presented in this work curtail impacts to SW in a

cost-effective manner.

4.2.3 Profit Manipulation

Network disruptions have a direct impact on market price (λ). Whenever a dis-

ruption occurs, the market player enters a zero-order hold mode. For market players,

the price λ is fixed while P may change based on time-varying constraints. Conse-

quently, the market loses its influence on power usage for a subset of market players

whenever the network is disrupted. Fig. 4.2 demonstrates how the profits of a genera-

tor can be influenced by attacks on its communication link during the scenario shown

in Fig. 4.1 and detailed in Section 4.5.1. The generator loses money if its own link is

disrupted and can gain additional profits when some competitors’ links are disrupted.

Market players are retroactively charged the actual λ market price to promote market

participation—otherwise self-disconnection would be a valid strategy.

4.3 Attack and Defense Strategy

Definitions:

A set of market players

I set of target network links

SW social welfare or profitability of the system
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Fig. 4.2. The profitability for a generator is shown for two attack
scenarios. At t=50 s a DoS attack is launched on the communication
link connecting the generator to the market (self-attacked) or another
market player (others attacked), and it lasts until t=200 s.

SWa profitability of market player a

IM[a, i] impact or change in profit realized by market player a when network link i

is attacked

P atk
i probability of network link i being attacked

P [a, i] probability of network link i being attacked, as estimated by market player a

Di boolean indicating if network link i is defended

Ci cost to defend asset i

Ai boolean indicating if network link i is attacked by the SA

A[i, n] two dimensional Ai for n iterations in a game with imperfect information at

the various actors
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Oa, Oi set of network links owned by market player a, owner of asset i

σa knowledge level of market player a

4.3.1 Players and Definitions

The set of market players A in the power market wish to maximize their profit

SWa, as defined in Section 4.2.2. The power system is comprised of a set of assets and

their communication links in I. The term asset refers to both the physical system

consuming or producing energy and it’s associated target, the network link. There

is a one-to-one mapping of assets (and thus targets) to market players defined as

ownership such that one market player may own multiple assets. Each actor has a

defensive decision to make for each asset that it owns– whether or not to invest in

its defense Di ∈ 0, 1. This decision has a cost of defense Ci. If the asset is attacked,

Ai ∈ 0, 1, then the system experiences the impact IM from the attack, unless Di = 1

in which case the attack is assumed to fail via perfect defense.

4.3.2 Attacker’s Incentive

The strategic adversary (SA) attempts to profit from the manipulations described

in Section 4.2.3 by launching network attacks on the links that interconnect the

market players with the market mechanism and the price signal λ. Each attack

results in a change in the profitability of each market player, and this is captured

in the impact matrix IM[a, i] [4]. In this section, IM[a, i] is estimated via dynamic

market simulations (Section 4.5.1) by approximating the market conditions for each

player and evaluating the resulting changes in profit in the market. For example, the

impact of attacking each network link on the generator in Fig. 4.2 is summarized by

IM. The SA wishes to maximize the gain in profit for some market players with whom

she has a financial interest, shown in (4.5). A, I is the set of actors A and network

links I to attack and profit from as the attacker’s strategy.
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argmaxA,I
∑

a∈A,i∈I

IM[a, i] (4.5)

The probability of an attack on target i is proportional to the attacker’s incentive

gained from that attack. Abstractly, the target i could be any perturbation in the

system–network outages, power plant disruptions, transmission line faults, etc. In this

section, however, the focus is on a dynamic pricing system for the smart grid, and

the targets are limited to network link disruptions. Similarly, the actors that benefit

from the attack A are collections of consumers and/or generators participating in the

dynamic market.

4.3.3 Defensive Maneuvers

The market players in the system can estimate the IM via their own impact

analysis. Using their individual IM, they can also estimate the attacker’s strategy

and use it to construct a corresponding defensive strategy. Without any budgetary

constraints, the defenders will protect all the targets in I by investing in high capacity,

secured network links. Budgets are limited, however, so defenders must optimally

select targets to defend. Section 4.4 describes how the defenders can have different

views on the system parameters and still coordinate a defense.

Underlying Game

The impact matrix IM is computed by assessing the underlying game, i.e. the

power market, with successful attacks, as described in Section 4.2.3. Two versions of

the system are compared–in one version, the attack was successful and in the other no

attack is present. The resulting change in profitability for each actor is summarised by

IM as the difference between the profits for each market player in the two scenarios.

Each attack on the system causes an overall net-negative impact on profitability.

The system operates at a global-optimal whenever communications are uninterrupted.
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Table 4.1
Example Impact Matrix (IM)

T1 T2 T3
A1 -2 -2 3
A2 4 -4 -2
A3 -4 2 -4

Any perturbations that disrupt communications result in decreased efficiency because

of suboptimal responses to market prices (λ). Therefore, the sum across all actors for

any given target is always zero or negative. Some actors, however, may benefit from

competitor elimination, which is the basis for the strategic adversary’s profit model.

Table 4.1 shows an example impact matrix for three market players and three targets.

Ai owns target Ti.

4.3.4 Defensive System Overview

The defensive investment optimization problem is designed to minimize the at-

tacker’s incentive thus reducing the probability of attack and denying profits to the

adversary (resource exhaustion). An impact model is analyzed for each target and

assessed as an impact to the profitability of each market player (IM). Once the matrix

is calculated, it can be analyzed strategically to determine the best defensive action

for each market player as in [4]. Fig. 4.3 shows the system layout.

Defensive Investments

Each market player in the system has a choice to defend self-owned targets from

attacks at a cost Ci. If this cost is less than the expected reduction in profits, then

it is in the actor’s best interest to invest in defensive measures. The expected impact

is IM[a, i]P [a, i] where P [a, i] is actor a’s expectation that asset i will be attacked,

based on the SA’s optimal strategy. In game theory terms, this section follows the
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Fig. 4.3. In the overall system flow, set of defenders and a strategic
adversary each have a view of the system and its market. The system
is exposed to a physical scenario and analyzed for a set of potential
targets via a market mechanism simulation. From this simulation,
the profitability of each market player is captured in a set of impact
matrices (IM). Each market player has an independently calculated
IM and thus a different defense strategy that can be rectified via
collaboration.

Stackelberg model where the different parties move one after the other. In this case,

the attacker’s move is estimated and the defenders decide to defend the assets ap-

propriately. The attacker does not have the ability to come up with a repeat attack

after observing the defensive actions, so the Nash equilibrium point is not analyzed in

this model. Due to the slow-moving nature of defensive investments, the defender’s

strategy is not immediately observable by the adversary.
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4.4 Multiple Knowledge Levels

4.4.1 Multiple Underlying Games

Each actor a and the strategic adversary have their own underlying game Ga, GSA,

respectively, from which IM is calculated. This arises because the parameters ωi, fi, Pi, Pi

from Section 4.2.2 must be estimated by actors who do not own those assets, includ-

ing the strategic adversary. Each actor assesses the impacts from their independent

viewpoints of the system. The game Ga is derived from the ground truth game GA

by adding noise to the above parameters. In the perfect knowledge model, all of the

games are identical, Ga1 = Ga2∀a1, a2. Imperfect information is modeled by allowing

the underlying games to diverge by sampling i.e. fictitious play.

The game G itself contains a set of dynamic parameters x (ωi, fi, Pi, Pi) that

are used to determine optimal market price. Fixed components of the game are

the ownership and the network structure of the system. Each market player wants

to keep its parameters secret to maintain a competitive edge in the marketplace.

The dynamic parameters, however, can be estimated by observing market conditions

and surveying physical equipment infrastructures. Each market player therefore can

establish a ”noisy” view of the underlying game, as defined by (4.6). The dynamic

parameters are sampled from a normal distribution of the ground truth game. Sign

changes are not allowed because it is assumed that each market player knows if an

asset is a producer or consumer. The parameter σa defines the knowledge level of the

actor a, and it is applied to all parameters except parameters for assets that the actor

itself owns Oa. Intuitively, this parameter models the amount of information shared

among each other. Greater is σa, less is the information that actor a has.

x′ = N (x, σ2
a) ∀x ∈ GA, x /∈ Oa,

x′ = x ∀x ∈GA, x ∈ Oa

x′ ∈ (−∞, 0] if x′ <0, else x′ ∈ [0,∞)

(4.6)
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4.4.2 Perfect Information Game

In the perfect information game, the strategic adversary and all actors have a per-

fect view of the system, GSA = GA, Ga = GA ∀ a ∈ A. In this form of the model, there

is a single, optimal outcome for the defenders. Since P [a1, i] = P [a2, i]∀a1, a2 ∈ A, the

defensive decision is the same for each actor, and if the costs are correctly distributed

among the defenders, then there is a single globally optimal defense strategy. The

maximization problem (4.7) is solved by the defenders via mixed integer linear pro-

gramming (MILP). The maximum value of this equation is zero because if no target is

attacked, then no defense is necessary. Practically, protecting a network link (e.g. via

DDoS protection) has some cost Ci for establishing a more reliable communication

channel. The defender that owns each link, must decide to invest in its protection or

not based on the likelihood of attack and the financial impact of the link outage.

max
∑
∀a∈A

∑
i∈I

AiIM[a, i](1−Di)−DiCi (4.7)

The strategic adversary, the driving force behind Ai, is playing a similar game

in (4.5). Since everyone shares the same knowledge, the perceived impact at each

market player is the same, and all actors agree on which targets should be defended.

Both the attacker and defender may have constraints on
∑
Ai and

∑
DiCi due to

budget constraints on how many assets can be attacked and defended, respectively.

4.4.3 Imperfect Attack Strategies

The adversary is assumed to be perfectly rational (no anarchy) but may not have

perfect knowledge of the system and subsequently makes suboptimal decisions. To

capture this, Ai is evolved into a mixed probability-based strategy across several

underlying games for the adversary. The SA has a single, optimal (pure) strategy

per (4.5), and a mixed strategy is created by combining multiple pure strategies

into a single mixed strategy. Multiple IM′ are calculated for the strategic adversary’s
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underlying game GSA that are derived from GA as define in (4.6), with the caveat that

the SA owns no assets. Equation (4.5) is optimized for each IM′ across N fictitious

games, each with a knowledge level σ, as a noise ratio. This results in N strategies for

each asset i as A[i, n]. Equation (4.8) is the calculation for the probability of attack

on target i given the N fictitious games for the adversary. The outcome P a
i is an

average of the boolean strategies for each of the SA’s hypothetical games.

P a
i =

∑
n∈N A[i, n]

N
(4.8)

Defense with Mixed Attack Strategies: The defenders strategy, as captured in

(4.7), is modified below in (4.9) to account for the fact that the SA may have a non-

boolean attack plan. Previously, Ai was binary and now P a
i is a rational number so

that the defender is operating on a mixed strategy.

max
∑
∀a∈A

∑
i∈I

P a
i IM[a, i](1−Di)−DiCi (4.9)

4.4.4 Multiple Defender Optimization

The maximization problems presented earlier for optimizing defensive investments

do not consider the scenario where multiple defenders do not have the same infor-

mation level and are optimizing around different underlying games. Each defender’s

underlying game, Ga, is used in place of GA to calculate a mixed attacker strategy

using (4.8). Each actor then has a different threat model P [a, i] based on Ga instead

of GA. (4.10) is performed by each actor to complete the optimization of Di. Only

the owner of asset i can determine the value of Di. This approach enables no sin-

gle actor to have a global view of the system which accurately models how a large

interdependent system would operate.

max
∑
∀a∈A

∑
∀i∈Oa

P [a, i]IM[a, i](1−Di)−DiCi (4.10)
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Cost Collaboration: This problem is supplemented with a collaboration method.

The cost of defense of target i is proportionally shared among benefiting actors. Since

defensive decisions are segmented by asset owner, and attacks against owned-assets

are always damaging, there is no Price of Anarchy (PoA) in this defensive model.

4.5 Experimentation

4.5.1 Experimental Setup

The underlying game, as described in Section 4.2.2, is solved via an online Nelder-

Meade (NM) [71] optimization technique. Each iteration of NM is assumed to take

one second and requires one round-trip communication of λ and Pi. The model for fi

is given in (3.17). In the case of a consumer, ωi = Pmax. For a producer, ωi = Pmin.

The source code and corresponding market model details are available at [80].

The model has 20 generators with an average Pmax = 0, Pmin = 5, λmin = 30, λmax =

80, and there are 100 consumers with Pmax = 1.5, Pmin = 0.3, λmin = 0, λmax = 100

for a total of 120 market players. The consumers Pmin is modified as P ′min(t) =

Pmin + 0.30 · sin( π·t
3600

), and all the other parameters are agnostic to time. At t=50s,

the targeted network links are disrupted such that the λ term is fixed for those assets.

At t=200s, the links are restored and communication is resumed. At t=100s a step

load is introduced by setting Pmax = 2, Pmin = 0.4 for all consumers. The parame-

ters are restored to the default values at t=250s. The simulation is executed for 400

seconds. This scenario can be seen in Figs. 4.1 and 4.2.

Communication Topology

In the experimental model, the communication paths between the market orga-

nizer (NM algorithm) and the individual market players are independent. In prac-

tice [81], however, there will be interdependence between communication failures

across the different market players as many of them will share common links at some
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point in the communication path. For this reason, the 120 market players are dis-

tributed on a tree topology with 4 top tier network links, 12 mid-tier links (3 for each

top tier link), and 120 leaf links to better capture the interdependent networking

impacts on smart grid topologies as shown in Fig. 4.4. Since future communication

topologies have not yet been determined, and because dynamic markets may not op-

erate on the same infrastructure as existing smart metering technologies, the topology

used is purely speculative. As concrete topologies evolve, they can be substituted into

this experimentation framework to identify changes in strategy and crucial network

links.

Fig. 4.4. The simulated network has four top-tier links, twelve mid-
tier links, and one hundred twenty leaf links.

4.5.2 Experiment 1: The Attacker’s Incentive

In this experiment, the strategic adversary attempts to maximize her incentive,

as described in Section 4.3.2. The strategy space I is the selection of links in the

communication topology to disrupt. Each disruption results in a particular IM that

is used to calculate the maximum attacker’s incentive. Fig. 4.5 shows the attacker’s
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incentive as a function of the number of links that she can attack simultaneously.

As the number of simultaneously disrupt-able links increases, the attacker’s incentive

also increases. The attacker’s incentive plateaus, however, when the overall system

performance degradation becomes the dominating factor due to large numbers of link

outages. The AI plateaus because the system as a whole becomes less profitable

whenever most network links are disrupted (e.g. the top-level link attacks).

Fig. 4.5. The strategic adversary attempts to maximize her incentive
by disrupting network links. In the graph on the left, the adversary
is disrupting leaf-links in the communication topology. In the middle
graph, the adversary is disrupting mid-tier links, and in the graph on
the right, the top tier links are disrupted. In each case, the attacker’s
incentive is maximized for the given targets attacked. The strategy
shown is maximized from (4.5) and compared to the mean of a random
target selection.

4.5.3 Experiment 2: Collaborating Defenders

In this experiment, the defense strategy presented in Section 4.4 is evaluated. The

defenders attempt to reduce the attacker’s incentive shown in Fig. 4.5 by securing

particular network links, thus eliminating them from the attacker’s profit pool. The

market players at each mid-tier communication hub are joined together so that there

are 12 owners with 10 assets each. Collaboration is then possible on the mid-tier and

top-tier network links, and they are the focus of this experiment.
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Fig. 4.6 shows the reduction in attacker’s incentive for different target budgets and

a fixed σ = 0.1 for each owner. The defensive budget is progressively reduced relative

to the number of attacked links. The defenders are able to significantly reduce the

attacker’s incentive in most large-attack cases at the leaf links.
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Fig. 4.6. The attacker’s incentive is reduced by defensive investments
in communication links. As the number of links attacked increases,
the number of links defended also increases. The effectiveness of the
defense, however, is reduced by imperfect knowledge levels among
the defenders (σ = 0.1). Each line represents a different amount of
aggregate defense budget, relative to the number of links attacked.

Fig. 4.7 shows the reduction in AI for a range of knowledge levels across the

defenders. In this case, 75 links are attacked and 75 links can be defended. The

AI is maximally reduced when the owners knowledge levels are maximized (σ → 0)

indicating that collaboration can improve overall defense effectiveness.
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Fig. 4.7. This figure shows the cumulative reduction in attacker’s
incentive for different defender knowledge levels when 75 targets are
attacked and defended. Decreased knowledge levels (high σ values)
results in ineffective defense. As defenders are unwilling and unable to
collaborate on defensive investments, the system suffers overall from
poor defensive strategies.

4.6 Related Work

Game theory applications for the smart grid [20] have become an increasingly

important component of power system optimization. The core goals of these games,

along with other approaches such as dynamic market mechanisms [3], are to improve

the social welfare of the smart grid by utilizing market forces to balance demand with

supply. The usefulness of these games, however, has not been well studied in the

context of a strategic adversary that seeks to maliciously profit from the system by

launching attacks.

A separate but related set of game theories optimize the security of information

systems [26, 82] by playing attacker/defender games designed to create a defensive

strategy that is optimal for a given adversarial model. Most of these approaches,
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however, utilize qualitative metrics for target valuation, costs, and attack success

since it is difficult to value computer system breaches. The work presented in this

section applies attacker/defender concepts to a concrete smart grid cyber-physical

system in which the utilities of attack and defense are derived from their actual

operational influences. This also allows information exchanges to have quantitative

impacts on success metrics.

Several attacker/defender games or security games have been constructed around

Stackelberg games [83] for solving defensive investment optimization problems and

scheduling patrols [84]. These games solve an attacker/defender model where the

defender moves first in response to a perceived adversary and have been extended

to support multiple human-modeled adversaries [85] in a computationally efficient

way. These models, however, do not address defenders who exist in a competitive

environment. The work presented in this section analyzes attacker/defender games

in a competitive environment.

The long-term financial impacts of attacks have been studied in [30]. Adver-

saries are modeled in [30] as has having budgets that deteriorate with unsuccessful

attacks, resulting in reduced attack viability. The model captures some of the eco-

nomic factors in this section, but it does not make a connection between the physical

system’s behavior and the resulting financial outcome of attacks. Similarly, game

theoretic techniques in [20–24] have proposed methods for determine how adversaries

might manipulate the physical control systems via attacks, but they do not draw

the financial connection between physical perturbations and adversarial profits. The

work presented in this section focuses on the financial motivations of attackers and

defenders, resultant from system perturbations, as an attack and defense planning

tool.
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Market Model Attacks

Prior work in [78] has focused on data integrity attacks in real-time pricing in

smart grids. This work provides a model for a strategic adversary manipulating

pricing information in a real-time market similar to DMM. However, their work does

not involve large-scale systems or ones in which loads are time-varying, utilities are

non-linear, and does not focus on economic dispatch. This work improves on this

state of the art by evaluating large scale systems with real-time operating constraints

(as emulated in DETER), specifically focusing on the delay-type attacks.

Work in [79] has analyzed market responses to integrity attacks in smart grids.

The work provides an adversary model and analysis for a game-theoretic model of

dynamic pricing systems in smart grids. This work focuses on the real-time implica-

tions of information-flow failures rather than continuously manipulated price signals

which is more consistent with resilience and broadly available attack vectors (DoS)

as opposed to manipulation attacks which are harder to implement in practice. This

work is improved by executing the demand-response market algorithms in real-time

and establishing interrupt-able communication between the market players.

Resilience improvements to control algorithms have been considered in [86], how-

ever this work focuses on grid stability and automatic generation control rather than

market stability or cases where communication occurs over wide areas.

4.7 Conclusion

In this section, a modeling technique was presented to connect the networking

components of a dynamic pricing market with a security strategy to defend against a

profit-motivated adversary. This model allows the economics of cyberattacks on power

markets to be captured and used to assess the risk to assets in the system. The amount

of information that competing market players share about assets in the system is also

modeled and used to analyze the benefits of collaboration in a defensive context.

Techniques were then applied to mitigate the attacker’s incentive thus improving



127

system resilience. It was shown that the baseline attacker incentives can be as high

as 51% of baseline operating profits. When the defender and adversary’s budget are

equal, the attacker’s incentive is reduced by up to 70%. These results validate the

utility of this section’s technique in optimizing defensive investments. The model

presented in the section and the simulation results show promising approaches to

countering the growing threat of cyberattacks in smart grids.

In future work, models of online learning aspects of dynamic pricing markets could

improve attack strategies. In such a model, the attacker seeks to learn through itera-

tive attacks, which also reveal more information about the system and the defensive

strategies. Conversely, the defender also seeks to learn of the attack strategy through

a multi-round strategy. The next chapter covers one angle of this approach.
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5. NETWORK ATTACKS IN MARKETS

This chapter introduces a real-time heuristic to attacking real-time pricing systems.

The previous chapter covered a strategy that is solved via mixed integer linear pro-

gramming (MILP), but the problem size becomes intractable as the number of ele-

ments in play increases. It also does not consider multiple time-instants. To overcome

this limitation, this chapter introduces a real-time heuristic to attack (and defend)

real-time pricing systems.

5.1 Introduction

In the emerging smart power grid, new control methods such as demand response

(DR) and real time pricing (RTP) are under development to improve the efficiency

and reliability of the power grid [65]. RTP methods utilize economic incentives across

networked control systems to stabilize imbalances of power in grid supplies and loads,

minimizing waste and maximizing renewable power integration. The growth of these

systems counters the uncertainty of renewable energy resource outputs and allows

power fluctuations to be absorbed by flexible loads. Much like networked control

systems (NCS), RTP methods rely on wide area communication networks to send

economic incentive signals to the flexible end load points. Since the time period of

the power fluctuations can be small, of the order of minutes, it is important to provide

such signals in a timely manner to the end points. However, strategic adversaries can

disrupt these signals, changing them, delaying them, or dropping them altogether. A

recent NESCOR report [87] cites blocked DR messages as highly ranked failure sce-

nario (”DR.1”), and it has been shown by prior work [88,89] that disruptions of price

signals can cause disruption to power consumers. This section further demonstrates
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how a strategic adversary can orchestrate and profit from such disruptions in these

real time pricing systems, along with a mitigation technique.

RTP systems are particularly susceptible to network attacks because of the tightly

coupled price–power feedback within such systems. Much like in other NCS’s, an

RTP controller samples a process variable, in this case the flows of electric power,

and modulates a control variable to minimize power imbalance over a communication

network. Unlike networked control systems, however, RTP systems must coordinate

among devices that are owned by different economic entities, requiring pricing or

incentive based control instead of direct modulation of loads and supplies. In price

based systems, the amount of energy input and output at each end point is a function

of market price, and the system modulates the price to establish an efficient market

clearing such that the sum of power inputs and outputs in the grid is zero. Since the

price and power signals traverse geographically diverse end points, it becomes feasible

for a strategic adversary to disrupt the power grid by disrupting the communication

channels on which the smart grid relies.

This section develops a strategic adversary who capitalizes on the arbitrage of

prices caused by disruptions in the RTP communication network. Each disruption

removes controllable loads and supplies from the RTP system such that the market

price trends higher or lower than in the attack-free case. The attacker then picks

a set of network targets and disruption times with a goal of maximizing arbitrage

opportunity. For example, if an attack is predicted to raise the market price by an

additional $20, an adversary with a large-sized battery can buy power to charge the

battery, launch the attack, and then sell it back for an additional profit.

First an adversary with only the ability to delay RTP communications is explored.

The market price changes due to both traditional load swings and network attacks in

real time, and the adversary makes market observations from an end user perspective

in order to plan attacks. She then launches denial of service (DoS) attacks against

other end users by using a parametric algorithm triggered on the real-time price signal.

Then allow more complex, RTP price signal manipulation (e.g. man-in-the-middle
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attacks) is allowed for comparison with the simpler DoS attack strategies. Using these

strategies, it is demonstrated how an adversary can increase arbitrage profitability by

69% using delay attacks and 98% using signal manipulation.

A novel defense mechanism is then put forward that randomizes the adversary’s

view of the network targets for the load end points. Consequently, the adversary’s

plan of targeting certain end points calculated through its algorithm can no longer be

faithfully executed. The difference between the adversary’s view and the actual sys-

tem can be controlled by a defense parameter, namely, how many end point network

addresses to randomize. This defense mechanism can be deployed through moving

target defense mechanisms implemented by the RTP system operator. The network

address assigned to the end load points is permuted either periodically, based on mar-

ket fluctuations, or based on indications of attacks to minimize the impact of network

disruptions on the RTP signal.

This work builds on two closely related prior approaches in [78] and [88]. Prior

work in [78] measured the impact of delay and integrity attacks on RTP feedback sig-

nals. The authors showed that carefully planned attacks can create large oscillations

and instability in market price, potentially crashing the market. In this chapter, it

is shown that profit-driven attacks can be successful without destabilizing the grid

control loops or damaging grid equipment. The attacks that are studied here are

more feasible to be launched and are more likely to stay under the radar, thus hav-

ing the potential for greater impact. Further work in [88] analyzed the impact of

arbitrary delay and modification attacks on the incentive signals in the RTP sys-

tem. They modeled a strategic adversary that could manipulate an RTP system if

both the incentive and load signals are known for each consumer in a game theory

structure. They did not, however, consider attacks that evolve in real time–instead

they focused on day-ahead market planning techniques. In this chapter, there is a

focus on real-time attacks where the adversary is aware only of local market price.

This defense mechanism also distinguishes us from the two previous closely related

approaches which focus on the attack modeling.
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In the experiments, it is shown that an adversary could potentially profit from an

RTP system with a simple rechargeable battery and access to a denial of service as a

service provider. The adversary is able to extract up to $119 per day from the RTP

market using DoS methods, 69% higher than without attacks. If the adversary is

able to compromise 20% of the devices, revenue could be increased by 98% or more.

In the future, if fluctuations increase and battery prices decline, the profit amount is

expected to increase further. Then it is shown that a defender, utilizing the shuffling

and deception strategies, can reduce the adversary’s profitability by 30%.

In this chapter, the following novel contributions are made:

• A strategy for a strategic adversary to illicitly profit from a real-time pricing

mechanism in the smart grid is presented. The attack relies on delaying com-

munication on a subset of the network links and for a subset of time, given by

the adversary’s algorithm.

• A defense strategy customized for protecting against such market manipulation

attacks is presented. The defense strategy can be customized to fit within a

certain defense budget and the benefits scale proportionally to the defense cost

incurred.

• The cost to launch an attack of the type presented here, the economic advantage

that can accrue to the attacker, and the cost of defense, all based on real-world

scenarios and data is quantified.

The rest of the chapter is organized as follows. Section 5.2 covers the market

mechanism background for real-time pricing. Section 5.3 details the attacker’s strat-

egy in the RTP system. Section 5.4 details some defensive techniques to stop attacks

presented in this chapter. Section 5.5 details the experimental setup, including the

particular RTP system in use. Section 5.6 has the experimental results. Section 5.7

provides some topic discussion, and Section 5.8 concludes the chapter.
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5.2 Background and Market Operations

The goal of RTP systems is to constantly match supply with demand. The mis-

match is known as residual power (RP). Without widespread energy storage devices,

it must be immediately corrected since positive RP (power surplus) is shunted and

wasted while negative RP (power shortage) causes frequency droop, brownouts, and

possible equipment damage.

5.2.1 Real-time Markets

To minimize RP today, power utilities implement day-ahead scheduling based on

energy usage forecasts. The vast majority of energy is scheduled a day in advance

(e.g. by time of use (ToU) contract), but a small amount of generation participates

in a ”real-time” market (RTM) that attempts to rectify the residual power resultant

from forecasting errors and unexpected transients such as generator outages. The

prices in the RTM can range from $30 in one 5-minute window to $300+ in the

next [90], creating significant arbitrage opportunity and fueling energy storage device

growth [91]. RTP systems stabilize these fluctuations by bringing more generators

and consumers into the real-time market, and these needs will grow with increased

renewable integration.

5.2.2 Demand-Side Management

Demand side management (DSM) [43, 65] entails a large suite of technologies,

including RTP and communication protocols, that bring real-time flexibility to loads

in the smart grid. The components in DSMs include digitally controllable loads,

network protocols, metering devices, and other pieces required to adapt power supply

and demand to a control signal. A general dynamic pricing objective function [73],
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used by RTP, is shown in Equation 5.1. The objective is to minimize RP by controlling

the market price, λ:

arg min
λ
|

(∑
i∈N

Pi(λ, t)

)
| (5.1)

where N covers all the consumers/generators in the power grid, and Pi(λ, t) is the

power used or produced (negative) by each client at price λ for time t. Large systems

may have multiple λ’s for different locations in the power grid, but this chapter is

focused on a smaller market region with a single price signal.

5.2.3 Real-Time Communication

Real time communication provides the ability to incorporate dynamic pricing in-

formation at the consumer. Distributed consumers have access to changing informa-

tion that is beneficially incorporated into the pricing optimization problem, i.e.

P (λ, t) = Pforecasted(t) + Pflex(λ, t) + Punpredictable(t) (5.2)

This inherently requires constant communication between the RTP market players to

adapt to changes as the system evolves in time. As RTP methods solve for new prices,

those prices are broadcast system-wide to the market players. The market players

respond by adjusting consumption and production values (i.e. Equation (5.2)) that

the RTP algorithm samples, in the physical domain, for its next price calculation.

RTP Controllers

The core control function samples Equation (5.2) and then solves Equation (5.1).

Any number of solutions, from feedback controllers to gradient descent methods, can

be used to solve for λ. The information flow in such algorithms may become irregular

with imperfect networks, however. In such cases, the market may not perform as

expected.
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Research in [57] showed that with gradient descent based RTP systems, lost com-

munication messages (e.g. via DoS) would not cause system instability. They assumed

that the functions Pi(λ) are stationary and convex—neither of which can be assumed

for a distributed system in which the clients can control their own Pi function. In

contrast, work in [78] showed instability for a feedback-based RTP calculations with

delays. RTP systems in [3,41,53] rely on (mixed integer) linear programming, gradient

descent, interior point, or other optimization techniques to solve for λ. Since these

techniques do not account for real-time communication during negotiation phases,

technique is utilized and described in Section 5.5.1 to facilitate delay-tolerant solu-

tions to Equation (5.1).

Impact of Network Outages

Network outages disrupt the communication of λ from the RTP controller to the

end users. The Pi(λ, t) for each disrupted i becomes fixed with λ = constant, frozen

in a zero-order hold. This causes the gain of future λ’s, i.e. δP
δλ

, to decrease since less

devices can respond to the change in market price. As a result, λ must go higher

or lower to correct for the same amount of RP than in the perfect communication

case. To maintain connection incentives, market players are charged retroactively

for their power consumption based on the actual market price. This ensures that

consumers do not self-disconnect when market conditions appear poor. The residual

power measurement is assumed reliable and sampled out of band, e.g. via a dedicated

state estimation system.

The strategic adversary is discussed next.
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Table 5.1
List of Symbols

J Set of targets
λ Market clearing price ($)
Tw Attack decision window (s)
S(t) Energy strategy ∈ [Pmin, Pmax]
Pi(λ) Power removed from grid (kW)
Aj(t) Attack target j at time t, ∈ 0, 1
Patk Estimated price impact of attack ($)
Dj Flexible load coefficient or gain for target j (kW/$)
Cj(t) Cost to attack target j at time t ($)

5.3 Strategic Adversary

5.3.1 Strategy Summary

The adversary owns a energy storage device (e.g. a rechargeable battery) and

profits by purchasing power at a low price and selling it back into the market at a

higher price. To maximize profit, first the adversary monitors the real-time pricing

signal and establishes charge and discharge price thresholds. Then she attempts to

increase profit by estimating the price impact of a DoS attack by monitoring the

gradient of the market price history. Peaks in attack impact are identified as they

evolve in real-time, and attacks are launched whenever the peak estimated market

price exceeds the charge or discharge thresholds. In this way, the opportunity for

arbitrage is maximized, and the adversary increases profitability.

5.3.2 Capabilities and Resources

In this chapter, a model is used where the strategic adversary as a single end

user in an RTP system. The adversary can view the price signal and launch attacks

against other users in the system.
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User Discovery

Since practical RTP systems are still under development, the attacker is assumed

to know the IP addresses of clients participating in RTP market. It is hypothesized,

however, that the adversary could discover these addresses in three ways. First, since

the market operates on a local level and the potential addresses of Internet-facing

devices are geographically correlated for ease of routing, reviewing public IP address

registries could reveal targets, especially if RTP participation is widespread. Second,

many microgrid applications could utilize peer-to-peer services, especially for islanded

operation. These applications could require peer advertisements or open ports that

would reveal addresses and service locations. Third, many last-mile network connec-

tions utilize shared infrastructure such as cable modem services or passive optical

networks. Promiscuous modems could reveal periodic access patterns that are unique

to RTP devices, for example. Other alternatives include hacking the RTP controller

or other man-in-the-middle security breaches.

DDoS Attack Capability

The adversary has access to a DDoS-as-a-Service providers or ”booter/stressers”.

Such services offer chunks of attack time for a nominal monthly fee. Armed with

a target IP address, the adversary can simply pass it via a web interface and start

an attack. It is assumed that consumer grade connections are of sufficiently low

capacity such that multiple users can easily be taken offline simultaneously. Addi-

tionally, since the attacks are deep in distributed last-mile networks, filtering costs

may be prohibitively high. Other smart grid vulnerabilities listed by NESCOR [87]

include easy to jam wireless communication channels and physical or logical access

to communication channels for entities that do not require it.



137

Energy Storage

The adversary is armed with a rechargeable battery that can charge and discharge

at a particular rate, has a limited useful lifetime, and a maximum capacity. The

battery is assumed to be 100% efficient such that no energy is lost in the charge and

discharge process.

5.3.3 Strategy Definition

The adversary’s arbitrage strategy is to charge the battery when energy is inex-

pensive and discharge when the price becomes higher:

Maximum Revenue = arg max
S(t)

∑
t∈T

Twλ(t)S(t) (5.3)

where T is the set of market clearing windows of negotiation, λ(t) is the market

price at time t, and Tw is the market clearing or attack strategy window width chosen

to discretize the strategy space. S(t) is the adversary’s energy strategy–charge or

discharge at time t. The adversary’s goal is to maximize profit by manipulating λ(t)

via DoS attacks.

5.3.4 Price Manipulation

The adversary can strategically manipulate the market price by launching denial

of service (DoS) attacks in the following way. Section 5.2.3 described that whenever

clients are disconnected from the marketplace, e.g. via DoS, the effective gain of the

price signal decreases. For example, if Pi(λ) = Cλ for some constant C, and 10 clients

are connected, P (λ) = 10Cλ. If a DoS attack removes 5 clients, then P (λ) = 5Cλ, for

an attack impact gain of 5C. To achieve the same ∆P , λ would need to change twice

as much during the attack. This means that a high RP coupled with client outages

leads to more dramatic price swings, and the adversary can leverage these swings to

increase revenue. The price manipulation strategy can be broken into estimating RP
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and the change in the gain due to a DoS attack to calculate the manipulative power

of an attack.

Target Gain Estimation

In order to influence λ, the adversary needs to know the price gradients of each

target’s Pi(λ) function. This function is private for each user and unknown even by the

RTP service, so the adversary must estimate the gain δPi

δλ
for each user. One method

is to compromise the Internet-connected devices in users home, such as by default

passwords or weak encryption, and directly reveal the functions to the adversary.

Alternatively the adversary can estimate the gain as Dj for target j in the following

way. First the adversary measures the gradient of price as a moving average over k

timesteps, e.g. as 1
10C

. Then the adversary attacks target j and measures the new

gradient over an additional k timesteps, e.g. as 1
9C

. The gain is then calculated as

Dj = 10C − 9C = 1C. The goal is to observe increases in market prices (or similarly,

decreases) and if the attack causes a market participant to go offline, then the rate that

the price changes will increase i.e. become convex temporarily (|λ′pre-atk| < |λ′post-atk|).

This type of approach is not perfect–it is quite possible that targets will be miss-

classified due to external market conditions such that the price may be concave even

without an attack. This classification error simply erodes the adversary’s ability to

efficiently utilize attack resources (a parameter in experimentation).

Residual Power Estimation

In the RTP system, the residual power is only known by the RTP controller, as

the output of Equation (5.2) and the input of Equation (5.1). The RTP controller

decreases and increases λ as a function of RP. Therefore the gradient of λ is loosely

proportional to the amount of RP in the system. If RP is negative (shortage), then

λ′ will be positive, and vice versa for a positive RP. If the gains for every client are
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known, then the system gain D =
∑
Dj can be used to estimate RP as Dλ′. The

attack power is then estimated as

Patk(t) = λ′(t)
∑
j∈J

Dj (5.4)

where J is the set of valid targets, λ′ is the current gradient smoothed over k timesteps,

and Dj is the estimate for P ′j(λ). It is assumed Patk(t) = 0 ∀ S(t) 6= 0 since the attack

is already ongoing. If a net imbalance of power exists, and the RTP signal is actively

correcting this by increasing prices, for example, then the attack will cause the price

to overshoot by approximately Patk.

5.3.5 Attack Strategy

Once a set of viable targets and their gains are known, then the adversary may use

them to influence λ(t) in an attempt to improve Equation (5.3). First, the baseline

strategy is developed with λ̄buy as the target price for charging periods and λ̄sell as

the target price for discharge. This price is established by a-priori observations of

RTP price trends.

Algorithm 2 contains the strategy for attacking targets. Lines 1-3 represent the

buying strategy and lines 5-8 the selling one. Line 1 states that whenever the current

market price plus the power of attack (which can be negative) is less than the buying

price threshold, then the attack should be launched and the battery should charge.

Similarly, line 5 sells when the estimated price after attack is higher than the selling

threshold. Lines 9-12 stop the attack if the price is not within the buy or sell thresh-

olds. Additional constraints (not shown) keep the battery’s energy within capacity.

The net benefit from the attack is measured by comparing (5.3) with and without

attack for the same scenario.

Algorithm 2 can be further enhanced by peak detection on Lines 1 and 5 rather

than operating on the first point that meets the attack standards. The authors of [92]
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Algorithm 2: Basic DoS Strategy

1 if λ(t) + Patk < λ̄buy then
2 Aj∈J(t)← 1
3 S(t)← Pmax

4 end
5 else if λ(t) + Patk > λ̄sell then
6 Aj∈J(t)← 1
7 S(t)← −Pmax

8 end
9 else

10 Aj∈J(t)← 0
11 S(t)← 0

12 end

map real-time peak detection to best choice and optimal stopping problem, and the

algorithm is further enhanced by selecting λ̄ based upon outlier detection on the

λ(t) + Patk signal, as described in [92] Section 3.3.

5.3.6 Integrity Attacks

While the focus of this chapter is on network-based attacks, it is also possible to

launch integrity attacks on the market. If λ values sent to some subset of clients can

be manipulated, then a new attack strategy can be implemented to further defraud

the market:

Patk+(t) =
∑
j∈J

λ′(t)(Pj(λ)− Pj) (5.5)

Patk-(t) =
∑
j∈J

λ′(t)(Pj(λ)− Pj) (5.6)

where Pj(λ),Pj(λ) represent the maximum and minimum power output for each target

j. Algorithm 2 is supplemented by these strategies where Line 1 gets Patk-(t) and

Line 5 gets Patk+(t).

Using this strategy, whenever the market price is decreasing due to positive resid-

ual power, even more positive residual power is added by further reducing the load
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(atk-), causing the market price to plummet further. Similarly, whenever the market

price is increasing due to negative residual power, even more load is placed on the

system thus increasing price. The net effect is that compromised devices make poor

market decisions that benefit the adversary.

Cost of Attack

The cost of attack can be incorporated into a modified version of (5.3):

arg max
S(t)

∑
t∈T

(
Twλ(t)S(t)−

∑
jinJ

TwAj(t)Cj(t)

)
(5.7)

where Aj(t) is the binary attack indicator and Cj(t) is the cost per second of attacking

target j. The adversary is still attempting to maximize profits in the left term, but

each attack that influences λ(t) also has a cost = Aj(t)Cj(t) in the right term, which

can be constrained by a budget (cost ≤ budget).

The costs can be optimized by sorting targets by their cost-impact factors CjDj

and prioritizing target above a threshold Dthresh:

Aj = 0 ∀ CjDj < Dthresh, j ∈ J (5.8)

where Dthresh eliminates cost-ineffective targets. This restricts the attack strategy by

reducing Patk to constrain costs.

5.4 Defender Strategies

This section covers defensive strategies that can minimize the attacker’s profit.
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5.4.1 Moving Target Defense

The adversary can be countered in two ways. First, the ability to manipulate

RP directly can be removed through device security. This is not the focus of this

chapter, and is left to other research. Second, the RTP service could remove the

ability to disrupt communication links, however the RTP operator would need to

harden hundreds or thousands of links to distributed end homes instead of just the

network’s edges.

Other defensive maneuvers can still be made, however. Intuitively, some targets

are ”safe” from attack because (5.8) marks them inefficient. The targets Aj represent

IP addresses that will be DDoS’d by the adversary. The defender can mitigate attacks

by shuffling the targets (Ax → Ay) so that the attacker’s efforts to attack the IP

of target x actually disable target y. High value targets can then be swapped for

low value targets so that the attacker’s profits are minimized. This can be done

by synchronizing dynamic IP assignment operations with regional Internet service

providers (ISPs)–the RTP operator requests the ISP swap the addresses of x and y.

The impact is not negligible, however. A forced IP reassignment will cause temporary

client interruption, and the creation and support of infrastructure to perform such

reassignments would require at least some engineering support. The attacked client

would also effectively pay penalty rates for power, so the RTP operator would need

to properly incentivize participation.

The defender can strategize about which targets’ IP’s to swap. Optimally, the

highest-value targets would be swapped for the lowest-value targets, and this is what

Algorithm 3 performs. The list of targets is sorted by their estimated impact Dj and

the lowest value k targets are swapped with the highest value targets. This minimizes

the change in λ due to Aj
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Algorithm 3: Defender Moving Target Strategy

1 Sort J by Dj descending
2 k ← 0
3 while k < |J |/2 AND DJ(k) > Threshold do
4 Swap IP of J(k) with J(|J | − k)
5 end

5.4.2 Detection via Deception

The strategies in Section 5.3.3 are all driven from the end-user’s observable incen-

tive signal. A false incentive signal could be sent to suspects in the system in order

to trigger false attacks on the system. Correlation can be drawn between false signals

and corresponding DoS attacks to identify the adversary. For example, a deceptive,

high λx value could trigger Line 5 in Algorithm 2, and the RTP operator could send

this false signal to a potential adversary and observe Aj via heartbeat signals. This

strategy has a cost in that if the signal is sent to a non-adversary, the market effi-

ciency decreases because load will be added or removed contradictory to the current

market price λ:

Cost of Deception = |Twλ(Pi(λ, t)− Pi(λx, t))| (5.9)

where λx is the false price and Tw is the duration of the false price signal. If deception

occurs for one Tw then the cost is effectively the change in revenue that the client i

was providing to the market. For example, a client uses 1 kWh of energy during Tw.

When the adversary check is run, λx is set to 2λ and the client consumes 1/4 kWh.

The cost is then 3/4 · λ.

5.5 Experimental Setup

This section covers the real time pricing mechanism used for experimentation and

the load/supply models for evaluation. The full details are covered in Section 3.2
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5.5.1 Overview of RTP Controller

The price setting algorithm inside the RTP controller minimizes an implicitly non-

stationary objective function, the residual power (from Equation (5.1)). Traditional

market solutions in [3, 53] utilize gradient descent and interior point methods to

solve Equation (5.1), but these techniques require convex objective functions and

gradients. Each iteration of an optimization algorithm takes non-zero time, and this

has an influence on the behavior of the objective function that may violate necessary

assumptions. A stationary λ with a varying t will change with the supply and demand

of electric power, and during transient events such as faults or surge in demand, the

change between P (λ, t− ε) and P (λ, t+ ε) can be very large. These existing solutions

are not equipped to operate in this environment and instead rely on freezing t for

some negotiation period and independently solve for λ. To overcome this limitation, a

modified Nelder-Mead (NM) [71] algorithm is utilized that does not make assumptions

about the of the objective function and can adapt to large ∆P ().

Three modifications of NM are completed to enable the algorithm to perform

online optimizations on non-stationary functions. First, the search space used by NM

is modified to prevent simplex collapse so that transients can be detected. This is

done by adding noise to the points of the simplex so that it maintains a minimum

size. Second, the cached function values P (λ) are updated periodically to reflect the

current value, and this is used for relative point ranking. This enables the algorithm

to adapt to large ∆P (). Finally, the algorithm is modified to perform re-evaluation

of the simplex space during its shrink operation. Source code for this algorithm is

available publicly1, including all code used to generate data for this chapter.

5.5.2 Load and Generation Model

In this chapter, supply and demand are modeled as scaled sigmoid functions, as

shown in Equations 5.10, 5.11 as P (λ), the power consumed as a function of price

1https://github.com/pcwood21/RTP_DoS_Simulation
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Table 5.2
Parameter distributions used in Experiments, respectively for the
Consumer (C) and the Generator (G)

Pmin (kW) Pmax (kW) λmin ($) λmax ($)
C |N (0, 0.52)| |N (3, 12)| 0 |N (250, 752)|
G -|N (150, 502)| 0 |N (30, 52)| |N (80, 52)|

λ. Fig. 5.1 shows two example curves with the corresponding residual power at each

pricing point, based on the parameters in Table 5.2, where the generator power level

is negative. The sigmoid function was chosen to allow responsiveness to price while

also ensuring feasible behavior at the extremes, i.e., a consumer cannot have a load

greater than Pmax or lower than Pmin and similar constraints for a supplier.

λs = 6 ∗ λ− λmin

λmax − λmin

− 3 (5.10)

P (λ) =
Pmax − Pmin

1 + eλs
+ Pmin (5.11)
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Fig. 5.1. The supply (generator) and demand (consumer) are shown
for varying market prices. The residual power shown is the imbal-
ance between the generator’s output and the consumer’s input. Since
residual power can disrupt the grid and lead to inefficiencies in the
energy use, the goal is to optimize the market price such that the
residual power is minimized.
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For the experiments conducted in this chapter, unless specified otherwise, the

parameters used are listed in Table 5.2. There are 2 generators G, NG = 2, and 100

consumers C, NC = 100. The adversary’s battery has a capacity of 1200 kWh and

a charge/discharge rate of 600 kW/h, and Tw is 5 minutes. The capacity is selected

to supplement one generator in the system for 8 hours (e.g. a solar farm during the

night).

5.5.3 Real-World Dataset

To analyze the effectiveness of the attack strategy at handling unexpected fluc-

tuations in power, the forecasting error from several days of New York Independent

System Operator (NYISO) data is used to generate an error function. The difference

in the day-ahead forecast and actual load model for June 19-26, 2015 are used to

create this signal [90]. The uncontrollable load signal is scaled so that the highest

and lowest values are no more than 50% of the maximum and minimum amount that

can be absorbed by the generators and consumers in the system. In training, where

necessary, the first 7 days are used while the last day is used as the test in all of the

experimental results.

5.6 Experimental Results

This section covers the results of the evaluation. First the baseline arbitrage

opportunities in the market are identified. Then the economic advantage that an

adversary can achieve by blocking the communication to a subset of the consumers,

first with a näıve attack and then with an attack that tracks the real time price

fluctuations, are considered. Then it is evaluated to what degree the attack can be

reduced through the defense mechanism. The experiment is concluded by considering

the financial gains or investments in dollar terms for the attack.
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5.6.1 Experiment I: Baseline Profits

In this experiment, the baseline profits are established for any consumer in the

attack-free case. As the experiment day progresses, unpredictable changes in con-

sumption cause the price of power to increase and decrease, as shown by the price in

Fig. 5.2. The adversary’s rechargeable device participates in this market, attempting

to minimize the average buy-price and maximize the sell-price to turn a profit.

The charge and discharge duration is limited to two hours by the capacity and

charge rate of the battery described in Section 5.5.2, and in this scenario, the ad-

versary is able to profit $116.48 for the 24 hour period from buying low and selling

high. For this strategy, λ̄buy = $64.48, λ̄sell = $146.62 were chosen via repeated search

optimization on the test day. This level of precision is not attainable in practice

because the market is assumed unpredictable, so the revenue here is a maximum

value using the attack-free strategy in Algorithm 2. This value is not the true max-

imum possible, since additional arbitrage opportunity exists between hours 20 and

24, but it shows the maximum effectiveness of the heuristc. A more realistic value

of λ̄buy = $65.18, λ̄sell = $111.20, selected by the top 15% and bottom 15% quantile

of prices over the training period, yields a reduced profit of $70.88. Note that the

attack-free strategy is not a harmful event for the power grid–this stabilizes market

price and grid loading which is beneficial to consumers and grid operators.

5.6.2 Experiment II: Impact of DoS Attacks

In this experiment, the adversary is given the ability to disrupt communication

with |J | = 20 users connected to the market. These disruptions increase market

volatility by forcing the attacked users to enter a holding pattern in energy con-

sumption. To maximize profits, the adversary implements Algorithm 2. First the

adversary selects the parameters λ̄buy, λ̄sell, and she does this by observing λ(t) +Patk

during the training phase. It is assumed that Dj is known by the adversary, and

λ̄buy = $65.00, λ̄sell = $111.35 are selected by quantiles of 15% and 85% respectively.
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Fig. 5.2. The market price during optimal baseline operation is shown.
The charge and discharge markers indicate the adversary’s optimal
charging strategy.

The values for Dj, Patk during the test phase are shown in Fig. 5.3. The value of

Dj, shown as the sum over all J targets, peaks when the market price is relatively low

and is suppressed during peak prices. This is because the two largest market players,

the generators, are producing maximal output after about $80. Fig. 3.9 shows that

after the $100 price range, there is only a gradual change in consumption with price

increases, mainly by small consumers. In this experiment, the cost of each target is

assumed equal, and therefore the power of attack is dominated by the generators.

The adversary implements Algorithm 2 and launches attacks during market op-

erations. Fig. 5.4 shows how the market responds during the attacks. At around 5

hours in, the adversary begins to launch her attacks, and the market price begins

dropping in response to these attacks. Once the battery has charged, the attacks end

and the market begins to behave normally. After the price rises, the adversary again

attacks to increase the market price further. The increase at this price level is smaller

due to the low Dj values in this price range. The attack yields $119.77 of profit for

the day, an increase of 69% over the baseline charging profile.
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Fig. 5.3. The power of attack and the gain for 20 targets is shown for
the day. The Dj term becomes saturated at high market prices due
to output saturation at the largest market players.
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Fig. 5.4. The market price is shown when the attacker implements a
DoS attack strategy on 20 targets.

5.6.3 Experiment III: Impact of Integrity Attacks

In this experiment, the adversary is given the capability to manipulate individual

price signals. The underlying methodology behind the attack is identical to the denial
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of service case, but the loads are provided a manipulated price signal instead of a stale

one, and the Patk is calculated appropriately.

Fig. 5.5 shows impact of compromising devices in the RTP system. The adversary

is able to impact price and extract additional profits totalling $140.36, 98% higher

than the baseline. For this attack, the adversary compromises the λ signal as it is

sent to the consumer device. The Patk, Pj is achieved by sending λ = 1000, when

the adversary wants to buy, and Pj with λ = −1000, when the adversary wants to

sell to the grid. This causes the loads imbalance power directly, greatly increasing

the effectiveness of the adversary. A cost comparison with DoS attacks is difficult to

achieve, however, since the cost of compromising encryption or passwords on consumer

devices is not easily quantified.

The effectiveness of these attacks suggests that compromised devices could signif-

icantly impede RTP system deployment. Effective defenses, however, are known and

need to be deployed more widely, such as, the use of strong authentication scheme

and enforcing non-default, and strong passwords. This type of attack can also be

very damaging to grid equipment since coordinated loads can cause large transients

in voltage and current to occur in the grid, along with instability of RTP systems

as has been shown convincingly in [78]. However, that goal is not the focus of this

chapter.

5.6.4 Experiment IV: Defensive Strategies

Experiment IV analyzes the defensive strategies presented in Section 5.4. The

defender’s goal is to reduce or eliminate the adversary’s profits. The first defense that

the defender implements is protecting the information about the individual consumer

loads, Dj. Investing in stronger end-device encryption and protections, for example,

can protect this information. Fig. 5.6 shows how the effectiveness of the attack in

Experiment II decreases as the accuracy of the adversary’s Dj terms also decreases.

Random noise is added to the Dj values used in the attacker’s strategy to reflect
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Fig. 5.5. The market price is shown when the attacker implements a
integrity attack strategy on 20 targets. During the charging phase,
consumers are mislead into conserving power, and during discharge,
consumers are misled into over-purchasing power, and this results in
price increases and decreases for the adversary to leverage.

inaccurate collection techniques (Section 5.3.4): D∗j = N (Dj, σ
2). The lack of good

target information significantly reduces the effectiveness of the adversary, making

attacks less profitable. Initially, the adversary’s profit drops sharply and then the law

of diminishing returns kicks in and the curve flattens out. In this part of the curve,

the adversary’s estimates are already quite inaccurate and additional noise does not

make a significant difference.

Another defensive technique is to swap targets Dx with Dy, as described in Sec-

tion 5.4.1 where the targets are rearranged using Algorithm 3. Fig. 5.7 shows the

profit of the adversary versus the number of swaps that the defender is allowed. As

the number of swaps increases, the profit decreases but at a lesser rate–the adversary

routinely targets the most valuable assets, and since these are first swapped with the

least valuable, the impact of the swaps drops off rapidly. When 8 targets are swapped,

the adversary’s profit is reduced by 30%.
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Fig. 5.6. The reduction of the adversary’s attack-induced profit is
shown as her information about the targets decreases. Errors in target
value effectively reduce the profit of the adversary.

5.6.5 Return on Investment

The energy storage device used by the adversary, as described in Section 5.3.2

has a particular cost to install and maintain, and the attacks have a particular cost,

based on ”DDoS/Booter” service pricing [93]. These absolute values can factor in

to Equation 5.7 to determine the economic viability of the attack strategies. For

revenue, if the adversary repeatedly executes the strategy in Experiment II, amounts

could be as much as $43,000 per year. For cost, storage device prices are expected to

fall to $200 per kWh by 2020 [91] and continue to fall with increases in production,

so a yearly battery cost of $24,000 is estimated and amortized over a 10 year lifetime.

The net profit is then $43, 000− $24, 000 = $19, 000 per year. This cost analysis does

not include residual value or added benefits of a distributed battery system such as

improved reliability during grid failures. An important note is that if the strategy

is profitable, then more devices can yield more profit, or groups of attackers could

form battery-consortiums for example. Booter service costs can vary, but average
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Fig. 5.7. The reduction of the adversary’s attack-induced profit is
shown as targets are swapped by the defender. Since the swaps are
optimized on target impact, there is a diminishing return on invest-
ment for swapping all of the assets. The first swap protects a large
generator with the most impact.

residential Internet connections are low-bandwidth and easily disabled with attacks

relative to high-visibility targets like news websites, which keeps these costs low.

Based upon the results in [93], a few hundred dollars can maintain a botnet for

launching these attacks. For example, 212-booter launched 1993 attacks over 57 days

with profits of $509, suggesting 1,000 attacks could be purchased for about $250

per month. The end result is that the adversary in this experiment could come out

$15,000 ahead each year with a 1.2 MWh battery.

5.7 Discussion

5.7.1 Grid Dynamics in Real-Time

Traditional power markets have mostly operated well in advance of actual oper-

ation via contracts and optimal schedules. For example, security-constrained unit
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commitments (SCUC) [94] have been designed to plan resources with constraints on

grid operation contingencies (e.g., to provide stability during generator faults). These

systems are still reliant on forecast models, and energy sources that rely on solar and

wind will always be subject to some level of uncertainty due to weather patterns. For

example, partly cloudy skies can create uncertain solar outputs. This necessitates

RTP systems because highly accurate prediction may be implausible. Existing RTP

work in [41,65,95] has shown the viability of RTP systems to improve efficiency, and

a recent study also claimed that dynamic pricing could yield as much as $400 million

per year in savings for the NYISO [64]. These works suggest that the benefits of

RTP systems are real, as long as they are properly and securely implemented. This

chapter serves to show one way to achieve such secure deployment.

5.7.2 Attribution for Attacks

There is some risk that the adversary reveals herself by a posteriori profit calcu-

lations, i.e., suspicion grows of some market participants that are routinely making

gains through price arbitrage or the defender can try to identify the adversary via the

technique of injecting false price signals described in Section 5.4.2. Both legitimate

consumers and the adversary could respond in similar ways to the market price shifts,

however, so plausible deniability may exist from a legal standpoint.

5.8 Conclusion

In this chapter, it was presented how a strategic adversary could profit from a

real-time pricing system in the smart grid by launching denial of service attacks on

consumers connected to the pricing system, i.e., delaying the price signal being sent

by the system operator to the consumers. It was shown that an adversary could

increase arbitrage revenues by 69% by disrupting up to 20 clients or by as much as

98% if the integrity of the pricing signal is compromised. Then it was shown how a

RTP system operator could mitigate network attacks by strategically reconfiguring
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the device network. In this way, a defender is able to reduce the adversary’s profits

from DoS attacks by 30% with 8 IP address swaps. This work exposes some risks to

real-time pricing systems in smart grids and provides a novel technique for defending

against these attacks.

The next chapter introduces a denial-of-service defense technique that can be used

to further reduce the costs of defense for RTP systems.
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6. DEFENSES

This chapter introduces a denial of service elusion (DoSE) technique for low-cost

defense of Internet-facing services. The goal of this chapter is to provide a low-cost

framework for protecting RTP operators from attack, especially if the services are

regionally operated with a small number of clients. The work presented here also

appeared in [96].

6.1 Introduction

Denial of Service (DoS) attacks are a continually evolving class of attacks that

seek to degrade the ability of legitimate clients to utilize computer resources. De-

fending against this kind of attack has traditionally been the responsibility of large

network operators and internet service providers; however these attacks are increas-

ingly impacting smaller networks or even individual users [97]. The observed trend

of increasing attack size, duration, and frequency [98] points to failures in the state-

of-practice to mitigate such attacks, especially on an infrastructure level. This is

exacerbated by the decreased cost of launching DoS attacks combined with the high

relative cost of defending against them with commercial solutions. Time-shared DDoS

attacks can be purchased for as little as $12.99 per month [99] while defense can cost

$2,000 per month [100–102] or more. As long as economic factors favor DoS attacks,

they will become increasingly common and persistent occurrences. A low cost solu-

tion is needed to prevent stifling of free speech, on the individual side, and to increase

the efficiency of doing business, for small to mid-sized businesses.

In this chapter, the beginning effort is presented at achieving the above goal, a

system called Denial of Service Elusion (DoSE). Due to the requirement for low

economic cost, the defense solution is limited to methods that do not require any
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enhancements to the core network infrastructure. Instead, DoSE focuses on using

hosting services with widespread and relatively low cost availability such as cloud

computing infrastructure and content delivery networks as cornerstones to mitigate

attacks. These service have become relatively inexpensive and offer “pay-as-you-

go” options which allow flexibility in the mitigation technique. DoSE leverages low

cost of public infrastructure-as-a-service (IaaS) cloud and content delivery networks

(CDN) to meet an economical cost of roughly $30 a month for DoS protection for

1,000 clients.

The general approach in DoSE is to connect clients to relays, in an overlay net-

work, instead of directly to a protected service so that DoS attacks cannot easily be

launched directly at the service. This technique alone is not novel. However, DoSE

adds in a smart management layer which acts to conceal relays from attackers and pro-

vide an attack-resistant connection establishment mechanism while most importantly

minimizing costs. The relays are created on cloud infrastructure as virtual machines,

so the number of relays can expand and contract easily to adapt to changing network

conditions. Client-to-relay assignments are communicated over a push-based CDN

system that allows for fast reassignments during attack periods, unlike traditional

domain name systems (DNS), as well as enabling client-specific assignments. The

clients are partitioned among relays and each new relay’s address is selectively re-

leased to clients so that if an attack occurs, a set of suspect clients can be identified.

The suspects are then separable from the legitimate clients, and with each attack,

the suspicion set can be narrowed down. Suspicious clients can be connected to the

same relay so that future attacks impact only a small subset of the users.

Prior work in this area is capable of stopping attacks but fails to address the

economic considerations of DoS defense. Techniques, such as Portcullis [103] and

Epiphany [104], require Internet-wide infrastructure upgrades to combat attacks.

Portcullis relies on the assumption that attackers and legitimate clients have similarly-

balanced computing power, which may not hold. Epiphany relies on router upgrades

(to support reverse multicast) and the availability of thousands of proxy nodes to
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defeat DoS (according to their experimental setup - Section V-A). MOTAG [105,106]

and other overlay network type techniques [107–109] fail to address the resiliency of

the client assignment or initial connection channel, relying instead on Portcullis [103]

and other existing techniques to stop attacks on a management channel. The work

in MOTAG [105] and its subsequent work [106] operate moving target defenses using

similar techniques to DoSE. These solutions are not cost-conscious and call for 1,000

active relays for example. Without cost consideration, optimization, or evaluation,

they are susceptible to economics-based attacks, whereby the attack exhausts the

budget of the consumer for supporting network traffic.

In terms of contributions, DoSE shows how to achieve low cost DDoS attack

mitigation for small hosting clients or medium-sized organizations, which have a

limited security budget that precludes them from getting a dedicated filtering net-

work or some special arrangements from an ISP. DoSE designs a novel approach

for connecting clients to relay proxies and new methods for assigning clients to re-

lays to mitigate network layer attacks while minimizing costs. This work does not

address attacks capable of disabling large data centers or other large infrastructure

networks by well-resourced attackers, or application-layer attacks, i.e., attacks that

exhaust the application’s capacity by sending a large number of legitimate-looking,

but computationally-expensive-to-process requests.

The rest of the chapter is structured as follows. In Section 6.2, background infor-

mation is provided on the different kinds of DoS attacks. In Section 6.3, a high-level

view is given of the workings of DoSE, followed by the detailed design in Section

6.4. In Section 6.7, the economic costs of using DoSE are layed out versus two ex-

isting approaches, one from the commercial domain and the other from the research

literature. In Sections 6.5,6.6, the experiments are described with varying numbers

and capabilities of legitimate and adversarial nodes and measure what fraction of the

non-attack traffic can be supported when the service is under attack. In Section 6.7,

the costs of DoSE are analyzed and Section 6.8 presents the conclusions.
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6.2 Background and Related Work

6.2.1 Traditional Defenses

Traditional DDoS defenses technologies rely on filtering or rate limiting traffic

along different points of the network [110], such as with access control lists and

firewalls. Each technique addresses a way to distinguish legitimate from malicious

traffic and then provides a mechanism for increasing goodput [111] by filtering.

The foundation of filtering techniques have a major pitfall, however, because the

victim has no control over routers on other autonomous systems (AS) and must rely

on cooperation or ingress capacity to begin filtering. To counter this limitation, over-

lay networks, where traffic is routed to an intermediate server which filters before

forwarding on to the destination [107–109], allow defenders to distribute filtering ca-

pacity in public clouds without relying on Internet infrastructure support. If the

overlay servers are well distributed then a large filtering capacity can be established

without modifying any Internet topology devices like firewalls or routers. Another

capacity handing mechanism uses anycast [104] that forces traffic destined for a par-

ticular victim to be routed to several different servers or networks, each containing

the same IP address, so that capacity is improved via redundancy.

6.2.2 Overlays and Moving Target Defenses

DoSE builds on two prior techniques, overlay networks and moving target de-

fenses, to achieve low costs. Overlay networks [107–109] provide a layer of indirection

to shield protected IP addresses from attacks, and moving target defense techniques

control how and where these intermediate computers or relays process traffic to best

curtail an attack. With modern cloud computing infrastructure, overlay networks can

become elastic and nimble to cheaply dodge attacks, as shown in MOTAG [105,106]

and utilized by DoSE. This elasticity has to be carefully managed, however, to keep

the cost of defense low. Simulated attacks in [106] use 1,000 relays over 60 ”shuffles”
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which each require additional virtual machines to implement. In Amazon’s EC2 ser-

vice this would translate to as much as 60,000 billable hours of usage, or over $700 in

costs to repel a single attack. The existing moving target methods are stateless and

do not account for clients leaving and joining, or the fact that non-aggressive attackers

may take hours between subsequent attacks. DoSE focuses on different assignment

techniques that minimize these costs by dynamically managing the expenses paid and

the number of active relays for any particular defense situation.

6.3 DoSE Overview

6.3.1 Threat Model

DoSE is targeted at protecting small to medium-sized services, so the adversary is

generally comprised of critics and competitors rather than highly skilled cyberwarefare

attackers or those with extensive resources. DoSE is designed to defend against

attackers that are capable of disrupting communications to a few public IP addresses.

DoSE then makes maneuvers to thwart the attacker by making the target unclear

and difficult to determine if an attack was successful.

6.3.2 Workflow of DoSE

In DoSE, a client does not directly connect to the protected service; in fact, the

location of the protected service is kept hidden. Instead the client connects to a relay

node on a public cloud infrastructure, which in turn reaches the protected service

as explained in Section 6.4.1. DoSE then utilizes a commercial Content Delivery

Network (CDN) based system to disseminate the client-specific relay information to

each client. The dissemination of relay information to a client is done securely through

an Assignment Service, with the channel between the Assignment Service and the

client being made secure through a shared key that is established as a part of DoSE.
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Fig. 6.1. Overview of Infrastructure deployed as part of DoSE: The
attackers and clients exist on the Internet and are attempting to access
a protected service that is either located in a data center or on a small
business network (SBN).

A malicious client cannot enumerate the list of relays, preparatory to attacking them,

or connect to a relay that it has not been assigned to, as presented in Section 6.4.2.

Figure 6.1 details how the different elements of DoSE are laid out. The protected

service is in a network which is potentially limited in bandwidth, while the relays

are in the network of a public cloud provider (denoted as “datacenter” in the figure).

The assignment service, responsible for assigning clients to relays, can be located

in either the data center network or the small business network (SBN). A plausible

deployment will have all the entities - the protected service, the relays, and the DoSE

management service – in the cloud environment.

6.3.3 Client-Relay Assignment

Whenever a relay is attacked, it can be taken offline and a new relay brought

up in its place as in an elastic cloud. This allows the defender to have a seemingly

endless supply of fresh relays, whose addresses are selectively released to clients.

Further, DoSE keeps track of the assignment of clients to the relays so that if a
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relay gets overwhelmed due to traffic, a set of suspect clients can be identified. By

progressively partitioning suspect clients among multiple relays, DoSE can identify

persistent malicious clients as described in Section 6.4.3.

6.3.4 Defense Against Some Obvious Adversaries

Here some obvious ways are layed out in which an adversary can launch a DoS

against the protected service or one of the entities that DoSE introduces.

An attacker identifies the IP address to which she is connected (a relay) and

launches an attack at that IP, disabling it and any other clients also connected to that

address. Consequently, DoSE creates new relay(s) and re-assigns clients among these

new relays. The threat has several characteristics that inform DoSE’s assignment

strategy. Each time the client attacks, she is deemed by DoSE to have a higher risk

due to prior behavior, i.e., her client being connected to the attacked node, and is

therefore managed in such a way to minimize the impact of future attacks as explained

in Section 6.4.4.

In the previous attack, the adversary can spawn a new client and try to access

the protected service again, concealing her identity. This is handled by the design

that a new client is considered inherently “risky”. DoSE will then effectively place

new clients in a kind of holding tank to establish trust. Therefore, even under intense

attacks, well established and well behaved clients can maintain communications with

the service. In the event that an attacker is not aggressive, client connections can be

consolidated to a few relays to save costs during non-attack periods and redistributed

according to risk when an attack resumes.

6.3.5 Cost Minimization

Relays are only needed during attack periods. As more clients are involved in

attacks, more relays become necessary to maintain communications. The number of
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active relays in DoSE is a function of the total connected client risk, controlled by

cost parameters via a feedback controller.

6.4 Detailed Design of DoSE

6.4.1 Relays

The relays are simple software filter and forward firewalls on virtual machines in

the cloud, mediating client-service communications. Each relay has a set of whitelist

firewall rules and rate limiting for each assigned client, and the only entities in the

white list are those clients that have been assigned to the relay. For each whitelisted

client, there is a rate limit built in at the relay. This can be accomplished with

iptables for example.

Attack traffic can come from two sources. The first source is an established client

itself, in which case the attacker is known and the excess traffic is stopped by the rate

limiting portion of the firewall. The second source is from a non-whitelisted address

in which case it is simply dropped. In either case, however, the inbound bandwidth to

the relay may become overloaded resulting in a disruption to all of the clients assigned

to a particular relay. When an overload occurs, the relay is abandoned and a new

relay is established in the cloud. How an attack against a relay node is detected is

not central to DoSE, and any monitor which identifies when a relay is inaccessible to

the clients is sufficient.

6.4.2 Client-Relay Assignment Infrastructure

The client-relay assignment infrastructure is responsible for communicating the

assignment of a client to a relay to the client. It must provide an attack-resilient

announcement of IP addresses to those clients while maintaining two properties. First,

it must provide each assignment secretly—only the intended client must be able to
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read an assignment. Second, it must be able to provide this assignment information

to anonymous clients.

To create attack-resilient relay announcements, the assignment is stored on a

content distribution network (CDN). These networks store files in a distributed set

of caching locations and provide only simple file transfer services (e.g. hash table

lookups) which makes them difficult to target at an application layer for attacks.

The content itself is replicated across several independent data centers with very fast

network connections that make direct infrastructure attacks difficult. The CDN can

operate as a push-only replica where the content must be pushed by the provider to

the CDN, thus shielding the back end assignment infrastructure. This allows DoSE

to withstand large attacks from unauthenticated clients.

This protocol seeks to provide each client with a secure way to acquire its relay

assignment using push-only files. At a high level, this is done by having each client

solve a puzzle and the solution to the puzzle gives the name of a unique file in the

CDN. Following the content in the file, the client is able to contact the relay that it

is assigned to.

In the first stage, the CDN has many files with a large number of puzzles and

an index, managed by the Identity Establishment Service (IES). A client fetches the

index from the CDN and decides randomly to solve one puzzle from the set. The

puzzle itself contains an ID, a CAPTCHA image, an integer ”PoW Difficulty”, and a

partial solution hash. The solution to a puzzle comprises of guessing a number from

a pre-specified range (PoW) and solving a CAPTCHA, serving as a decryption key.

The client, after solving the CAPTCHA text, guesses a value for the first compo-

nent of the hash function (“PoW guess”), calculates the hash value, and checks if the

hash matches the partial value provided by the puzzle. If it does (say, outcome “A”),

it uses the entire hash value as the name of the file to retrieve from the CDN. If it

does not (say, outcome “!A”), the client has clearly not guessed the random number

correctly. So it tries the next guess. If all guesses are exhausted, then the CAPTCHA

was incorrect and a new puzzle must be selected. The scheme forces the client to do
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some work before it gains service, limiting request rates. Under outcome A, the client

is able to acquire a file from the CDN, call this file “foo1”. This file is itself encrypted

using symmetric encryption and the key used is simply H(PoW guess+1,CAPTCHA

text). This seemingly contrived design is such that a brute force reading of files from

the CDN provides no usable client assignments. The file “foo1” has a client ID and

a short-term cryptographic key Ks. The client ID maps to the name of a file also

stored in the CDN, call this file “foo2”. This file has the assignment of the client

to a relay node, i.e., reveals the IP address of the relay to the client. During the

first interaction with the relay node, made secure using Ks, the client provides its

client ID to the relay node. If, due to collision of the puzzle space, the client ID has

already been assigned to a previous client, the relay rejects the initial request from

the client. The client then has to go back to the beginning of the process and solve

another puzzle en route to getting a new client ID. If, on the other hand, the client

ID is unique, then the relay node accepts the request of the client, i.e., forwards it to

the ultimate destination. Also, the relay provides a long-term cryptographic key Kl

to the client and to the IES. When the client will be re-assigned to a new relay, say

due to an attack, then it will repeat the part of the protocol starting from accessing

“foo2” on the CDN. Since it has already acquired a unique client ID, it does not

need to repeat the first part of the scheme. For all subsequent interactions with relay

nodes, the client will use the key Kl.

The above scheme for informing a client of its relay assignment achieves the goal

that it is using a vanilla CDN, which is “simply” a mechanism to distribute content

(files “foo1” and “foo2” in this case). The IES of the DoSE simply pushes content to

the CDN and the clients are never allowed to pull information directly from the IES.

This provides a level of protection against DoS against the Management service (the

IES is part of this) of DoSE.

The “PoW Difficulty” parameter allows the server to control the amount of work

it will have the client do before it is allowed to connect to a relay; a higher value

implies higher amount of work. The set of puzzles will expire after a certain length of



166

Fig. 6.2. The client interacts with static files stored on the CDN to
retrieve an identity for obtaining future relay assignments in the event
of an attack. The client selects a random puzzle from a set on the
CDN and then does a proof-of-work to solve the puzzle and retrieve an
initial Client ID and relay assignment to begin accessing the protected
service.

time, say after T time units, to prevent solution caching. To reduce the likelihood of

collision of the puzzle that a client solves, the number of puzzles in a set will be kept

much larger than the number of new clients that are expected to connect to DoSE in

time T . Finally, the client-CDN connection can be established over SSL to prevent

man-in-the-middle attacks. An attacker may attempt to solve several puzzles to deny

service to new clients by forcing collisions. This attack would require extensive com-

putational resources on the attackers end, especially if the “PoW Difficulty” remains

high, resulting in high expenditures for an attacker relative to the IES.

Several conditions must be maintained for this system to be successful. With

period T the content on the CDN is expired and removed. Clients arrive at a rate

Cr, and puzzles are generated at a rate Pr. Since clients choose puzzles randomly,

Cr << Pr ensures a low chance of collision. Pr is a function of the computation and

network capacity of the key management service. A modest capacity of 10 Mbit/s

of network upload could provide up to 1000 puzzles per second, assuming a 1 KB

image size. The PoW Difficulty parameter allows the server to control the computa-



167

tional advantage it has over malicious connecting clients at the expense of new client

connection establishment times.

6.4.3 Client-Relay Assignment Strategy Overview

At the core of DoSE is the many-to-one client-relay assignment strategy in which

careful assignment reveals the attacker’s identity.

Two categories of adversaries are differentiated. In the first category, the adversary

connects, attacks, disconnects, and creates a new identity for herself (as explained in

Section 6.4.2). She then launches an identical attack against the newly assigned relay.

This type of adversary is a lone drone. In the second category, the adversary creates

multiple clients concurrently, each assigned to a relay. The clients stay connected to

the relay for an extended period, and then, in a coordinated manner, launch a DoS

attack against all the relays. This type of adversary is an aggregate insider.

In considering the assignment strategy, the notion of risk is introduced for each

client. Risk is the likelihood that a client will launch a DoS attack in the future.

The information items that DoSE currently uses are — length of time the client has

used the service (in a well-behaved manner) and whether it is suspected to have been

involved in an attack in the past. The latter factor is coarse-grained because when a

relay is determined to be under attack, the suspicion falls on all the clients assigned

to the relay.

New clients are slowly relieved of the lone drone risk by the function P (lone

drone|tL) = e
−tL

EXP (t) where tL is the connection lifetime and EXP (t) is the expected

connection lifetime. If a set of clients is connected to a relay that gets attacked, each

client has a uniform probability of being the attacker. The risk assigned to each client

is then proportional number of clients connected to a relay. The statefulness of the

risk assessment is maintained by recording both the clients involved in each attack

and the increase in risk for each client involved in an attack. When an attacker is

identified, the risk that was added for all clients implicated in attacks in which the
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known attacker was also a suspect, is removed. In summary, the factors that drive

the risk estimation of clients is as follows:

• Each client begins with a suspicion of being a lone drone.

• As time progresses, the probability that a client is a lone drone exponentially

decays.

• If a client is connected to a relay which comes under attack, its level of suspicion

is incremented inverse-proportionally to the number of other clients connected

to the relay.

• When an attack is solved, the suspicion of clients associated with the series

attacks is reduced.

Note that DoSE still allows for anonymous clients. It only requires there be a

secure session between the client and the relay, but it does not require a specific

identity of the client to be divulged to the service.

6.4.4 Formal Relay Assignment Strategy

The assignment strategy is designed to minimize percentage of disrupted clients

which means evenly spreading risk among each relay.

With the notion of a high risk client being associated with its own relay comes the

parameter risk per relay (RPR), which is defined as the maximum cumulative risk

any relay will tolerate. The total number of relays to use is then calculated as the

sum of client risks divided by the RPR. If a set of clients connected to a particular

relay is implicated in an attack and this causes the risk on each client to double, say,

then the set of connected clients will be split among two relays. Another parameter is

the cumulative risk per attack (CRPA). This is the total risk increment when a DoS

incident occurs. This increment happens for all the clients connected to the attacked

relay and the CRPA is divided by that number of clients to arrive at the per-client
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increment of risk. The CRPA is parametrized and scaled to control the growth rates

of relays. The RPR and CRPA work together to control how the clients are spread

during attacks. The higher the CRPA
RPR

ratio, the more quickly the attacker is isolated,

but also higher is the number of required relays. If the time to bring a new relay into

service increases, then the time to find the malicious client will also increase.

6.4.5 Optimizing Cost

Cost is the direct function of the number of relays utilized and can be controlled

by the RPR parameter. A proportional-integral-derivative (PID) controller [112] can

be used to adjust this parameter to control long term cost targets at the expense of

mitigation effectiveness, specifically by the integral term in the controller.

6.5 Experimental Results

Measuring the effectiveness of Denial of Service mitigation is a challenging task,

especially when comparing techniques that operate on fundamentally different prin-

ciples. Prior work [113] suggests using the percentage of failed transactions (PFT) to

establish effectiveness which is used to measure the success of DoSE.

The effectiveness of different assignment strategies can be assessed without the

need for hardware implementations. The actual implementation parameters that

influence the performance of DoSE can be easily measured, e.g., relay creation time,

iptable filtering rule creation time (at a relay). These performance parameters are

then used in an agent-based simulation to evaluate the DoSE approach. While other

testbeds exist [114,115], their goal is to assess filtering methods, which must operate

on real-time traffic. In the case of DoSE, once a relay is determined to be unusable

due to an attack, it is null routed and henceforth, the actual size of the attack does

not have any implication on the network.
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6.5.1 Management Service Overhead Analysis

The management service has three components that need analysis. The first is the

CDN system itself which has been measured sufficiently by prior studies [116, 117].

The second component is the puzzle generation system. Proof-of-work systems are

not new, and Portcullis [103] is one example of a network defense implementation

which has done performance testing on hash functions. Hashing performance was

measured on an EC2 “m1.small” instance to be 1 million hashes per 1.71 seconds,

sufficient for DoSE. The next component is the CAPTCHA generation. With 1 ECU,

10,000 GTT’s, 4.2 KB each, were created in 5.11 seconds using libcaptcha. The final

component is the assignment and client tracking system. Each session is associated

with a key, assignment, and a risk value which is only a small amount of data to

store. The assignment algorithm itself is simple — a client is greedily placed on the

lowest-risk relay. The conclusion then is that simple EC2 instances can generate a

sufficient number of puzzles to supply 10-100 new clients per second with identities.

6.5.2 Agent-Based Simulator

To model the DoS scenario, an agent-based simulator [118] is constructed in MAT-

LAB. The simulator facilitates event scheduling and agent-to-agent communications.

The agents constructed are the clients, attackers, relay nodes, the assignment service,

and the end application. The client is modeled as having a request rate distribution

to mimic UDP streaming applications. The attacker has the ability to disable its

assigned relay node at any time, causing all traffic to be dropped by that relay.

In the rest of the section, the terms legitimate clients and malicious clients will

be used. Where it can be used without ambiguity, the term client, it will refer to a

legitimate client. The term attacker will be synonymous with malicious client.
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6.5.3 Experiment 1: Single Adversary

The first experiment has 1,000 legitimate clients and a single attacker to mimic

the impact of a DDoS-for-Hire service. Initially all of the clients and the attacker

connect at the same time with uniform risk. Then attacker continuously attacks, and

the experiment ends once the malicious client is isolated.

Figure 6.3 shows the average PFT for the set of connected clients. In this case,

the minimum number of relays is two. After the initial attack, one relay is disabled,

resulting in a PFT of 50%. Additional relays are brought online to distribute the now

high risk set of disrupted clients. This continues until 3.9 minutes into the simulation

when the attacker is identified. The time needed to neutralize the malicious client

depends on the cumulative risk per attack (CRPA) parameter and the time to bring

a relay online (40 seconds), as described in Section 6.4.4. Over the time span of the

entire experiment, the average PFT is 0.118, meaning that an average of 88.2% of

the requests are satisfied during the mitigation period.

Another important metric is the number of relays used in the defense. Figure 6.4

details how the number of relays grows with time, growing from an initial 2 relays to

16 relays. The growth rate is a function of the CRPA
RPR

ratio. After each attack cycle,

additional relays are created to reduce the impact of attacks and prune the suspect

list. The number of relays is also dependent on the number of clients connected.

Figure 6.5 shows the number of relays in use during the same attack but with only

100 clients. In this case, the attacker is found more quickly and the overall usage is

lower, growing to a maximum of 11 relays. This drives home the point that costs

in DoSE are client-dependent. Note however, that there is no strict proportionality

between the number of clients and the number of relays needed to mitigate the attack.

The formulae used in the algorithms for assignment of clients to relays are non-linear

and this explains the observation.
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Fig. 6.3. Percentage of Failed Transactions with a single attacker: The
attack begins at 80 seconds and is progressively mitigated with each
relay-creation cycle until the attacker is identified and neutralized at
3.9 minutes. The relay power-on time is 40 seconds, the approximate
width of the steps.

6.5.4 Experiment 2: Streaming Attack

In the second experiment, the stress due to the attack is higher with multiple

malicious clients launching coordinated attacks. This is referred to as the Streaming

Attack, consisting of aggregate insiders. New legitimate clients connect to the service

uniformly every 1.6 seconds and stay connected for 400 seconds, averaging 250 con-

nected clients. The attackers arrive in sets of 10 every 160 seconds and simultaneously

attack. Eventually, the malicious clients are identified and neutralized.

Figure 6.6 shows how the PFT is impacted by the streaming attack. The initial

attack is difficult to mitigate because all clients have uniform risk, few clients are

legitimate, and the relay count is small. As the client base matures, subsequent

attacks have a much lower impact on the PFT because the new clients are high

risk compared to existing, legitimate ones. It is seen that even the spikes, which
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Fig. 6.4. Number of Relays Used: Defending against a single attacker
with 1000 clients shows increased relay counts until the attacker is
found.

correspond to the arrival of the new batch of malicious nodes, only go up to 20%

failed transactions.

6.5.5 Experiment 3: Attackers Present at Startup

In this experiment, the case when the malicious clients are present at initialization

is evaluated. The performance of DoSE is evaluated as the number of malicious

clients is varied from 1 to 500, with a constant legitimate client base of 1,000. The

PFT and relay count metrics are averaged over 800 seconds, by which time the last

malicious client has been identified and isolated.

Figure 6.7 shows how many relays are used to defeat attacks of varying sizes of

number of malicious clients. With a large number of attackers, the number of relays

required to distinguish between attackers and legitimate clients becomes large as well.

With 1 malicious client, the number of relays required is 6; with 15, it is 30; and, with
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Fig. 6.5. Number of Relays Used: Defending against a single attacker
with a smaller number of clients shows the relay count to be smaller
than with 1,000 clients.

500 malicious clients, the number of relays required is 154. There are two factors to

note here. First, the ratio of adversarial to legitimate clients of 1:2 is rather high, and

second, the growth in the number of relays is slower than the increase in attackers.

Also, an insider and a legitimate client begin with indistinguishable features and

history. A more likely case is that some clients will have a higher trust due to a long

association with the service.

Figure 6.8 details the impact on the average PFT during the attacks. Expectedly,

as the number of attackers increases, the PFT increases. As each attack occurs, the

legitimate clients are prevented from accessing the service until a relay is assigned

only legitimate clients. With this level of discrimination, the malicious client(s) can

be isolated. However the convergence time to reach this point increases with the

number of attackers, thus driving up the average PFT.
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Fig. 6.6. Percentage of Failed Transactions with the streaming attack:
The attack begins at 160 seconds and is repeated with 10 malicious
clients arriving every 160 seconds. A legitimate client arrives every
1.6 seconds and stays connected for 400 seconds. As time progresses,
the risk profile of the legitimate clients decreases leading to a better
isolation of the malicious nodes. Consequently, the PFT decreases
compared to the initial burst of attack.

6.6 Result Analysis

6.6.1 Sensitivity to CRPA

The CRPA parameter, as described in Section 6.4.4, controls the amount of relay

growth per attacked relay. If the CRPA is 2 and the RPR is 1, then a single attacked

relay will be replaced by 2 new relays. Figure 6.9 shows the relay growth from

Experiment 1 (single attacker, Section 6.5.3), with varying CRPA factors.

In this experiment, the attacker is flooding the relays continuously and therefore,

the high CRPA value gives the best result—the time to identify the attacker is the

lowest (compared to lower CRPA values) and the total cost is the same. The down-

side of a high CRPA value will be exposed if the attacker is more subtle, and after
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Fig. 6.7. Number of Relays vs Number of Malicious Nodes: The
number of legitimate clients is kept fixed at 1,000 and the number of
malicious clients is increased. All the clients are present at startup.
The increase in the number of malicious clients is met with auto-
matic and progressive increases in the number of relays, to isolate the
malicious nodes.

launching an attack (and causing a large number of relays to be created), it lies low

for a while. The spurt in the number of relays does not help DoSE if condensed prior

to a subsequent attack.

6.6.2 Quantitative Comparison with Epiphany and Speak-up

A quantitative comparison of Epiphany [104] and Epiphany is done, coupled with

Speak-up [119] with DoSE for the setup of experiment 3. DoSE is executed and

the number of relays used is given as the number of proxies in Epiphany. To do a

comparison, a distribution was created of clients and attackers on the Internet, such

that 10% of the Internet is “unclean networks”, where 80% of the IP addresses are

attackers. The remaining 90% of the Internet is split between completely clean and

partially clean networks, with the clean network accounting for 10% of the addresses,
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Fig. 6.8. PFT vs Number of Malicious Clients: The number of le-
gitimate clients is kept fixed at 1,000 and the number of malicious
nodes is increased. All the clients are present at startup. The in-
crease in the number of attackers causes the average PFT over the
attack simulation window to grow as a larger-sized attack impacts
more client-connected relays.

defined as having no malicious address. The partially clean network has 20% of its

addresses as attackers. The design of Epiphany suggests that if a legitimate client is in

the unclean network, then she will not be able to have any successful transactions. If

the client is assigned to a clean network, then there will be no impacts of the attack.

Therefore the percentage of failed transaction varies between 10% and 90%. The

remaining clients may or may not be connected to proxies which contain attackers. If

there is an attacker, then the ratio of successful transactions is the percentage of good

clients connected. Thus if there are 9 clients connected to a proxy and 1 attacker,

90% of the transactions will be successful, modelling the behavior of Speak-Up +

Epiphany [119]. In the alternative mode, without Speak-Up, any client assigned to a

relay with an attacker will not be able to access the protected service.
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Fig. 6.9. Number of relays over time for varying CRPA factors: The
number of relays utilized peaks to a much higher number with high
CRPA values, however the attacker is found much more quickly. The
factor controls the growth rate in the number of relays created in
response to an attack.

Figure 6.10 shows the results of the comparison. At a low number of attackers,

DoSE is able to maintain the advantage. At higher numbers of attackers, Epiphany

+ Speak-Up is able maintain the best advantage while DoSE outperforms the pure

Epiphany solution. However, as pointed out earlier, DoSE requires no widespread

network infrastructure upgrades.

6.6.3 Comparison with MOTAG

MOTAG [105] provides an alternative approach to client-relay assignments from

DoSE. It uses a greedy assignment algorithm in an attempt to save as many clients

as quickly as possible. To make a comparison between DoSE and MOTAG, DoSE

was run and the average number of relays used during the scenario was used as

the input to MOTAG. MOTAG also relies on a set of shuffling proxies and a set of
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Fig. 6.10. Comparison of DoSE to Epiphany and
Epiphany+Speakup: At low ratio of number of attackers to le-
gitimate nodes, DoSE outperforms other solutions, while at mid to
high ratios, Epiphany+Speak-up outperforms DoSE.

serving proxies, and legitimate clients are moved from the shuffling to the serving

proxies as the attack progresses. It is assumed that there is a distribution of half and

half between the shuffling and the serving proxies. Additionally, MOTAG provides

an estimation technique for the number of insiders; here, the truth value is simply

provided to MOTAG. In this evaluation, a rate of one IP address is being revealed

per minute so multiple insiders are independent sources of addresses for attack.

Figure 6.11 shows that MOTAG takes much longer to isolate the attackers than

does DoSE. This is because MOTAG relies on stateless transitions between attacks

while DoSE builds a long-standing history, through the risk value, for each client.

Therefore an insider who stops attacking is not forgotten, while in MOTAG, the

insiders may continue to impact legitimate clients if moved to a serving proxy. A

higher time to find the attacker results in increased costs since a larger number of

relays are ultimately used in defense, thus DoSE costs 59% less than MOTAG. Figure

6.12 shows the number of failed transactions per second, averaged across the total
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Fig. 6.11. Comparison of DoSE to MOTAG. The time it takes to
find all of the insiders is significantly lower in DoSE, especially as
the number of insiders increases. This is due to the smart relay man-
agement which divides the clients during successive attacks in DoSE
while MOTAG relies on a stateless classification which lets intelligent
adversaries fool the system.

simulation time. Since DoSE finds the attacker more quickly than does MOTAG,

fewer transactions fail when using DoSE to defend against this attack scenario.

6.7 Costs and Discussion

The costs of DoSE are application dependent with two components: time-of-use

resources (relay instance runtime) and bandwidth-based network resources (cost to

forward). Relay nodes on EC2 [120], for example, cost $8.64 a month for the smallest

instance or $2.23 with spot pricing. Network resources are a function of legitimate

client traffic that must be passed from the cloud to the protected service. Costs for

forwarding traffic out-of-network are priced per GB and range from $0.05 to $0.12

per GB, but can be mostly avoided by co-locating the relays and protected service.
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Fig. 6.12. Comparison of DoSE to MOTAG. DoSE is able to keep
the number of failed transactions lower during the simulation because
it better isolates and identifies the attacker more quickly, resulting in
less clients co-located on relays with insiders.

A comparison can be made between the cost of DoSE and existing commer-

cial solutions. For a representative sample, Staminus Communications [100] will be

used. The defensive cost is related to the capability of the adversary, since a filtering

technique is used, and the cost comes to about $35 per Gbit, $175 per MPPS of

attack protection. The defensive cost for an average attack of 9.7 Gbit/s, 19.8 MPPS

peak [98] would be $3,465 per month.

The cost of DoSE can be compared to Epiphany [104] and MOTAG [105, 106].

For the former, a set of static proxies are needed as entry points into the Epiphany

routing structure. The cost of operating a proxy for Epiphany will be 50% higher

than EC2 because it is transitioning from a datacenter style location to a more end-

user style location (drawing from Amazon’s differentiated tiers). To estimate the

router upgrade cost, if each router takes 1 man-hour to reconfigure, and there are 1

million routers in the system, then upgrading 0.01% (a parameter chosen in [104])
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of the routers to support Epiphany would require 1,000 man-hours or $100,000 at

$100/hour for a network engineer. If there are 10 routers between the source and

destination and each router has 10 output ports enabled, the amount of bandwidth

used will be 100 times the original transmission due to reverse-multicast.

For MOTAG, cost-equivalent performance comparisons can be seen in Section

6.6.3. As tested in [106], MOTAG relied on 1000 replicas through 60 shuffles which

amounts to 60,000 billable hours (at 1 hour minimums) on EC2, or over $700 to stop

a single attack. With that many replicas in play, more efficient static approaches

could keep clients connected.

These findings are summarized in the following table using the shorthand “R” for

relay, ”m” for month, and R-dependent means it depends on the number of relays.

Defense Overhead BW Atk. Size

DoSE $9/R/m 2x Independent

Epiphany $22/R+$1670/m 100x R-Dependent

Commercial $3,465/m Included 100 Gbps/20 MPPS

Another cost of using any design as in DoSE of separate entities—relay and

protected service—is the latency penalty for taking alternative routes in the network.

This has been measured in [105], and a round trip time penalty of 70 ms would be

typical for the continental US.

The cost of DoSE for the experiments in Section 6.5 can be calculated for EC2.

In the first attack example 6.5.3, a maximum of 16 relays are used, and there are 5

rounds of relay expansion captured by the number of steps seen in the graph. Since

EC2 requires a minimum billing of 1 hour for each instance started, the 5 instances

that were disabled by the attacker along with the 16 relays consumed are billed for 1

hour, totaling 21 hours of billing on the smallest EC2 instance. The cost is then $0.42

for on-demand instances or $0.07 for spot instances to stop this attack. Additional

costs will depend on how much Internet bound traffic passes through the relay.
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6.8 Conclusion

DoSE was presented as a method for mitigating network-layer Denial of Service

attacks. DoSE uses cloud-based relay nodes to hide protected services from direct

attack while acting as sacrificial targets. The key idea behind DoSE lies in its ability

to assign relays to specific clients and by re-assigning suspect clients to a progressively

smaller set of relays, to identify and isolate the malicious clients. DoSE also smartly

manages the set of relays to optimize cost while allowing maximal attack mitigation.

The technique is capable of quickly mitigating attacks while continually improving

on the legitimate client’s ability to complete transactions. It is believed that DoSE

is the first technique that can achieve DoS protection for a price point that would be

acceptable to medium-to-small-sized businesses, of less than $100 per month.
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7. CONCLUSION AND FUTURE WORK

7.1 Conclusion

Cyber-physical systems, especially those that control electric power consumption,

will continue to expand and grow as new control models such as real-time pricing

continue to improve the efficiency of a variety of industrial processes. These systems,

however, may be vulnerable to availability attacks via network disruptions. In this

dissertation, Chapter 2 introduced the energy-specific usage cases for cyber-physical

systems. Renewable energy resources and market deregulation motivated the creation

of a multi-agent profit-oriented model for strategic adversaries. Chapter 3 introduced

the technical underpinnings of operating such a CPS via real-time pricing systems

and dynamic market mechanisms. The impacts of latency were also examined in that

chapter. Chapter 4 combined the previous two chapters into a attack/defense game

for launching network attacks on an real-time pricing system. The results validated

the work in this dissertation, but it introduce some shortcomings in the strategy

space due to its large size. Chapter 5 then demonstrated a technique for attacking

systems in real-time with a charge/discharge strategy and denial of service attacks.

Finally, Chapter 6 provided a denial-of-service defense with low cost optimizations.

This technique can be combined with the RTP system to achieve low-cost resilient

market operations.

The primary contributions of this dissertation include:

• A multi-agent model for energy-based cyber-physical systems where one or more

agents are malicious

• An attack and defense strategy for those CPS executed under MILP
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• An analysis of low-level network attacks and their mapping to the attack/defense

strategy space, including defensive maneuvers

• An analysis of latency impacts on two CPS control models, including a novel

control system

• An on-line attack heuristic for extracting profits from a real-time pricing system

• A low-cost denial-of-service defense technique (DoSE) for lowering the cost of

defending such systems

In summary, this dissertation has laid the groundwork for engineering resilient

cyber-physical systems from the perspective of a strategic adversary. As CPS grow

and include multiple financially independent entities under their control, financial

incentives will need to exist to promote cooperation. Such systems, like real-time

pricing, may be subject to exploitation by strategic adversaries as shown in this

dissertation.

7.2 Future Work

Several future directions for additional work include:

7.2.1 Multi-Round Attacker/Defender Games

The game theoretic models in Chapters 2 and 4 are designed as single round games.

The defender first strategies on defense and then the adversary makes a move based

on static knowledge about the system. This model can be improved with multi-round

games that allow the adversary to adapt to the defenders’ moves. Such a system

would improve the fidelity of both the attack and defender models and would provide

additional insight into asset protection schemes and cost sharing models.
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7.2.2 Stateful Real-Time Attacks

The attack models covered in Chapters 4 and 5 are based on stateless consumers

and producers. This means that their loads and needs are modeled as exogenous

functions that are not dependent on what happens in the operational system. Prac-

tically, these producers and consumers operate with time-shiftable loads, fixed fuel

storage, etc. that would cause stateful responses in the power grid. For example, if

a consumer avoids loading the grid at t = 10 h due to market conditions, then that

consumer would have a much higher need to load the grid at t = 11 h. The impli-

cation is that the fidelity of the post-attack response of the grid can be improved by

including stateful client models in the RTP system. This future work would enhance

the adversary’s profit if properly executed.

7.2.3 Client-Side DoSE

DoSE, presented in Chapter 6, is designed to protect a single service with multiple

clients from attacks. Some RTP systems, and those that are designed in the future,

exist where the clients are the attack target rather than the central service. Such

attacks require new overlay network design models to protect clients from attacks,

e.g. via intra-overlay routing. Methods that secure this kind of interaction at low

cost could protect the systems described in Chapter 3.

7.2.4 Algorithm Resilience

This dissertation focuses on mitigating attacks by undoing their effect (i.e. stop-

ping a DoS attack). An alternative or supplemental approach is to design the algo-

rithms to operate in a degraded state such that the impact of attack is minimized. For

example, in the market mechanisms presented in this dissertation, the clients enter

a zero-order hold state after attack. Instead, clients could adopt some contingency

plan or some other operational state that reduces the adversary’s profit, etc. Such
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work would further improve the defensive strategies that could be used in the game

theoretic planning phase of system design.
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A. SIMULATION ENVIRONMENT

Throughout this dissertation, several simulation tools were utilized to produce exper-

imental results. This appendix describes those simulation tools and provides links to

source code where available. Additional source code not listed in this appendix can

be retrieved by contracting the Dependable Computing System Lab1.

A.1 Game Theoretic Model for CPS

Chapter 2 contains several computational models for calculating the optimal at-

tack/defense strategies in CPS. This model is available publicly2 or via DCSL. The

model exists as MATLAB code with several functions designed to create and solve the

intermediate steps of generating the impact matrix and using it to drive strategies.

The folder IDD Model contains the information about the experiment, and the folder

cluster scripts contains several examples on how to generate results from this model.

A.2 Agent-Based Model

Several models in this dissertation are based on an agent-based framework in

MATLAB3. This framework contains an event scheduler, agent models, and a mech-

anism by which agents can schedule events and communicate with each other. A

logging mechanism is also included in this model. An additional batch script tool is

available4 that allows jobs to be submitted to a cluster for quick evaluation of various

simulation scenarios. The subsections included all utilize this model.

1https://engineering.purdue.edu/dcsl/
2https://github.com/pcwood21/CPSSim
3https://github.com/pcwood21/DSim
4https://github.com/pcwood21/BatchScriptDSIM
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A.2.1 Technical Markets

Chapter 3 covers two market models, DMM and NM. The former is not available

publicly because a core component of the source code (the DMM itself) is not yet

released. The Nelder-Mead model and its supporting framework is available publicly5,

including the code to generate figures used in this dissertation. This model utilizes

the agent-based framework with a market operator and connected clients.

A.2.2 Technical Markets and Game Theory

Chapter 4 utilized NM with the work in Chapter 2. The source code for this is

available publicly6. The source code under the Models folder in this repository can

be used to re-create all of the figures in the experiment.

A.2.3 Real-Time Market Attacks

Chapter 5 utilized the NM market mechanism with an on-line attack heuristic.

This code is available7, but it does not utilize the agent-based scheduling framework

provided. Instead, function calls are made directly to the objects to reduce execution

overhead.

A.2.4 DoSE Model

The experiments in Chapter 6 are based on a publicly available model8. The

agents include the end clients, the protected service, and the assignment service.

The CDN is not modeled directly, and client assignments are assumed to always be

transmitted appropriately. Additional comparison models are in the source code as

well.

5https://github.com/pcwood21/NM_Market_Model
6https://github.com/pcwood21/CPS_Model_Comsnet16
7https://github.com/pcwood21/RTP_DoS_Simulation
8https://github.com/pcwood21/DoSE_ABM
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